Martínez Puldón, Karla (2021) Aplicación de técnicas nucleares para el estudio de la acumulación de zinc (zn) en el puyen chico (galaxias maculatus) en lagos andino-patagónicos impactados por actividad volcánica / Application of nuclear techniques to the study of zinc (Zn) accumulation in the small puyen (Galaxias maculatus) of Andean-Patagonian lakes impacted by volcanic activity. Trabajo Final (CEATEN), Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 4Mb |
Resumen en español
El zinc (Zn) es un elemento metálico común en la corteza terrestre que actúa como componente estructural y tiene propiedades especifica indispensables para la vida de muchos organismos. Permite el crecimiento normal, desarrollo y reproducción en peces, sin embargo, en concentraciones elevadas puede llegar a ser toxico, causando numerosas afecciones sobre todo en las branquias. Dada su función en diversos procesos bioquímicos es regulado por estos, condicionando su bioacumulación y biomagnicación en la cadena troca. Los lagos andino-patagónicos se encuentran en la Zona Volcánica Sur de los Andes. En esta zona la actividad volcánica constituye una fuente natural importante de Zn a los ecosistemas acuáticos. El puyen chico, Galaxias maculatus, es un pequeño pez nativo de amplia distribución y abundancia en estos lagos y es un eslabón clave en la transferencia de nutrientes y metales pesados en las tramas trocas lacustres de Patagonia. El estudio de la acumulación de elementos traza en sus tejidos, asociado a variables ambientales y biológicas, es fundamental para lograr una mejor comprensión de los procesos involucrados en la acumulación y dinámica de elementos de origen volcánico en la Patagonia. En este trabajo se analizo la acumulación de Zn en muestras de musculo, hígado, riñón, branquias y piel de puyen chico pertenecientes a 12 lagos dentro del Parque Nacional Nahuel Huapi. La concentración de Zn en las muestras se determino mediante la técnica de Análisis por Activación Neutrónica Instrumental utilizando el método paramétrico absoluto. Este estudio nos permitió evaluar si la variabilidad ambiental, ecológica y biológica pueden alterar la regulación del Zn en el puyen chico, así como el rol e importancia relativa de cada tejido en el proceso de bioacumulación de Zn. Las concentraciones de Zn en los distintos tejidos no mostraron ningún patrón de variación entre lagos cercanos y alejados del Complejo Volcánico Puyehue Cordón Caulle, ni entre lagos someros y profundos, sugiriendo que el puyen chico tiene una alta capacidad para regular el Zn en distintas condiciones ambientales. Se determinaron los factores de bioacumulación en función de los sedimentos, los cuales siguieron el orden: riñón > branquias > hígado > piel > musculo, con valores mayores a 1 en los tejidos de mayor metabolismo (riñón, branquias, hígado y piel) e igual a 1 en musculo. Esto sugiere que el puyen tiene una alta capacidad para acumular Zn y por tanto transferirlo a niveles tríocos superiores. Los valores mas altos de Zn se obtuvieron en órganos metabólicamente activos (riñón, branquias e hígado). Este patrón refleja el rol de cada órgano en el metabolismo del Zn. Riñon y branquias, con los valores mas altos y dispersos, reflejan su contacto con el agua y su participación en la excreción del Zn. Las concentraciones de Zn en el hígado son consistentes con su función como órgano de almacenamiento, distribución y detoxicación o biotransformación. La piel presento concentraciones de Zn en el orden de las registradas en el hígado. El puyen chico no posee escamas, por lo tanto su piel esta muy expuesta a la alta radiación solar en estos lagos de montaña de gran transparencia. Dado que el Zn interviene en la regulación de la pigmentación y se encuentra en las células pigmentarias, las concentraciones elevadas de Zn en la piel podrían estar evidenciando una defensa en contra de la alta radiación solar de los ambientes estudiados. Las menores concentraciones de Zn registradas en el musculo sugieren que este tejido no es un sitio activo para la transformación y acumulación de metales. Estos valores se encuentran por debajo del límite establecido por SENASA y por encima de las concentraciones registradas en otras especies de peces en cuerpos de agua con distinto grado de contaminación. Los niveles de Zn en los órganos y tejidos del puyen chico se mantienen en rangos poco variables a lo largo de varios ambientes y condiciones. De manera general se sugiere que el puyen chico tiene una gran capacidad para regular las concentraciones de Zn en sus tejidos y órganos.
Resumen en inglés
Zinc (Zn) is a common metallic element in the earth's crust that acts as a structural component and has specific properties that are essential for the life of many organisms. Allows normal growth, development and reproduction in fish. However, high concentrations it can become toxic, causing serious damage especially in the gills. Given its role in various biochemical processes, Zn is regulated by these organisms, conditioning its bioaccumulation and biomagnification in the food chain. Andean-Patagonian lakes are found in the Southern Volcanic Zone of the Andes. In this area, volcanic activity constitutes an important natural source of Zn in aquatic ecosystems. Galaxias maculatus (small puyen), is a small native fish with a wide distribution and abundance in these lakes. Playing a key role in the transfer of nutrients and heavy metals in Patagonia lacustrine food web. Study of the accumulation of trace elements in their tissues, associated with environmental and biological variables is essential to achieve a better understanding on the processes involved in the accumulation and dynamics of elements from volcanic activity. In this work, the accumulation of Zn in samples of muscle, liver, kidney, gills and skin of small puyen belonging to twelve lakes of Nahuel Huapi National Park was analyzed. Zn samples concentration was determined by Instrumental Neutron Activation Analysis technique using the absolute parametric method. This study allowed us to evaluate if environmental, ecological and biological variability can modify Zn regulation in small puyen, as well as the role and relative importance of each tissue in Zn bioaccumulation process. Zn concentrations in different tissues did not show any variation pattern between lakes near and far from Puyehue Cordón Caulle Volcanic Complex, or between shallow and deep lakes. Suggesting that small puyen has a high capacity to regulate Zn in different environmental conditions. Bioaccumulation factors (FBA) were determined based on sediments samples. Values obtained from FBA in different tissues show: kidney > gills > liver > skin > muscle, getting FBA > 1 in tissues with high metabolism (kidney, gills, liver and skin) and FBA = 1 in muscle. Suggesting that small puyen has a high capacity to accumulate Zn and therefore transfer it to higher trophic levels. The highest Zn concentration values were obtained in metabolically active organs (kidney, gills and liver). This behavior reflects the role of each organ in Zn metabolism. Kidney and gills, present the highest and most scattered values, reflect their contact with water and their participation in the excretion of Zn. Zn concentrations in the liver are consistent with its function as a storage, distribution, and detoxification or biotransformation organ. Skin presented Zn concentrations in the order of those registered in the liver. The small puyen does not have scales, therefore, its skin is very exposed to high solar radiation in these highly transparent mountain lakes. Since Zn is involved in the regulation of pigmentation and is found in pigment cells, high Zn concentrations in the skin could be showing a defense against high solar radiation in the environments studied. The lower Zn concentrations recorded in muscle suggest that this tissue is not an active site for the transformation and accumulation of metals. These values are below the limit established by SENASA and above the concentrations recorded in other fish species in water bodies with different contamination degrees. Zn levels in the organs and tissues of small puyen are maintained in little variable ranges throughout various environments and conditions. In general, we suggest that the small puyen has a great capacity to regulate the concentrations of Zn in its tissues and organs.
Tipo de objeto: | Tesis (Trabajo Final (CEATEN)) |
---|---|
Palabras Clave: | Zinc; Zinc; Heavy metals; Metales pesados; Biological accumulation; Acomulación biológica; Neutron activation analysis; Análisis por activación neutrónica; [Puyen chico; Volcano; Volcán] |
Referencias: | [1] Rizzo, A., Daga, R., Arcagni, M., Perez, S., Bubach, D. F., Sanchez, R., et al. Concentraciones de metales pesados en distintos compartimentos de lagos andinos de Patagonia Norte. Ecol. Austral, 20, 155{171, 2010. 1, 30 [2] Authman, M. M., Zaki, M. S., Khallaf, E. A., Abbas, H. H. Use of Fish as Bioindicator of the Effects of Heavy Metals Pollution. J Aquac Res Development, 6, 4, 2015. 1, 2 [3] Solgi, E., Mirmohammadvali, S. Comparison of the Heavy Metals, Copper, Iron, Magnesium, Nickel, and Zinc Between Muscle and Gills of Four Benthic Fish Species from Shif Island (Iran). Bull Environ Contam Toxicol, 106, 658-664, 2021. 2 [4] Ebrahimpour, M., Pourkhabbaz, A., Baramaki, R., Babaei, H., Rezaei, M. Bioaccumulation of Heavy Metals in Freshwater Fish Species, Anzali, Iran. Bull Environ Contam Toxicol, 87, 386-392, 2011. 1, 2, 27, 32 [5] Arain, M. B., Kazi, T. G., Jamali, M. K., Jalbani, N., Afridi, H. I., Shah, A. Total dissolved and bioavailable elements in water and sediment samples and their accumulation in Oreochromis mossambicus of polluted Manchar Lake. Chemosphere, 70, 1845-1856, 2008. 1 [6] Castañe, P. M., Topalian, M. L., Cordero, R. R., Salibian, A. Influencia de la especiacion de los metales pesados en medio acuático como determinante de su toxicidad. Rev. Toxicol., 20, 13-18, 2003. 1 [7] Bilali, L. E., Rasmussen, P. E., Hall, G. E. M., Fortin, D. Role of sediment composition in trace metal distribution in lake sediments. Appl. Geochemistry, 17, 1171-1181, 2002. 2 [8] Canavan, R. W., Cappellen, P. V., Zwolsman, J. J. G., van den Berg, G. A., Slomp, C. P. Geochemistry of trace metals in a fresh water sediment: eld results and diagenetic modeling. Sci. Total Environ., 381, 263-279, 2007. [9] Hart, B. Uptake of trace metals by sediments and suspended particulates: a review. Hidrobiologia, 91, 299-313, 1982. 2 [10] Ali, H., Khan, E. Bioaccumulation of non-essential hazardous heavy metals and metalloids in freshwater sh. risk to human health. Environ Chem Lett, 16, 903-917, 2018. 2, 21, 27, 28, 30 [11] Apestegui, A. Concentracion de metales pesados y otros elementos traza potencialmente tóxicos en sedimentos superficiales de cuerpos de agua de Patagonia Norte: distribución geográfica y relación con variables ambientales. Tesis Doctoral, Universidad Nacional de Ro Negro, Sede Andina. Escuela De Producción, Tecnología y Medio Ambiente, 2020. 2, 3, 4, 12, 17, 18, 22, 24, 31 [12] Bubach, D. F., Macchi, P. J., Perez, S. Inffluence of volcanic activity and anthropic impact in the trace element contents of shes from the North Patagonia in a global context. Environ. Monit. Assess., 187, 710, 2015. 2, 4 [13] Montañez, J. C., Arribere, M. A., Rizzo, A., Arcagni, M., Campbell, L., Ribeiro, S. Zinc in an ultraoligotrophic lake food web. Environ. Sci. Pollut. Res., 25, 15422-15435, 2018. 3, 4, 8, 23, 24, 26 [14] Juncos, R., Arcagni, M., Squadrone, S., Rizzo, A., Arribere, M., Barriga, J., et al. Interspecic dierences in the bioaccumulation of arsenic of three Patagonian top predator sh: Organ distribution and arsenic speciation. Ecotoxicol. Environ. Saf., 168, 431 - 442, 2019. 2, 4, 27 [15] Bradl, H. B. Heavy Metals in the Environment: Origin, Interaction and Remediation. Elsevier/Academic Press, 2005. 2 [16] Rajkowska, M., Protasowicki, M. Distribution of metals (Fe, Mn, Zn, Cu) in sh tissues in two lakes of dierent trophy in Northwestern Poland. Environ. Monit. Assess., 185, 3493-3502, 2013. 2, 27, 28, 32 [17] Clearwater, S. J., Farag, A. M., Meyer, J. S. Bioavailability and toxicity of dietborne copper and zinc to sh. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 132, 269-313, 2002. 2 [18] Wood, C. M., Farrell, A. P., Brauner, C. J. Homeostasis and toxicology of essential metals, tomo 31. Elsevier/Academic Press, 2012. 2, 3, 22, 23, 27 [19] Jia, Y.,Wang, L., Qu, Z.,Wang, C., Yang, Z. Effects on heavy metal accumulation in freshwater shes: species, tissues, and sizes. Environ. Sci. Pollut. Res., 24, 9379-9386, 2017. [20] Farkas, A., Salanki, J., Specziar, A. Age and size-specic patterns of heavy metals in the organs of freshwater sh Abramis brama L. populating a low-contaminated site. Water Res, 37, 959-964, 2003. 24 [21] Andres, S., Ribeyre, F., Tourencq, J. N., Boudou, A. Interspecic comparison of cadmium and zinc contamination in the organs of four sh species along a polymetallic pollution gradient (Lot River, France). Sci. Total Environ., 248, 11-25, 2000. [22] Bustamante, P., P.and Bocher, Cherel, Y., P., M., Caurant, F. Distribution of trace elements in the tissues of benthic and pelagic sh from the Kerguelen Islands. Sci. Total Environ., 313, 25-39, 2003. [23] Merciai, R., Guasch, H., Kumar, A., Sabater, S., Garca-Berthou, E. Trace metal concentration and sh size: Variation among sh species in a mediterranean river. Ecotoxicol. Environ. Saf., 107, 154-161, 2014. [24] Alhashemi, A. H., Karbassi, A., Kiabi, B. H., Monavari, S. M., Sekhavatjou, M. S. Bioaccumulation of trace elements in dierent tissues of three commonly available sh species regarding their gender, gonadosomatic index, and condition factor in a wetland ecosystem. Environ. Monit. Assess., 184, 1865-1878, 2012. 2 [25] Eisler, R. Zinc Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. Inf. tec., U.S. Department of the Interior, 1993. 2, 3 [26] Nriagu, J. A global assessment of natural sources of atmospheric trace metals. Nature, 338, 47-49, 1989. 3 [27] Witham, C. S., Oppenheimer, C., Horwell, C. J. Volcanic ash-leachates: a review and recommendations for sampling methods. J. Volcanol. Geotherm. Res., 141, 299-326, 2005. 3 [28] Hogstrand, C., Wilson, R. W., Polgar, D., Wood, C. M. Effects of zinc on the kinetics of branchial calcium-uptake in fresh-water rainbow-trout during adaptation to waterborne zinc. J. Exp. Biol., 186, 55-73, 1994. 3, 22 [29] Bury, N. R., Chung, M. J., Sturm, A., Walker, P. A., Hogstrand, C. Cortisol stimulates the zinc signaling pathway and expression of metallothioneins and ZnT1 in rainbow trout gill epithelial cells. Am. J. Physiol., 294, 623-629, 2008. 3 [30] Glover, C. N., Hogstrand, C. In vivo characterisation of intestinal zinc uptake in freshwater rainbow trout. J. Exp. Biol., 205, 141-150, 2002. 3 [31] McRae, N. K., Gaw, S., Glover, C. N. Mechanisms of zinc toxicity in the galaxiid sh, Galaxias maculatus. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 179, 184-190, 2016. 3, 5 [32] Elinder, C. G. Zinc. Handbook on the toxicology of metals. Elsevier/Academic Press, 1986. 3 [33] Arribere, M. A., Ribeiro Guevara, S., Bubach, D. F., Vigliano, P. H. Trace Elements as Fingerprint of Lake of Provenance and of Species of Some Native and Exotic Fish of Northern Patagonian Lakes. Biol Trace Elem Res, 111, 2006. 4, 30, 32 [34] Perez, S., Juarez, A. N., Bubach, D. F. Characterization of freshwater changes in lakes of Nahuel Huapi National Park produced by the 2011 Puyehue-Cordon Caulle eruption. Environ. Sci. Pollut. Res., 23, 20700-20710, 2016. 4 [35] Daz, M., Pedrozo, F., Reynols, C., P., T. Chemical composition and the nitrogenregulated trophic state of Patagonian Andes. Limnologica, 37, 17-27, 2007. 4, 12 [36] Quiros, R., Drago, E. The environmental state of Argentinean Lakes: An overview. Lakes & Reservoirs: Research and Management, 4, 55-64, 1999. 4, 11 [37] Stern, C. R. Active Andean volcanism: its geologic and tectonic setting. Rev. geol. Chile, 31, 161-206, 2004. 4 [38] Ribeiro Guevara, S., Bubach, D., Vigliano, P., Lippolt, G., Arribere, M. A. Heavy metals and other trace elements in native mussel Diplodon chilensis from Northern Patagonia lakes, Argentina. Biol Trace Elem Res, 102, 245-264, 2004. 4 [39] Ribeiro Guevara, S., Rizzo, A., Sanchez, R., Arribere, M. A. Heavy metal inputs in Northern Patagonia lakes from short sediment core analysis. J. Radioanal. Nucl. Chem., 265, 481-493, 2005. [40] Arribere, M. A., Campbell, L. M., Rizzo, A. P., Arcagni, M., Revenga, J., Ribeiro Guevara, S. Trace elements in plankton, benthic organisms and forage sh of Lake Moreno, Northern Patagonia, Argentina. Water Air Soil Poll., 212, 167-182, 2010. [41] Revenga, J. E., Campbell, L. M., Arribere, M. A., Ribeiro Guevara, S. Arsenic, cobalt and chromium food web biodilution in a Patagonia mountain lake. Ecotoxicol. Environ. Saf., 81, 1-10, 2012. [42] Juncos, R., Arcagni, M., Rizzo, A., Campbell, L., Arribere, M. A., Ribeiro Guevara, S. Natural origin arsenic in aquatic organisms from a deep oligotrophic lake under the inffuence of volcanic eruptions. Chemosphere, 144, 2277-2289, 2016. 4 [43] Ruggieri, F., Fernandez-Turiel, J. L., Saavedra, J., Gimeno, D., Polanco, E., Naranjo, J. A. Environmental geochemistry of recent volcanic ashes from the Southern Andes. Environ Chem, 8, 236-247, 2011. 4, 8 [44] Vadeboncoeur, Y., Vander Zanden, M. J., Lodge, D. M. Putting the Lake Back Together: Reintegrating Benthic Pathways into Lake Food Web Models. Bioscience, 52, 44{54, 2002. 5 [45] Juncos, R. Relaciones trocas entre salmonidos y peces nativos del lago Nahuel Huapi: una aproximacion desde la bioenergetica. Tesis Doctoral, Universidad Nacional del Comahue. Centro Regional Universitario, Bariloche, Argentina, 2012. 5, 6 [46] Cervellini, P. M., Battini, M. A., Cussac, V. E. Ontogenetic shift in the diet of Galaxias maculatus (Galaxiidae) and Odontesthes microlepidotus (Atheridae). Environ. Biol. Fishes, 36, 283-290, 1993. 5, 6, 8 [47] Barriga, J. P., Battini, M. A., Garca Asorey, M., Carrea, C., Macchi, P. J., Cussac, V. E. Intraspecic variation in diet, growth, and morphology of landlocked Galaxias maculatus during its larval period: the role of food availability and predation risk. Hydrobiologia, 679, 27-41, 2012. 5, 6, 9, 21 [48] Cussac, V. E., Cervellini, P. M., Battini, M. A. Intralacustrine movements of Galaxias maculatus (Galaxiidae) and Odontesthes microlepidotus (Atherinidae) during their early life history. Environ. Biol. Fishes, 35, 141-148, 1992. 5 [49] Juncos, R., Milano, D., Macchi, P. J., Vigliano, P. H. Niche segregation facilitates coexistence between native and introduced shes in a deep Patagonian lake. Hydrobiologia, 747, 53-67, 2015. 6 [50] Juncos, R., Beauchamp, D. A., Vigliano, P. H. Modeling prey consumption by native and nonnative piscivorous shes: implications for competition and impacts on shared prey in an ultraoligotrophic lake in Patagonia. Trans. Am. Fish. Soc., 142, 268-281, 2013. [51] Arcagni, M., Rizzo, A., Campbell, L., Arribere, M. A., Juncos, R., Reissig, M., et al. Stable isotope analysis of trophic structure, energy flow and spatial variability in a large ultraoligotrophic lake in Northwest Patagonia. J. Great Lakes Res., 41, 916-925, 2015. [52] Rizzo, A., Arcagni, M., Campbell, L., Koron, N., Pavlin, M., Arribere, M. A., et al. Source and trophic transfer of mercury in plankton from an ultraoligotrophic lacustrine system (Lake Nahuel Huapi, North Patagonia). Ecotoxicology, 23, 1184-1194, 2014. 6 [53] Greenberg, R. R., Bode, P., De Nadai Fernandes, E. A. Neutron activation analysis: A primary method of measurement. Spectrochim Acta Part B At Spectrosc, 66, 193-241, 2011. 6 [54] Mu~noz, L. Determinacion de Selenio y Zinc en plasma mediante Analisis por Activacion Neutronica Instrumental. Tesis Doctoral, Universidad de La Serena, Facultad de Ciencias, 1997. 7 [55] Knoll, G. F. Radiation Detection and Measurement. John Wiley and Sons, 2000. 7 [56] Kafala, S. I., MacMahon, T. D. Comparison of neutron activation analysis methods. J. Radioanal. Nucl. Chem., 271, 507-516, 2007. 7 [57] Kestelman, A. J., Ribeiro Guevara, S., Arribere, M. A., Cohen, I. M. Averaged cross sections for the reactions 68Zn(n,p)68gCu and 68Zn(n,p)68mCu for a 235U ssion neutron spectrum. Appl. Radiat. Isot., 65, 872-876, 2007. 7 [58] Leon, R. J. C., Bran, D., Collantes, M., Paruelo, J. M., Soriano, A. Grandes unidades de vegetación de la Patagonia extra andina. Ecol. Austral, 8, 125-144, 1998. 11 [59] Ribeiro, S., Rizzo, A., Daga, R., Williams, N., Villa, S. Bromine as indicator of source of lacustrine sedimentary organic matter in paleolimnological studies. Quat Res, 92, 257-271, 2019. 12, 23 [60] Firestone, R. B., Shirley, V. Table of Isotopes. Wiley, New York, 1996. 15, 17 [61] Bavio, M. A., Fernandez, M. A., Gautier, E. A. Depleted Zinc isotopic analysis for primary reactor circuit passivation. Inf. tec., Comision Nacional de Energa Atomica, General San Martn, Buenos Aires, Argentina, 2014. 17 [62] Chang, R., Goldsby, K. A. Qumica. AMGH, 2013. 17 [63] Mughabghab, S. F., Divadeenam, M., Holden, N. E. Neutron Cross Sections. Academic, New York, 1981. 17 [64] Zhang, L., Shi, Z., Jiang, Z., Zhang, J., Wang, F., Huang, X. Distribution and bioaccumulation of heavy metals in marine organisms in east and west Guangdong coastal regions, South China. Mar. Pollut. Bull., 101, 930-937, 2015. 17 [65] Finoto Viana, L., Lima Cardoso, C. A., Eduardo Lima-Junior, S., Rondon Suarez, Y., Cezar Florentino, A. Bioaccumulation of metal in liver tissue of sh in response to water toxicity of the Araguari-Amazon River, Brazil. Environ. Monit. Assess., 192, 781, 2020. [66] Maurya, P. K., Malik, D. S., Yadav, K. K., Kumar, A., Kumar, S., Kamyab, H. Bioaccumulation and potential sources of heavy metal contamination in sh species in River Ganga basin: Possible human health risks evaluation. Toxicol. Rep., 6, 472-481, 2019. 17 [67] Qiao-qiao, C., Guang-wei, Z., Langdon, A. Bioaccumulation of heavy metals in shes from Taihu Lake, China. J Environ Sci (China), 19, 1500- 1504, 2007. 21, 27, 28, 32 [68] Voigt, C. L., Pinto da Silva, C., Binde Doria, H., Ferreira Randi, M. A., Oliveira Ribeiro, C. A., Xavier de Campos, S. Bioconcentration and bioaccumulation of metal in freshwater Neotropical sh Geophagus brasiliensis. Environ Sci Pollut Res, 22, 8242-8252, 2015. 32 [69] Karadede, H., Oymak, S. A., Unlu, E. Heavy metals in mullet, Liza abu, and catsh, Silurus triostegus, from the Ataturk Dam Lake (Euphrates), Turkey. Environ Int, 30, 183-188, 2004. 21, 27, 30 [70] Bradley, R. W., Sprague, J. B. Accumulation of zinc by rainbow-trout as inffluenced by pH, water hardness and sh size. Environ. Toxicol. Chem., 4, 685-694, 1985. 22, 24 [71] Hogstrand, C., Lithner, G., Haux, C. The importance of metallothionein for the accumulation of copper, zinc and cadmium in environmentally exposed perch, Perca fluviatilis. Pharmacol. Toxicol., 68, 492-501, 1991. 24, 27, 28 [72] Besser, J. M., Brumbaugh, W. G., May, T. W., Schmitt, C. J. Biomonitoring of lead, zinc, and cadmium in streams draining lead-mining and non-mining areas, Southeast Missouri, USA. Environ. Monit. Assess., 129, 227-241, 2007. [73] Farag, A. M., Skaar, D., Nimick, D. A., MacConnell, E., Hogstrand, C. Characterizing aquatic health using salmonid mortality, physiology, and biomass estimates in streams with elevated concentrations of arsenic, cadmium, copper, lead, and zinc in the Boulder River watershed, Montana. Trans. Am. Fish. Soc., 132, 450-467, 2003. [74] Giguere, A., Campbell, P. G. C., Hare, L., Couture, P. Sub-cellular partitioning of cadmium, copper, nickel and zinc in indigenous yellow perch (Perca avescens) sampled along a polymetallic gradient. Aquat. Toxicol., 77, 178-189, 2006. [75] Zheng, D., Feeney, G. P., Kille, P., Hogstrand, C. Regulation of ZIP and ZnT zinc transporters in zebrash gill: zinc repression of ZIP10 transcription by an intronic MRE cluster. Physiol. Genom., 34, 205-214, 2008. [76] Hogstrand, C., Haux, C. Metallothionein as an indicator of heavy-metal exposure in 2 subtropical sh species. J. Exp. Mar. Biol. Ecol., 138, 69-84, 1990. 22 [77] Spry, D. J., Hodson, P. V., Wood, C. M. Relative contributions of dietary and waterborne zinc in the rainbow trout, Salmo gairdneri. Can J Fish Aquat Sci, 45, 32-41, 1988. 24 [78] Canli, M., Atli, G. The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean sh species. Environ. Pollut., 121, 129-136, 2003. 24, 30, 32 [79] Newman, M. C., Mitz, S. V. Size dependence of zinc elimination and uptake from water by mosquitosh Gambusia anis (Baird and Girard). Aquat. Toxicol., 12, 17-32, 1988. 24 [80] Chen, M. H., Chen, C. Y. Bioaccumulation of Sediment-Bound Heavy Metals in Grey Mullet, Liza macrolepis. Mar. Pollut. Bull., 39, 239-244, 1999. 24, 26 [81] Burkhard, L. P. Factors influencing the design of bioaccumulation factor and biota sediment accumulation factor eld studies. Environ. Toxicol. Chem., 22, 351-361, 2003. 25 [82] Fernandes, C., Fontanhas-Fernandes, A., Peixoto, F., Salgado, M. A. Bioaccumulation of heavy metals in Liza saliens from the Esmoriz-Paramos coastal lagoon, Portugal. Ecotoxicol. Environ. Saf., 66, 426-431, 2007. 26, 31 [83] Dallinger, R. Detoxication in Terrestrial Invertebrates. Lewis Publisher, Boca Raton, FL, 1993. 26 [84] Velcheva, I. G. Zinc Content in the Organs and Tissues of Freshwater Fish from the Kardjali and Studen Kladenets Dam Lakes in Bulgaria. Turk J Zool, 30, 1-7, 2006. 26 [85] Storelli, M. M., Barone, G., Storelli, A., Marcotrigiano, G. O. Trace Metals in Tissues of Mugilids (Mugil auratus, Mugil capito, and Mugil labrosus) from the Mediterranean Sea. Bull. Environ. Contam. Toxicol., 77, 43 - 50, 2006. 27 [86] Jaric, I., Visnjic-Jeftic, Z., Cvijanovic, G., Gacic, Z., Jovanovic, L., Skoric, S., et al. Determination of dffierential heavy metal and trace element accumulation in liver, gills, intestine and muscle of sterlet (Acipenser ruthenus) from the Danube River in Serbia by ICP-OES. Microchem. J., 98, 77-81, 2011. 27 [87] Zhang, J., Zhu, L., Li, F., Liu, C., Yang, Z., Qiu, Z., et al. Heavy metals and metalloid distribution in different organs and health risk assessment for edible tissues of sh captured from Honghu Lake. Oncotarget, 8, 101672-101685, 2017. 27 [88] Salem, Z. B., Ayadi, H. Heavy metal accumulation in Diplodus annularis, Liza aurata, and Solea vulgaris relevant to their concentration in water and sediment from the southwestern Mediterranean (coast of Sfax). Environ Sci Pollut Res, 23, 13895-13906, 2016. 27, 30 [89] Bauman, J. W., Klaassen, C. D. Production metallothionein and heat-shock proteins in response to metals. Fundamental and Applied Toxicology, 21, 15-22, 1993. 27 [90] Hemmadi, V. A critical review on integrating multiple sh biomarkers as indicator of heavy metals contamination in aquatic ecosystem. Int. j. bioassays, 6, 5494-5506, 2017. 27 [91] Bahar Yilmaz, A. Levels of heavy metals (Fe, Cu, Ni, Cr, Pb, and Zn) in tissue of Mugil cephalus and Trachurus mediterraneus from Iskenderun Bay, Turkey. Environ. Res., 92, 277-281, 2003. 28, 32 [92] Mueller, K. P., Neuhauss, S. C. F. Sunscreen for Fish: Co-Option of UV Light Protection for Camoufflage. PLoS ONE, 9, 2014. 29 [93] Borovansky, J. Zinc in pigmented cells and structures, interactions and possible roles. Sborn. lek., 95, 309{320, 1994. 29, 30 [94] Hardy, R. W., Sullivan, C. V., Koziol, A. M. Absorption, body distribution, and excretion of dietary zinc by rainbow trout (Salmo gairdneri). Fish Physiol Biochem, 3, 133-143, 1987. 30 [95] Vega, R., Patricio Dantagnan, P., Mardones, A., Valdebenito, I., Zamorano, J., Encina, F. Bases biologicas para el cultivo del puye Galaxias maculatus (Jenyns, 1842): una revisión. Lat. Am. J. Aquat. Res., 41, 369-386, 2013. 30 [96] Bubach, D. F. Elementos traza en peces de los lagos patagónicos: lnea de base, distribución global e impacto antrópico. Tesis Doctoral, Facultad de Ciencias Naturales y Museo. Universidad Nacional de La Plata, Argentina, 2010. 30 [97] (SENASA) Servicio Nacional de Sanidad y Calidad Agroalimentaria. Tolerancia en el tenor de metales y metaloides. Decreto 4238/68. 17.4 y 23.14.8. Res. 533-10.05.94. 30 [98] Allen-Gil, S. M., Gubala, C. P., Landers, D. H., Lasorsa, B. K., Crecelius, E. A., Curtis, L. R. Heavy metal accumulation in sediment and freshwater sh in U.S. Artic Lakes. Toxicol Environ Chem, 16, 733-741, 1997. 32 [99] Llamazares Vegh, S., Fernanda Biole, F., Bavio, M., P., P. T., Gil, A. F., V., V. A. Bioaccumulation of 10 trace elements in juvenile shes of the Lower Parana River, Argentina: implications associated with essential sh growing habitat. Environ Sci Pollut Res, 28, 365 - 378, 2021. 32 [100] Saha, N., Mollah, M. Z. I., Alam, M. F., Saur Rahman, M. Seasonal investigation of heavy metals in marine shes captured from the Bay of Bengal and the implications for human health risk assessment. Food Control, 70, 110 - 118, 2016. 32 |
Materias: | Biología Física |
Divisiones: | Energía nuclear > Ingeniería nuclear > Laboratorio de análisis por activación neutrónica |
Código ID: | 1006 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 07 Jun 2022 12:41 |
Última Modificación: | 07 Jun 2022 12:41 |
Personal del repositorio solamente: página de control del documento