Efectos de la interacción de intercambio en una cinta hall / Effects of exchange interaction in a hall bar

Ávalos Morales, Roberto E. (2019) Efectos de la interacción de intercambio en una cinta hall / Effects of exchange interaction in a hall bar. Master in Physical Sciences, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Preview
PDF (Tesis)
Available under license Creative Commons Attribution Non-commercial Share Alike.

Spanish
956Kb

Abstract in Spanish

En este trabajo se han estudiado los efectos de la interacción electrónica de Hartree y de intercambio en gases bidimensionales de electrones (2DEG), en el régimen del efecto Hall cuántico entero (IQHE). La particularidad del trabajo es que se consideraron sistemas semiconductores de GaAs=AlᵪGa1 _ ᵪAs con bordes en la geometría de la cinta Hall. Para estos sistemas y con un campo magnético aplicado en la dirección de confinamiento, se estudiaron los efectos de la interacción de Hartree y de intercambio en el régimen del IQHE. Para el estudio de los 2DEGs se consideró la aproximación de Thomas-Fermi (TF) como una primera aproximación a un cálculo más elaborado empleando la teoría de la funcional densidad (DFT). Usando la aproximación TF y la interacción de Hartree se calculó numéricamente los factores de llenado ѵ para sistemas con la geometría de cinta Hall. Los resultados mostraron regiones de la cinta donde el factor de llenado ѵ es constante, estas regiones espaciales son denominadas plateaus. Con estas consideraciones los plateaus aparecen solamente para valores de ѵ pares, esto se debe a que solamente se consideró la interacción de Hartree y se supuso una ocupación degenerada por el espín. En la realidad el IQHE causa que aparezcan plateaus para todos los valores enteros en el factor de llenado, pares e impares. La originalidad de este trabajo está en considerar la interacción de intercambio y aplicarla en la aproximación TF dependiente del espín. En particular se consideró la aproximación de densidad local de espín (LSDA) para el potencial de intercambio. Con estas consideraciones se obtuvieron plateaus también para factores de llenado ѵ impares, además de que se discutió la relación entre la formación de los plateaus impares y la interacción de intercambio desde una perspectiva física. Se exploró la relevancia del campo magnético, la temperatura y el ancho de la cinta Hall en el comportamiento que tiene el factor de llenado del sistema, discutiendo además en que regímenes se manifiesta el IQHE.

Abstract in English

In this work we have studied the effects of Hartree’s electronic and exchange interaction in two-dimensional electron gases (2DEG), in the regime of the integer quantum Hall effect (IQHE). The particularity of the work is that we considered semiconductor systems of GaAs=AlᵪGa1_ ᵪAs with borders in a Hall bar geometry. For these systems and with a magnetic field applied in the confinement direction, the effects of the Hartree and the exchange interaction in the IQHE regime were studied. For the study of the 2DEGs the Thomas-Fermi (TF) approximation was considered as a first approach to a more elaborated calculation employing the density functional theory (DFT). Using the TF approximation and Hartree interaction, the filling factors ѵ were calculated numerically for systems with Hall bar geometry. The results showed regions of the bar where the filling factor ѵ is constant, these spatial regions are called plateaus.With these considerations plateaus only appeared for even values of ѵ, this is because only Hartree’s interaction was considered and we assumed a degenerated spin occupation. In reality the IQHE causes plateaus to appear for all integer values in the filling factor, even and odds. The originality of this work is that we considered the exchange interaction and applied it in the spin dependent TF approximation. In particular, the spin local density approximation (LSDA) was considered for the exchange potential. With these considerations, plateaus were also obtained for odd filling factors ѵ, also the relation between odd plateaus formation and exchange interaction was discussed from a physical perspective. It was explored the relevance of magnetic field, temperature and width of the Hall bar in the behaviour that the filling factor of the system has, further discussing in which regimes the IQHE manifests.

Item Type:Thesis (Master in Physical Sciences)
Keywords:Hall effect; Efecto hall; [Exchange; Intercambio; Landau levels; Niveles de Landau; Quantum hall effect; Efecto hall cuántico]
References:[1] Ando, T., Uemura, Y. Theory of quantum transport in a two-dimensional electron system under magnetic fields. I. Characteristics of level broadening and transport under strong fields. Journal of the Physical Society of Japan, 36 (4), 959, 1974. [2] Bastard, G. Wave Mechanics Applied to Semiconductor Heterostructures. Les Editions de Physique, Les Ulis, 1988. [3] Chakrabort, T., Pietilainen, P. The Quantum Hall Effects. Springer-Verlag Berlin Heidelberg, 1995. [4] Prange, R. E., Girvin, S. M. The Quantum Hall Effects. Springer-Verlag Berlin Heidelberg, 1990. [5] Paalanen, M. A., Tsui, D. C., Gossard, A. C. Quantized hall effect at low temperatures. Phys. Rev. B, 25, 5566–5569, Apr 1982. URL https://link.aps.org/doi/10.1103/PhysRevB.25.5566. [6] Klitzing, K. v., Dorda, G., Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett., 45, 494–497, Aug 1980. URL https://link.aps.org/doi/10.1103/PhysRevLett.45.494. [7] Quinn, T. J. News from the BIPM. Metrologia, 26 (1), 69–74, jan 1989. URL https://doi.org/10.1088%2F0026-1394%2F26%2F1%2F006. [8] Taylor, B. N. New measurements standards for 1990. Physics Today, 42 (8), 23, 1989. URL https://physicstoday.scitation.org/doi/10.1063/1. 881176. [9] Tsui, D. C., Stormer, H. L., Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett., 48, 1559–1562, May 1982. URL https://link.aps.org/doi/10.1103/PhysRevLett.48.1559. [10] Clark, R. G. Ground states of interacting electrons in the extreme quantum limit. Physica Scripta, T39, 45–60, jan 1991. URL https://doi.org/10.1088%2F0031-8949%2F1991%2Ft39%2F005. [11] Weitz, P., Ahlswede, E., Weis, J., Klitzing, K., Eberl, K. Hall-potential investigations under quantum hall conditions using scanning force microscopy. Physica E: Low-dimensional Systems and Nanostructures, 6 (1), 247 – 250, 2000. URL http://www.sciencedirect.com/science/article/pii/S1386947799001368. [12] Ahlswede, E., Weitz, P., Weis, J., von Klitzing, K., Eberl, K. Hall potential profiles in the quantum hall regime measured by a scanning force microscope. Physica B: Condensed Matter, 298 (1), 562 – 566, 2001. URL http://www.sciencedirect.com/science/article/pii/ S0921452601003830, international Conference on High Magnetic Fields in Semiconductors. [13] Weitz, P., Ahlswede, E.,Weis, J., Klitzing, K., Eberl, K. A low-temperature scanning force microscope for investigating buried two-dimensional electron systems under quantum hall conditions. Applied Surface Science, 157 (4), 349 – 354, 2000. URL http://www.sciencedirect.com/science/article/pii/ S0169433299005504. [14] Ahlswede, E., Weis, J., v. Klitzing, K., Eberl, K. Hall potential distribution in the quantum hall regime in the vicinity of a potential probe contact. Physica E: Low-dimensional Systems and Nanostructures, 12 (1), 165 – 168, 2002. URL http://www.sciencedirect.com/science/article/pii/S1386947701002673, proceedings of the Fourteenth International Conference on the Ele ctronic Properties of Two-Dimensional Systems. [15] Panos, K., Gerhardts, R. R., Weis, J., von Klitzing, K. Current distribution and hall potential landscape towards breakdown of the quantum hall effect: a scanning force microscopy investigation. New Journal of Physics, 16 (11), 113071, nov 2014. URL https://doi.org/10.1088%2F1367-2630%2F16%2F11%2F113071. [16] Gerhardts, R. R., Panos, K., Weis, J. Current-induced asymmetries of incompressible strips in narrow quantum hall systems. New Journal of Physics, 15 (7), 073034, jul 2013. URL https://doi.org/10.1088%2F1367-2630%2F15%2F7%2F073034. [17] Pascher, N., Rössler, C., Ihn, T., Ensslin, K., Reichl, C., Wegscheider, W. Imaging the conductance of integer and fractional quantum hall edge states. Phys. Rev. X, 4, 011014, Jan 2014. URL https://link.aps.org/doi/10.1103/PhysRevX.4.011014. [18] Chklovskii, D. B., Matveev, K. A., Shklovskii, B. I. Ballistic conductance of interacting electrons in the quantum hall regime. Phys. Rev. B, 47, 12605–12617, May 1993. URL https://link.aps.org/doi/10.1103/PhysRevB.47. 12605. [19] Lier, K., Gerhardts, R. R. Self-consistent calculations of edge channels in laterally confined two-dimensional electron systems. Phys. Rev. B, 50, 7757–7767, Sep 1994. URL https://link.aps.org/doi/10.1103/PhysRevB.50. 7757. [20] Güven, K., Gerhardts, R. R. Self-consistent local equilibrium model for density profile and distribution of dissipative currents in a hall bar under strong magnetic fields. Phys. Rev. B, 67, 115327, Mar 2003. URL https://link.aps.org/doi/10.1103/PhysRevB.67.115327. [21] Siddiki, A., Gerhardts, R. R. Incompressible strips in dissipative hall bars as origin of quantized hall plateaus. Phys. Rev. B, 70, 195335, Nov 2004. URL https://link.aps.org/doi/10.1103/PhysRevB.70.195335. [22] Gerhardts, R. R. The effect of screening on current distribution and conductance quantisation in narrow quantum hall systems. physica status solidi (b), 245 (2), 378–392, 2008. [23] Oh, J. H., Gerhardts, R. R. Self-consistent thomas-fermi calculation of potential and current distributions in a two-dimensional hall bar geometry. Phys. Rev. B, 56, 13519–13528, Nov 1997. URL https://link.aps.org/doi/10.1103/PhysRevB.56.13519. [24] Chklovskii, D. B., Shklovskii, B. I., Glazman, L. I. Electrostatics of edge channels. Phys. Rev. B, 46, 4026–4034, Aug 1992. URL https://link.aps.org/ doi/10.1103/PhysRevB.46.4026. [25] Parr, R., Weitao, Y. Density-functional theory of atoms and molecules. Oxford Universit press, 1989. [26] Engel, E., Dreizler, R. M. Density Functional Theory. Springer-Verlag Berlin Heidelberg, 2011 [27] Hohenberg, P., Kohn, W. Inhomogeneous electron gas. Phys. Rev., 136, B864– B871, Nov 1964. URL https://link.aps.org/doi/10.1103/PhysRev.136.B864. [28] Kohn, W., Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, A1133–A1138, Nov 1965. URL https://link.aps.org/doi/10.1103/PhysRev.140.A1133. [29] Van Noorden, R., Maher, B., Nuzzo, R. The top 100 papers. Nature, 514, 550–3,10 2014. [30] Giuliani, G., Vignale, G., Press, C. U. Quantum Theory of the Electron Liquid. Masters Series in Physics and Astronomy. Cambridge University Press, 2005. [31] Kittel, C. Introduction to Solid State Physics. Wiley, 2004. [32] Ashcroft, N., Mermin, N. Solid State Physics. Cengage Learning, 2011. [33] Churchill, R., Brown, J. Complex Variables and Applications. McGraw-Hill Higher Education, 2004. [34] Needham, T. Visual Complex Analysis. Comparative Pathobiology - Studies in the Postmodern Theory of Education. Clarendon Press, 1998. [35] Abramowitz, M., Stegun, I. A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. ninth dover printing, tenth gpo printingedón. New York: Dover, 1964. [36] Daniel, M. M. Efectos de la Interacción electrón-electrón y Campos Magnéticos en Gases Bidimensionales de elecrones. Tesis Doctoral, Universidad Nacional de Cuyo, March 2019. [37] Blundell, S. Magnetism in Condensed Matter. Oxford Master Series in Condensed Matter Physics. OUP Oxford, 2001. [38] Miravet, D., Proetto, C. R. Exact-exchange density functional theory of the integer quantum hall effect: strict 2d limit. The European Physical Journal B, 91 (6), 129, Jun 2018. URL https://doi.org/10.1140/epjb/e2018-90140-7. [39] Rudin, W. Principles of Mathematical Analysis. International series in pure and applied mathematics. McGraw-Hill, 1976.
Subjects:Physics > Materia condensada
Divisions:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Materia condensada > Bajas temperaturas
ID Code:884
Deposited By:Tamara Cárcamo
Deposited On:19 Apr 2021 12:40
Last Modified:19 Apr 2021 12:40

Repository Staff Only: item control page