Termodinámica, estructura y magnetismo de nanocristales de vórtices. / Thermodynamic, estructure and magnetism of vortex nanocrystals in high-Tc superconductors.

Puig, Joaquín R. (2018) Termodinámica, estructura y magnetismo de nanocristales de vórtices. / Thermodynamic, estructure and magnetism of vortex nanocrystals in high-Tc superconductors. Master in Physical Sciences, Universidad Nacional de Cuyo, Instituto Balseiro.

PDF (Tesis)
Available under license Creative Commons Attribution Non-commercial Share Alike.


Abstract in Spanish

En el presente trabajo se realiza un estudio de las propiedades magnéticas, estructurales y termodinámicas de nanocristales de vórtices nucleados en Bi_2Sr_2CaCu_2O_8+ẟ. En una primera etapa se detallan los procesos de microfabricación que dan lugar a las muestras mesoscópicas utilizadas en esta tesis. Se expone la estrategia utilizada y cómo optimizar la técnica que se ha utilizado en el grupo para fabricar muestras más pequeñas. También se mencionan los obstáculos más importantes que presenta la técnica utilizada. De los discos que se lograron microfabricar en este trabajo, sólo uno se colocó en una sonda Hall para el estudio de propiedades magnéticas. Se incorpora en este trabajo una nueva sonda Hall con termómetro y gausímetro "on chip"que permite medir con mayor precisión tanto la temperatura de la muestra como el campo externo en el entorno de la muestra. Esta incorporación disminuye las fuentes de errores enormemente, lo cual es necesario para estudiar sistemas mesoscópicos, como los fabricados en esta tesis. Con la técnica de magnetometría Hall local ac se observa la transición de fase de primer orden de la materia de vórtices nanocristalina y se estudia el salto de entropía de la transición. Por otro lado se presenta un estudio de las propiedades estructurales y termodinámicas de la materia de vórtices nanocristalina en cuboides de Bi-2212 utilizando la técnica de decoración magnética, que permite observar la red de vórtices. Las muestras estudiadas con esta técnica fueron microfabricadas previamente en el grupo. Estas muestras de Bi-2212 se fabricaron con las direcciones nodales del parámetro de orden orientadas paralelas a los bordes de la muestra o a 45o de los bordes. Se estudian las diferencias estructurales en los nanocristales de vórtices nucleados en estos cuboides. Para ello se estudian las energías de interacción entre vórtices, la energía de confinamiento, la densidad de defectos y la orientación de la red de vórtices respecto a los bordes de la muestra.

Abstract in English

In this work we present a study of the magnetic, structural and thermodinamic properties of the vortex matter nucleated in Bi_2Sr_2CaCu_2O_8+ẟ. In a first stage we explain the microfabrication processes that lead to the mesoscopic specimens studied in this thesis. We discuss about the plained strategy and the optimization of the techniques that were used along the microfabrication process. The technique we use is the same that has been used in the group with the difference that in this thesis the objetive is to produce thinner samples with the added intention of measuring the samples’ thicknesses. We also present the main obstacles this technique has. Of the samples we succeeded in producing, one was put in a Hall probe to study magnetic properties. We introduce a detection device which enhances the measurement quality in regards to noise-to-signal ratio and the reduction of systematic errors. This is due to having the detection probe with a thermometre and a gaussimetre on-chip. The detection probe is also surronded by a coil printed in the same chip. With ac local Hall magnetometry technique we observe the first-order phase transition of nanocrystalline vortex matter and study the entropy jump of the transition. It is also presented a study of the structural and thermodinamic properties of the vortex matter in Bi-2212 using the magnetic decoration technique, which is able to reproduce the direct lattice of the vortex matter. The samples studied with this technique were not manufactured in this thesis. The specimens that were decorated are Bi-2212 cuboids that were microfabricated previously in the group. These cuboids were manufactured so that the nodal directions of the superconductor parameter were either parallel to the edges of the sample or at 45o of the edges. We study the differences in the structure of the vortex lattice between these two types of samples. For this we analyze the vortex interaction energy per length unit, the confinement energy, the density of deffects and the orientation of the lattice relative to the edges of the sample.

Item Type:Thesis (Master in Physical Sciences)
Keywords:Superconductivity; Superconductividad; Thermodynamics; Termodinámica; Magnetism; Magnetismo; Nanocrystals; Nanocristales; [Vortices; Vórtices]
References:[1] Yang, C. C., Li, S. Investigation of cohesive energy effects on size-dependent physical and chemical properties of nanocrystals. Physical Review B, 75 (16), 165413, 2007. viii, viii, 9, 10 [2] Goldstein, A., Echer, C., Alivisatos, A. Melting in semiconductor nanocrystals. Science, 256 (5062), 1425–1427, 1992. viii, viii, 9, 10 [3] Konczykowski, M., Van Der Beek, C. J., Koshelev, A., Mosser, V., Dodgson, M., Kes, P. Composite to tilted vortex lattice transition in Bi2Sr2CaCu2O8+ in oblique fields. Physical review letters, 97 (23), 237005, 2006. ix, 22, 23, 29, 33, 35 [4] Dolz, M. I., Fasano, Y., Bolecek, N. C., Pastoriza, H., Mosser, V., Li, M., et al. Sizeinduced depression of first-order transition lines and entropy jump in extremely layered nanocrystalline vortex matter. Physical review letters, 115 (13), 137003, 2015. x, x, 31, 32, 33 [5] Cejas Bolecek, N. R. Propiedades estructurales y magnéticas de la materia de vórtices mesoscópica. Tesis Doctoral, PhD thesis, Instituto Balseiro, Universidad Nacional de Cuyo, 2015. x, xi, 14, 45, 46 [6] Abrikosov, A. The magnetic properties of superconducting alloys. Journal of Physics and Chemistry of Solids, 2 (3), 199–208, 1957. 4 [7] Mardion, G. B., Goodman, B., Lacaze, A. Observation du comportement magnetique quasi reversible d’un supraconducteur de la deuxieme espece. Physics Letters, 2 (7), 321–323, 1962. 4 [8] Kinsel, T., Lynton, E., Serin, B. Magnetic properties of a superconductor of the second kind. Phys. Letters, 3, 30, 1962. 4 [9] Bean, C., Livingston, J. Surface barrier in type-ii superconductors. Physical Review Letters, 12 (1), 14, 1964. 5 [10] Tinkham, M. Introduction to superconductivity. Courier Corporation, 2004. 6, 43 [11] Colson, S., Konczykowski, M., Gaifullin, M. B., Matsuda, Y., Gierłowski, P., Li, M., et al. Vortex fluctuations in underdoped Bi2Sr2CaCu2O8+ crystals. Physical review letters, 90 (13), 137002, 2003. 10 [12] Lee, K. R., Kim, K., Park, H.-D., Kim, Y. K., Choi, S.-W., Choi, W.-B. Fabrication of capacitive absolute pressure sensor using Si-Au eutectic bonding in SOI wafer. En: Journal of Physics: Conference Series, tomo 34, pág. 393. IOP Publishing, 2006. 13 [13] Crudden, C. M., Horton, J. H., Ebralidze, I. I., Zenkina, O. V., McLean, A. B., Drevniok, B., et al. Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold. Nature chemistry, 6 (5), 409, 2014. 13 [14] Kaul, E., Nieva, G. Oxygen doping effects on the magnetization of Bi2Sr2CaCu2O8+ẟ single crystalline system in the mixed state. Physica C: Superconductivity, 341, 1343–1344, 2000. 14 [15] Correa, V., Kaul, E., Nieva, G. Overdoping effects in Bi2Sr2CaCu2O8+ẟ: From electromagnetic to Josephson interlayer coupling. Physical Review B, 63 (17), 172505, 2001. 14 [16] Materials, A. E. Az 9260 photoresist:data package at 12 um ft and 24 um ft. pág. 4. 2007. 15 [17] Konczykowski, M., Van Der Beek, C. J., Tanatar, M., Mosser, V., Song, Y. J., Kwon, Y. S., et al. Anisotropy of the coherence length from critical currents in the stoichiometric superconductor LiFeAs. Physical Review B, 84 (18), 180514, 2011. 22 [18] Gilchrist, J., Konczykowski, M. Superconductor screen viewed as one or two inductive loops. Physica C: Superconductivity, 212 (1-2), 43–60, 1993. 22 [19] Huebener, R. P. Magnetic flux structures in superconductors: extended reprint of a classic text, tomo 6. Springer Science & Business Media, 2013. 23 [20] Bontemps, N., Bruynseraede, Y., Deutscher, G., Kapitulnik, A. The vortex state. Springer, 1994. 23 [21] Gong, W., Li, H., Zhao, Z., Chen, J. Ultrafine particles of Fe, Co, and Ni ferromagnetic metals. Journal of Applied Physics, 69 (8), 5119–5121, 1991. 25 [22] Milleron, P., Fournet, G., Franzinetti, M. Structure of a vortex normal to the surface of a superconductor in an arbitrary magnetic field. Journal of Low Temperature Physics, 4 (5), 545–550, 1971. 25 Bibliografía 53 [23] Kittel, C. Physical theory of ferromagnetic domains. Reviews of modern Physics, 21 (4), 541, 1949. 25 [24] Fasano, Y. Observación microscópica de transformaciones estructurales en la materia de vórtices. Tesis Doctoral, PhD thesis, Instituto Balseiro, Universidad Nacional de Cuyo, 2003. 26 [25] Dolz, M. I., Fasano, Y., Pastoriza, H., Mosser, V., Li, M., Konczykowski, M. Latent heat and nonlinear vortex liquid in the vicinity of the first-order phase transition in layered high-TC superconductors. Physical Review B, 90 (14), 144507, 2014. 27 [26] Morozov, N., Zeldov, E., Majer, D., Konczykowski, M. Paramagnetic ac susceptibility at the first-order vortex-lattice phase transition. Physical Review B, 54 (6), R3784, 1996. 27, 32, 33, 34 [27] He, Y., Nunner, T., Hirschfeld, P., Cheng, H.-P. Local electronic structure of Bi2Sr2CaCu2O8+ẟ near oxygen dopants: A window on the high-Tc pairing mechanism. Physical review letters, 96 (19), 197002, 2006. 35, 50 [28] Piriou, A., Fasano, Y., Giannini, E., Fischer, Ø. Effect of oxygen-doping on Bi2Sr2Ca2Cu3O10+ẟ vortex matter: crossover from electromagnetic to Josephson interlayer coupling. Physical Review B, 77 (18), 184508, 2008. 35, 50 [29] Tsuei, C., Kirtley, J. R., Chi, C., Yu-Jahnes, L. S., Gupta, A., Shaw, T., et al. Pairing symmetry and flux quantization in a tricrystal superconducting ring of YBa2Cu3O7-ẟ. Physical Review Letters, 73 (4), 593, 1994. 38 [30] Wollman, D., Van Harlingen, D., Lee, W., Ginsberg, D., Leggett, A. Experimental determination of the superconducting pairing state in YBCO from the phase coherence of YBCO-Pb dc SQUIDs. Physical Review Letters, 71 (13), 2134, 1993. 38 [31] Martindale, J., Barrett, S., O’Hara, K., Slichter, C., Lee, W., Ginsberg, D. Magnetic-field dependence of planar copper and oxygen spin-lattice relaxation rates in the superconducting state of YBa2Cu3O7-ẟ. Physical Review B, 47 (14), 9155, 1993. 38 [32] Fogelström, M., Rainer, D., Sauls, J. Tunneling into current-carrying surface states of high-Tc superconductors. Physical review letters, 79 (2), 281, 1997. 38 [33] Iniotakis, C., Dahm, T., Schopohl, N. Effect of surface Andreev bound states on the Bean-Livingston barrier in d-wave superconductors. Physical review letters, 100 (3), 037002, 2008. 38
Subjects:Physics > Materia condensada
Divisions:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Materia condensada > Bajas temperaturas
ID Code:792
Deposited By:Tamara Cárcamo
Deposited On:14 Nov 2019 14:06
Last Modified:14 Nov 2019 14:06

Repository Staff Only: item control page