Desarrollo e implementación de actuadores para un vehículo terrestre multi-propósito / Development and implementation of actuators for a multipurpose land vehicle

Tapia Sal Paz, Benjamín (2021) Desarrollo e implementación de actuadores para un vehículo terrestre multi-propósito / Development and implementation of actuators for a multipurpose land vehicle. Proyecto Integrador Ingeniería Mecánica, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
19Mb

Resumen en español

En este trabajo se presenta el proceso de diseño e implementación de un vehículo terrestre multiproposito completamente funcional. Se mostrara el proceso de selección de actuadores, para dotar al robot con las capacidades para interactuar con el entorno, con el fin de desarrollar tareas especificas. Se evaluó la existencia de robots autónomos en los ámbitos de investigación y comerciales tanto de hogares como en la industria, a partir de esto se decidió enfocar este trabajo en misiones de tipo \Deposito". Mediante técnicas de planning, se logro sintetizar un plan para estas misiones, donde se realizan tareas de delivery, deposito y extracción de productos. Se utilizo el software The Modal Transition System Analyser (MTSA) para la síntesis de controladores discretos (correctos por construcción) que satisfagan un modelo del sistema robótico y las propiedades que en dicho sistema deben cumplirse. Se presenta la metodóloga utilizada para la implementación de controladores híbridos, que nos permitirá transformar los eventos discretos de alto nivel a señales continuas de bajo nivel para los actuadores encargados de realizar las tareas. Se presenta el trabajo realizado en un entorno simulado (Copellia Sim), realizando en primera instancia una prueba de concepto del correcto funcionamiento de las tareas. Se presenta el diseño en el mundo real de la arquitectura del robot, as también su implementación junto con todos los desafíos que implica trasladarse del entorno simulado a una implementación real. Terminando así con el diseño final del prototipo, el cual se basa en manufactura aditiva (impresión 3D), validando el mismo para tareas típicas de deposito.

Resumen en inglés

In this work an end-to-end implementation of a mobile robot is presented. The selection process of actuators for strong interaction with the environment and specics tasks is shown. A search for autonomous robots in research and comercial robots is made, from which we decided to focus our work in an autonomous robot for warehouse missions. Planning techniques are used to synthesize plans for delivery, grab and drop tasks. The software The Modal Transition System Analyzer (MTSA) is used to synthesize discrete event controllers (Correct-by-construction), that satisfy user-supplied specifications, models of the robot, its environment and the system goals. The design methodology for the hybrid controller is presented, which allows connecting dierent abstraction levels of the robot. A proof-of-concept approach is made in a simulated environment using Coppelia Sim software as a key step in the design process. The architecture of the real world implementation is presented and the challenges to translate from the simulated implementation are discussed. We demonstrate the robot capabilities for warehouses missions both in simulated and real world scenarios, where a full 3D printed prototype is made.

Tipo de objeto:Tesis (Proyecto Integrador Ingeniería Mecánica)
Palabras Clave:Planning; Planificación; Actuators; Accionadores; [Mobile; Móvil; Robot; Robot; Werehouse; Depósito]
Referencias:[1] Saxena, A., Driemeyer, J., Ng, A. Y. Robotic grasping of novel objects using vision. The International Journal of Robotics Research, 27 (2), 157-173, 2008. 1, 11 [2] Chang, K., Xing, Y., Yin, J., Zheng, D. Design of intelligent management and control system of exible transmission assembly line. En: 2018 Eighth International Conference on Instrumentation Measurement, Computer, Communication and Control (IMCCC), pags. 756-760. 2018. 1, 11 [3] Chuan, L. P., Johari, A., Wahab, M. H. A., Nor, D. M., Taujuddin, N. S. A. M., Ayob, M. E. An rd warehouse robot. En: 2007 International Conference on Intelligent and Advanced Systems, pags. 451-456. 2007. 1 [4] Sim, R., Roy, N. Global a-optimal robot exploration in slam. En: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pags. 661-666. 2005. 1, 13 [5] Liendro, T., Zudaire, S. Hybrid control from scratch: a design methodology for assured robotic missions. En: Simposio Argentino de Inteligencia Articial - JAIIO 49, pags. 1-14. 2020. 1, 2, 12, 15, 18, 22, 26, 27, 34, 59 [6] Zudaire, S., Garrett, M., Uchitel, S. Iterator-based temporal logic task planning. En: 2020 International Conference on Robotics and Automation (ICRA), pags. 11472-11478. 2020. 5, 15 [7] Keller, R. Formal verication of parallel programs. Communications of the ACM, 19, 371-384, 07 1976. 6 [8] Giannakopoulou, D., Magee, J. Fluent model checking for event-based systems. En: Proceedings of the 9th European Software Engineering Conference Held Jointly with 11th ACM SIGSOFT International Symposium on Foundations of Software Engineering, pags. 257-266. 2003. 7 [9] D'Ippolito, N., Braberman, V., Piterman, N., Uchitel, S. Synthesis of live behaviour models for fallible domains. En: 2011 33rd International Conference on Software Engineering (ICSE), pags. 211-220. 2011. 8 [10] Belta, C., Bicchi, A., Egerstedt, M., Frazzoli, E., Klavins, E., Pappas, G. J. Symbolic planning and control of robot motion [grand challenges of robotics]. IEEE Robotics Automation Magazine, 14 (1), 61-70, 2007. 8, 15 [11] Lee, D., Ku, N., Kim, T.-W., Kim, J., Lee, K.-Y., Son, Y.-S. Development and application of an intelligent welding robot system for shipbuilding. Robotics and Computer-Integrated Manufacturing, 27 (2), 377-388, 2011. URL https://www.sciencedirect.com/science/article/pii/S0736584510001055, translational Research - Where Engineering Meets Medicine. 11 [12] Pattanashetty, K., Balaji, K. P., Pandian, S. R. Educational outdoor mobile robot for trash pickup. En: 2016 IEEE Global Humanitarian Technology Conference (GHTC), pags. 342-351. 2016. 11 [13] Gong, W., Xu, H., Li, Q., Gu, H., Han, C., Song, S., et al. Mobile robot manipulation system design in given environments. En: 2017 IEEE International Conference on Information and Automation (ICIA), pags. 609-613. 2017. 11 [14] Liu, Z., Kamogawa, H., Ota, J. Manipulation of an irregularly shaped object by two mobile robots. En: 2010 IEEE/SICE International Symposium on System Integration, pags. 218-223. 2010. 11 [15] Kress-Gazit, H., Fainekos, G., Pappas, G. Translating structured english to robot controllers. Advanced Robotics, 22, 1343-1359, 10 2008. 15 [16] Maniatopoulos, S., Schillinger, P., Pong, V., Conner, D. C., Kress-Gazit, H. Reactive high-level behavior synthesis for an atlas humanoid robot. En: 2016 IEEE International Conf. on Robotics and Automation (ICRA), pags. 4192-4199. 2016. 15 [17] Braberman, V., D'Ippolito, N., Kramer, J., Sykes, D., Uchitel, S. Morph: A reference architecture for conguration and behaviour self-adaptation. En: Proceedings of the 1st International Workshop on Control Theory for Software Engineering, CTSE 2015, pags. 9-16. New York, NY, USA: ACM, 2015. 15 [18] Jing, G., Tosun, T., Yim, M., Kress-Gazit, H. An end-to-end system for accomplishing tasks with modular robots: Perspectives for the ai community. En: Proceedings of the Twenty-Sixth International Joint Conference on Articial Intelligence, IJCAI-17, pags. 4879-4883. 2017. 15 [19] Kaelbling, L. P., Lozano-Perez, T. Hierarchical task and motion planning in the now. En: 2011 IEEE International Conference on Robotics and Automation, pags. 1470-1477. 2011. 15 [20] D'Ippolito, N., Fischbein, D., Chechik, M., Uchitel, S. Mtsa: The modal transition system analyser. En: 2008 23rd IEEE/ACM International Conference on Automated Software Engineering, pags. 475-476. 2008. 18 [21] Yang, Y., Zhao, J., Yin, X., Li, S. Formal synthesis of warehouse robotic systems with temporal logic specications. En: 2019 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), pags. 469-474. 2019. 18 [22] Kress-Gazit, H., Fainekos, G. E., Pappas, G. J. Temporal-logic-based reactive mission and motion planning. IEEE Trans. on Robotics, 25 (6), 1370-1381, 2009.18 [23] Kumar, P. B., Verma, N. K., Parhi, D. R., Priyadarshi, D. Design and control of a 7 dof redundant manipulator arm. Australian Journal of Mechanical Engineering, pags. 1-12, 2019. 25, 26 [24] Benjamn, T. S. P. Mision realizada en entorno simulado coppelia sim. Video, 2021. URL https://drive.google.com/file/d/1MUXX_ E43v0yLstD0mttomwpDtYoL1OkC/view?usp=sharing. 40 [25] Benjamn, T. S. P. Mision realizada en la vida real. Video, 2021. URL https://drive.google.com/file/d/1XoLyvkhMT-lJ3Mh8mcD0Up8BPvfvQ_36/view?usp=sharing. 57 [26] Benjamn, T. S. P. Detalle de la accion de deposito. Video, 2021. URL https://drive.google.com/file/d/1IzyewDwKk6yEKhNtWzWQ2pAT0OqZ3bi8/view?usp=sharing. 57
Materias:Ingeniería mecánica > Robótica
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Sistemas complejos y altas energías > Física estadística interdisciplinaria
Código ID:1014
Depositado Por:Tamara Cárcamo
Depositado En:11 May 2022 10:35
Última Modificación:11 May 2022 11:02

Personal del repositorio solamente: página de control del documento