Desarrollo de una herramienta para la validación de algoritmos de análisis cuantitativo en estudios de perfusión en RMN (DCE-MRI). / Tool development for the validation of quantitative analysis algorithms in perfusion studes in (DCE-MRI).

Guerrero , Andrés F. (2018) Desarrollo de una herramienta para la validación de algoritmos de análisis cuantitativo en estudios de perfusión en RMN (DCE-MRI). / Tool development for the validation of quantitative analysis algorithms in perfusion studes in (DCE-MRI). Master in Medical Physics, Universidad Nacional de Cuyo, Instituto Balseiro.

PDF (Tesis)

Abstract in Spanish

La cuantificación de parámetros asociados a la perfusión sanguínea a través de imágenes dinámicas de resonancia magnética con contraste (DCE-MRI) es un proceso indirecto que involucra numerosas variables. Inconsistencias debidas a la inhomogeneidad del campo, movimientos del paciente, as como errores introducidos por la resolución temporal y espacial, la no localidad de la función arterial de entrada, ruido, entre varios otros, llevan a una estimación de parámetros con una incertidumbre asociada importante. Desarrollar una herramienta que permita validar algoritmos de cuantificación y estudiar sus grados de incertidumbre asociados es el propósito de esta tesis. En este trabajo se desarrollo un programa que permite controlar a voluntad diferentes parámetros de adquisición y, a partir de mapas paramétricos conocidos, simular adquisiciones DCE-MRI para ser procesadas por diferentes algoritmos de cuantificación. De esta manera, permite comparar el desempeño y sensibilidad de dichas herramientas. Finalmente, haciendo uso de un algoritmo de cuantificación, se expone el potencial del software al realizar un breve estudio de incertidumbres y sensibilidad, culminando con un estudio sobre la optimización de los tiempos de adquisición y niveles de ruido en la clínica.

Abstract in English

Quantitative imaging, based on dynamic contrast-enhanced magnetic resonance, is an estimation process that involves several variables. Inconsistencies due magnetic field inhomogeneities, patient movement, errors induced by the limited temporal and spatial resolution of the scanner, non-locality of the arterial input function and noise, among others, lead to estimated parameters with signicant uncertainties. Developing a tool that allows the user to guarantee the accuracy of quantication tools and to study their robustness and sensibility is the purpose of this thesis. In this work, a software tool that allows the user to set some acquisition parameters was depeloped, and by using known parametric maps, DCE-MRI acquisitions were simulated. The simulated images can be then processed using different quantication tools, enabling the user to compare their performance and sensitivity. By using a quantication tool, the potential of our software is shown. This was done by carrying out a robustness and sensibility test. Finally, an analysis of optimal acquisition times and noise levels is proposed.

Item Type:Thesis (Master in Medical Physics)
Keywords:Magnetic resonance; Resonancia magnética; [Magnetic resonance imaging; Imagen por resonancia magnética; Quantitative imaging; Imágenes cuantitativas; Radiomics; Radiomica; Two-compartment model; Modelo bicompartimental]
References:[1] Cancer Research UK Worldwide cancer statistics [en línea] Febrero, 2014. [Consulta: 10 de Noviembre de 2018] Disponible en internet: ix, x [2] World Health Organization Global Health Estimates 2016: Disease burden by Cause, Age, Sex, by Country and by Region, 2000-2016 [en línea] Junio, 2017. [Consulta: 10 de Noviembre, 2018] Disponible en internet: ix [3] Instituto Nacional del Cáncer, Argentina. Acerca del Cáncer. Incidencia. [en línea] [Consulta: 10 de Noviembre, 2018.] Disponible en internet: x, x [4] L. Steentjes, S. Siesling, F. J. Drummond, J. G. van Manen, L. Sharp, A. Gavin MB. Factors associated with current and severe physical side-effects after prostate cancer treatment: What men report. European Journal of Cancer Care, 2018, Vol. 27, e12589, https://doi.oreg/10.1111/ecc.12589 x [5] Oxana Palesh, MPH Caroline Scheiber, Shelli Kesler, Karen Mustian, MPH Cheryl Koopman, Lidia Schapira. Management of side effects during and post-treatment in breast cancer survivors. Breast J. 2018 Vol. 24, 167-175, 81 [6] Jefrey S. Damrauer, Michael E. Stadler, Swarnali Acharyya, Albert S. Baldwin, Marion E. Couch, Denis C. Guttridge. Chemotherapy-induced muscle wasting: association with NF-kB and cancer cachexia. Basic Applied Myology 2018 Vol. 18, 139-148, x [7] Daniel H. Clarke, Monique G. Le, Daniele Sarrazin, Daniele Sarrazin, Marie-Jose Lacombe, Francoise Fontaine et al. Analysis of local-regional relapses in patients with early breast cancers treated by excision and radiotherapy: experience of the Institut Gustave-Roussy. International Journal of Radiation Oncology 1985;Vol. 11, 137-145 , x [8] Jacques Banchereau, Karolina Palucka. Cancer vaccines on the move. Nature Reviews, Clinical Oncology. 2017 Vol. 15, 9-10 , x [9] Manjit Dosanjh, Ugo Amaldi, Ramona Mayer, Richard Poetter. ENLIGHT: European network for Light ion hadron therapy. Radiotherapy and Oncology. 2018 Vol. 128, 76-82, [10] Ganeshlenin Kandasamy et al. Functionalized Hydrophilic Superparamagnetic Iron Oxide Nanoparticles for Magnetic Fluid Hyperthermia Application in Liver Cancer Treatment. ACS Omega; 2018 Vol. 4, 3991-4005, DOI:10.1021/acsomega.8b00207. [11] Tung-Lun Shih. Interview with Dr. Sang-Hue Yen: BNCT is a major breakthrough of radiotherapy and cancer treatment. Therapeutic Radiology and Oncology. 2017 Vol. 2, 21-24 , doi:10.21037/tro.2018.05.01. [12] Dai Fukumura et al. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nature Reviews, Clinical Oncology. 2018 Vol. 15, 325-340, x [13] Manuel Arruebo et al. Assessment of the Evolution of Cancer Treatment Therapies. Cancers 2011 Vol. 3, 3279-3330, DOI:10.3390/cancers3033279.x [14] Ruth Etzioni et al. The case for early detection. Nature Reviews, Cancer. 2003 Vol. 3, 243-252, x [15] IAEA Diagnostic Radiology Physics: A Handbook for Teachers and Students. 2014. xi [16] Kellof GJ, Hoffman JM, Johnson B, Scher HI, Siegel BA, Cheng EY. et al. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin. Cancer Research. 2005 Vol. 11, 2785-2808, DOI:10.1158/1078-0432.CCR-04-2626. xi [17] K DOI. Current status and future potential of computer-aided diagnosis in medical imaging. The British Journal of Radiology. 2005 Vol. 78, 3-19, xi [18] Philippe Lambin et al. Radiomics: the bridge between medical imaging and personalized medicine. Nature Reviews Clinical Oncology . 2017 Vol. 14, 749-762, xi, xii [19] Alan Chan et al. Automatic prediction of tumour malignancy in breast cancer with fractal dimension. Royal Society Open Science 2016 Vol. 3, DOI:10.1098/rsos.160558. xi [20] Philippe Lambin et al. Radiomics: Extracting more information from medical images using advanced feature analysis. European Journal of Cancer 2012 Vol. 48, 441-446, xii [21] Ksenya Shchors et al. Tumor Angiogenesis: Cause or Consequence of Cancer? Cancer Research 2007 Vol. 67, 7059-7061, DOI:10.1158/0008-5472.CAN-07-2053. xiii [22] R H Farnsworth et al. Vascular remodeling in cancer Oncogene. 2014 Vol. 33, 3496-3505, DOI:10.1158/0008-5472.CAN-07-2053. xiii [23] Carr DH et al. Gadolinium-DTPA as a contrast agent in MRI: initial clinical experience in 20 patients. American Journal of Roentgenology. 1984 Vol. 143, 215-224, DOI:10.2214/ajr.143.2.215. xiv [24] Nicolas Girouin et al. Prostate dynamic contrast-enhanced MRI with simple visual diagnostic criteria: is it reasonable?. European Radiology. 2007 Vol. 17, 1489-1509, xiv, 54 [25] Daniel BL et al. Breast disease: dynamic spiral MR imaging. Radiology. 1998 Vol. 209, 499-509, DOI:10.1148/radiology.209.2.9807580. xv [26] Robert W. Brown, Ph.D; Yu-Chung N. Cheng, Ph.D; E. Mark Haacke, Ph.D; Michael R. Thompson, Ph.D; Ramesh Venkatesan, D.Sc. Magnetic Resonance Imaging: Physical Principles and Sequence Design. Second Edition. Hoboken, New Jersey by John Wiley & Sons, 2014. 2, 3, 4, 5, 6, 7, 9, 30, 34 [27] Matt Bernstein, Kevin King, Xiaohong Zhou. Handbook of MRI Pulse Sequences. First Edition.Academic Press. September 2004. 5 [28] Mark Hammer. XRayPhysics - Interactive Radiology Physics., [en línea] 2014. [Consulta: 10 de Noviembre, 2018.] Disponible en internet: 6, 7 [29] H. E. Nigh, S. Legvold, and F. H. Spedding. Magnetism and Electrical Resistivity of Gadolinium Single Crystals. Physics Review. 1963 Vol. 132, 1092-1097, [30] Patricia Rodríguez Nava et al. Medios de contraste paramagnéticos. Artículo de Revisión Anuales de Radiología Mexico 2008 Vol. 3, 191-198. 11 [31] Dawson P et al. MR Contrast Agents. Textbook of Contrast Media. Isis Medical Media Ltd. 1999; 251-450. 11, 12 [32] DCE-MRI Technical Committee. DCE MRI Quantication Prole, Quantitative Imaging Biomarkers Alliance. Version 1.0. Reviewed Draft, QIBA, 2012. 12, 22, 26, 27, 28, 38, 55 [33] Tofts PS. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. Journal of Magnetic Resonance Imaging. 1997 Vol. 7,91-101, 13, 21, 71 [34] Fluckiger JU et al. Toward local arterial input functions in dynamic contrast-enhanced MRI. Journal of Magnetic Resonance Imaging. 2010 Vol. 32,924-934, doi:10.1002/jmri.22339.. 15 [35] Wedeking P et al. Pharmacokinetic analysis of blood distribution of intraveneously administered 153GDLabeled Gd(DTPA)2- and 99mTc(DTPA) in rats. Magnetic Resonance Imaging. 1990 Vol. 8,567-575, 17 [36] Min-Ying Su et al. Measurement of vascular volume fraction and blood-tissue permeability constants with a pharmacokinetic model: Studies in rat muscle tumors with dynamic Gd-DTPA enhanced MRI. Magnetic Resonance in Medicine. 1994 Vol. 32,714-724, [37] Geoff J.M. Parker et al. Experimentally-derived functional form for a population-averaged high-temporalresolution arterial input function for dynamic contrast-enhanced MRI. Magnetic Resonance in Medicine. 2006 Vol. 56,993-1000, 17, 71 [38] Larry C. Andrews. Special Functions of Mathematics for Engineers. Second Edition. Oxford University Press, 1997. 19 [39] The Foundation for Research on Information Technologies in Society. Longitudinal (T1) relaxation time 1.5T [en línea][Consulta: 10 de Noviembre, 2018.] Disponible en internet: relaxation-times/ 32, 36 [40] Jan-Philip Bergeest et al. A Comparison of Five Methods for Signal Intensity Standardization in MRI. Bildverarbeitung fur die Medizin 2008 ,36-40, 10, 28 [41] Hffakon Gudbjartsson et al. The Rician Distribution of Noisy MRI Data. Magn Reson Med. 1995 ,36-40, Vol. 34 31, 32 [42] Romano H., Funes F.J., Osorio A.R., Sanz V.M. y Namías M. Implementación del protocolo QIBA para la cuantificación de imágenes dinámicas con contraste en resonancia magnética nuclear.2016 7mo Congreso Latinoamericano de Física Médica Villa Carlos Paz, Córdoba, Argentina. 28
Subjects:Medicine > Física médica
Divisions:Centro Integral de Medicina Nuclear y Radioterapia. Fundación INTECNUS
ID Code:764
Deposited By:Tamara Cárcamo
Deposited On:08 Feb 2021 09:52
Last Modified:08 Feb 2021 09:52

Repository Staff Only: item control page