Desarrollo a escala de un algoritmo de centrado de carril para vehículos autónomos / Development of lane centering algorithm applied to autonomous scaled vehicles

Allione, Cristian A. (2021) Desarrollo a escala de un algoritmo de centrado de carril para vehículos autónomos / Development of lane centering algorithm applied to autonomous scaled vehicles. Proyecto Integrador Ingeniería Mecánica, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
9Mb

Resumen en español

En los últimos años se ha incrementado el interés por la investigación, desarrollo y validación de tecnologías de manejo autónomo en automóviles tanto en el mundo académico como industrial. Este trabajo, enmarcado dentro de un proyecto integrador de la carrera de grado de Ingeniera Mecánica, presenta el diseño e implementación de un sistema de centrado autónomo de carril o \Lane Centering" sobre un vehículo a escala 1:10. El sistema es complementado con un control de velocidad y ambos funcionan en base a procesamiento de imágenes implementado sobre una placa Raspberry PI3. La plataforma propuesta fue fabricada por manufactura aditiva, de fácil ensamblaje y compuesta por componentes electrónicos económicos y estándares. Se recreo la dinámica de la plataforma y componentes en un ambiente simulado, lo cual permitió desarrollar código Software in the Loop de manera mas rápida y sencilla previo a implementarlo definitivamente sobre el prototipo real. Para las simulaciones se empleo el software CoppeliaSim. El desempeño de las capacidades de manejo autónomo de la plataforma y su similitud con los resultados de simulación fueron finalmente validados sobre una pista de pruebas montada en ambiente interior.

Resumen en inglés

Autonomous cars have gained popularity in both academic and industrial environments in last years. This work, framed within Mechanical Engineering integrative project, is about the design and implementation of an autonomous lane centering system applied to an scale low-cost platform. It is complemented with a velocity control system and both autonomous capabilities work based on image processing. The processing board is a Raspeberry PI3. Scaled platform is constructed by fused deposition modeling and results in easy assemble. It is composed of standardized and aordable electronic components. Platform and components were recreated in a simulated environment, that turns easier and faster the code developing previous to real platform implementation. CoppeliaSim was the software employed for software-in-the-loop simulations. Finally, both autonomous capabilities performance as well as similarities between real and simulated results were validated by means of a in-door proposed test road.

Tipo de objeto:Tesis (Proyecto Integrador Ingeniería Mecánica)
Palabras Clave:Image processing; Tratamiento de imágenes; Simulation; Simulación; Vehicles; Vehículos; [Autonomous driving; Manejo autónomo; Lane centering; Software in the loop; Software en el circuito; Scaled platform; Plataforma a escala; CoppeliaSim ]
Referencias:[1] Homann, G. M., Tomlin, C. J., Montemerlo, M., Thrun, S. Autonomous automobile trajectory tracking for o-road driving: Controller design, experimental validation and racing. En: 2007 American Control Conference, pags. 2296-2301. 2007. vii, 8, 28 [2] Committee, S. O.-R. A. D. O. Sae j3016-taxonomy and denitions for terms related to on-road motor vehicle automated driving systems. SAE-Society of Automotive Engineers, 2018. 1 [3] Begin, W., Duquette, S., Lavalliere, M. Real application for a low-cost low-power self-driving 1/10 scale car. Journal of Robotics and Automation, 4 (1), 195-201, 2020. 3, 12 [4] Muller, M., Koltun, V. Openbot: Turning smartphones into robots. En: 2021 IEEE International Conference on Robotics and Automation (ICRA). 2021. In press. 3 [5] Cumali, K., Armagan, E. Steering control of a vehicle equipped with automated lane centering system. En: 2019 11th International Conference on Electrical and Electronics Engineering (ELECO), pags. 820-824. 2019. 3, 28 [6] Pahlavan, M., Papatriantalou, M., Schiller, E. M. Gulliver: A test-bed for developing, demonstrating and prototyping vehicular systems. En: 2012 IEEE 75th Vehicular Technology Conference (VTC Spring), pags. 1-2. 2012. 3 [7] Berger, C., Chaudron, M., Heldal, R., Landsiedel, O., Schiller, E. M. Model-based, composable simulation for the development of autonomous miniature vehicles. En: Proceedings of the Symposium on Theory of Modeling Simulation - DEVS Integrative MS Symposium, pags. 1-8. 2013. 3 [8] Cristian, A. Opensource platform. https://bitbucket.org/CristianAllione/ proyecto-lane-centering/src/master/. [Online; accessed 14-June-2021]. 3, 23 [9] Vialidad Nacional Argentina. Memoria descriptiva - corredor vial nacional c. https://www.argentina.gob.ar/sites/default/files/sppp-cvc-anexo-ii. pdf. [Online; accessed 25-May-2021]. 4, 24 [10] Snider, J. M. Automatic steering methods for autonomous automobile path tracking. Carnegie Mellon University, 1, February 2009. 7 [11] Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., et al. Stanley: The robot that won the darpa grand challenge. Journal of Field Robotics, 23 (9), 661-692, 2006. 8 [12] Toro, O., Becsi, T., Aradi, S. Design of lane keeping algorithm of autonomous vehicle. Periodica Polytechnica Transportation Engineering, 44 (1), 60-68, 2016.9 [13] Keenan, R., Kippenbrok, R., Brucholtz, B., Reichelt, M. https://github.com/rkipp1210/advanced-lane-lines, 2017. [Online; accessed 25-May-2021]. 12 [14] Aditham, H., Nadar, R. Real time lane detection using ross kippenbrock method and object detection using yolo. En: IEJRD - International Multidisciplinary Journal, tomo 5, pag. 8. 2020. 12 [15] OpenCV. Geometric image transformations. URL hhttps://docs.opencv.org/master/da/d54/group__imgproc__transform.html# gaf73673a7e8e18ec6963e3774e6a94b87, [Online; accessed 14-June-2021].14 [16] Berger, C. From a competition for self-driving miniature cars to a standardized experimental platform: Concept, models, architecture, and evaluation. Journal of Software Engineering for Robotics, 5 (1), 63-79, 2014. 19, 24 [17] Percinski, M., Marcinkiewicz, M. Architecture of the system of 1:10 scale autonomous car | requirements-based design and implementation. En: 2018 International Interdisciplinary PhD Workshop (IIPhDW), pags. 263-268. 2018. [18] Sumardi, Tauqurrahman, M., Riyadi, M. Street mark detection using raspberry pi for self-driving system. Telkomnika (Telecommunication Computing Electronics and Control), 16, 629-634, 04 2018. 19, 20 [19] Blaga, B.-C.-Z., Deac, M.-A., Al-doori, R. W. Y., Negru, M., Danescu, R. Miniature autonomous vehicle development on raspberry pi. En: 2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP), pags. 229-236. 2018. 20 [20] Sun, Z., Huang, L., Jia, R. Coal and gangue separating robot system based on computer vision. Sensors, 21, 1349, 2021. 31 [21] Rohmer, E., Singh, S. P. N., Freese, M. V-rep: A versatile and scalable robot simulation framework. En: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pags. 1321-1326. 2013. 31 [22] Allione, C. Canal de youtube. URL https://www.youtube.com/channel/ UCA4-VhozmpyWleuGw2AXUYA, [Online; accessed 14-June-2021]. 42
Materias:Ingeniería mecánica > Robótica
Divisiones:Gcia. de área de Energía Nuclear > Gcia. de Ingeniería Nuclear > Termohidráulica
Código ID:1021
Depositado Por:Tamara Cárcamo
Depositado En:05 May 2022 15:06
Última Modificación:05 May 2022 15:06

Personal del repositorio solamente: página de control del documento