Tartaglione, Aureliano (2009) Desarrollo de técnicas de detección de sustancias por irradiación pulsada de neutrones / Development of pulsed neutron based techniques for substances detection. Tesis Doctoral en Ciencias de la Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 6Mb |
Resumen en español
Los neutrones se han convertido en una popular herramienta para realizar estudios no invasivos en diversas ramas de la ciencia como la física, la biología, la ingeniería de materiales, etc. En la última década se ha incrementado el interés por aplicar este tipo de radiación penetrante en equipos de seguridad portuaria, fronteriza y aeroportuaria, complementando sistemas ya existentes basados en imágenes radiográficas que emplean radiación X y gamma. El principal interés por los neutrones está basado en la posibilidad de realizar detección elemental en grandes contenedores, que permita detectar tráfico ilícito de narcóticos, explosivos, armamento químico, residuos industriales peligrosos y materiales nucleares especiales. En este trabajo se han empleado neutrones pulsados con energ´ıas del rango térmico para realizar experimentos que permitieron estudiar los conceptos de detección elemental por medio de la radiación gamma prompt producida por la absorción de neutrones en la materia y la detección de material nuclear especial detectando neutrones instantáneos de fisión y neutrones retardados. Tanto en la detección por radiación gamma prompt como por neutrones de fisión en el caso del material nuclear, se aprovechó el hecho de que la fuente de neutrones fuera pulsada, aplicando técnicas de tiempo de vuelo que permitieron que las técnicas de detección desarrolladas fueran sensibles a la posición de la muestra respecto del detector con resoluciones espaciales de decenas de centímetros. Los estudios mencionados tienen como fin una aplicación tecnológica concreta en el ámbito de la seguridad y la ingeniería nuclear. Sin embargo, el trabajo también ha dado lugar a estudios básicos en física nuclear empleando un detector de radiación gamma de alta resoluci´on para observar las emisiones que se producen cuando el indio absorbe neutrones de energías en torno a la resonancia que el isótopo de masa 115 de este metal posee en 1,45 eV. El estudio permitió hallar la intensidad de algunas emisiones no informadas con anterioridad en la literatura, contribuyendo de este modo a la base general de datos nucleares.
Resumen en inglés
Neutrons have become an important tool for non-invasive studies in different science and engeneering disciplines like physics, biology and material engeneering. In the last decade, the interest in using neutrons for border security applications and cargo container scanning has been growing, as a complement of previous X and gamma ray image technology to detect illicit trafficking of narcotics, explosives, industrial pollutants, chemical weaponry and special nuclear materials. In this work, pulsed thermal neutrons were applied to study the concepts of elemental detection by prompt gamma analysis, and special nuclear materials determination by induced prompt fission and delayed neutrons. Upon detecting prompt gamma or fission neutrons, the developed techniques take advantage of the pulsed nature of the neutron source by applying time-of-flight methods, to make the elemental (and special nuclear materials) determination, position sensitive with a spatial resolution of a few tens of centimeters. The mentioned studies have an inmediate application to borders security and nuclear engeneering. However some basic results have been obtained in the field of nuclear physics. Using a Ge(Li) gamma detector, the relative intensities of prompt gamma lines by ephithermal neutrons absorption in indium were determined. The study made posible to observe emissions produced by the absorption of neutrons with energies around the 1.45 eV indium nuclear resonance not reported before in the standard nuclear data tables.
Tipo de objeto: | Tesis (Tesis Doctoral en Ciencias de la Ingeniería) |
---|---|
Palabras Clave: | Non-invasive sustance detection; Detección no invasiva de sustancias; Pulsed neutrons; Fuente pulsada de neutrones; Time-of-flight; Tiempo de vuelo; Prompt gamma; Gamma prompt; Border security; Seguridad Fronteriza; Special nuclear material; Materiales nucleares especiales |
Referencias: | [1] Alfassi Z B and Chung C . Prompt Gamma Neutron Activation Analysis. CRC Press, Boca Raton, 1995. [2] Alexeev V L, Emelianov B A, Kaminker D M, Khazov Yu. L, Kondurov I A, Loginov Yu. E, Rumiantsev V L, Sakharov S L, and Smirnov A I. The properties of 116In excited states. Nucl. Phys. A, 262, :19–51, 1976. [3] Beckurts K H and Wirtz K. Neutron Physics. Springer - Verlag, Berlin, 1964. [4] Bittencourt J A. Fundamentals of Plasma Physics. Jos´e Augusto Bittencourt, S˜ao Jos´e dos Campos, SP, Brazil, 3rd edition, 2003. [5] Blachot J. Nuclear data sheets for A=116∗. Nucl. Data Sheets, 92, :455–622, 2001. [6] Blostein J J. Estudio de la din´amica de la materia condensada a trav´es de la t´ecnica de Dispersi´on Inel´astica Profunda de Neutrones. Tesis Doctoral, Instituto Balseiro, UNCuyo-CNEA, 2004. [7] Brown D R, Gozani T, Loveman R, Bendahan J, Ryge P, Stevenson J, Liu F, and Sivakumar M. Application of pulsed fast neutrons analysis to cargo inspection. Nucl. Instrum. Methods Sect. A, 353, :684–688, 1994. [8] Bruzzone H and Vieytes R. The initial phase in Plasma Focus devices. Plasma Phys. Control. Fusion, 35, (12):1745–1754, December 1993. [9] Buffler A. Contraband detection with fast neutrons. Radiation Physics and Chemistry, 71, :853–861, 2004. [10] Bunn M, Holdren J, and Wier A. Securing Nuclear Weapons and Materials: Seven Steps for Inmediate Action. Technical report, Belfer Center for Science and International Affairs, John F. Kennedy School of Government, Harvard University, Cambridge, Massachusetts, May 2002. BIBLIOGRAF´IA 122 [11] Byrd R, Moss J, Priedhorsky W, Pura C, Richter G, Saeger K, Scarlett W, Scott S, and Wagner R. Nueclear Detection to Prevent or Defeat Clandestine Nuclear Attack. IEEE Sensors Journal, 5, (4):593–609, 2005. [12] CEPAL. Efectos econ´omicos de las nuevas medidas de seguridad mar´ıtima y portuaria, Febrero 2006. [13] Choi H D and Firestone R B . Database of Prompt Gamma Rays from Slow Neutron Capture for Elemental Analysis. Technical report, International Atomic Energy Agency (IAEA), Viena, Austria, 2007. [14] Church J, Slaughter D, Asztalos S, Biltoft P, Descalle M, Hall J, Luu T, Manatt D, Mauger G, Norman E, Petersen D, and Prussin S. Signals and interferences in the nuclear car wash. Nucl. Instr. Meth Phys. Res. B, 261, :351–335, 2007. [15] Corvi F and Stefanon M. Gamma rays from resonance neutron capture in 115In. Nucl. Phys. A, 233, :185–216, 1974. [16] Crist P. Security in Maritime Transport: Risk Factors and Economic Impact. Technical report, Organisation for Economic Co-operation and Development, Junio 2003. [17] Davis T and Waxman H. Waste, Abuse, and Mismanagement in Department of Homeland Security Contracts. Technical report, United States House of Representatives–Committee on Government Reform, Julio 2006. [18] Dawidowski J. Interacci´on de neutrones t´ermicos con moderadores carbohidrogenados. Trabajo especial, Instituto Balseiro, Universidad Nacional de Cuyo, Laboratorio de Neutrones y Reactores, CAB, CNEA, 1986. [19] Dawidowski J. Correcciones por Inelasticidad y Scattering Multiple en Experimentos de Dispersi´on de Neutrones. Tesis Doctoral, Instituto Balseiro, Universidad Nacional de Cuyo, Laboratorio de Neutrones y Reactores, CAB, CNEA, 1993. [20] Delellis R D. Detecci´on de neutrones en un equipo plasma focus por el m´etodo de plata activada. Tesis de Licenciatura, FCEyN, Universidad de Buenos Aires, Laboratorio de F´ısica del Plasma, CONICET, 1976. [21] Draper J. 0-600 keV gamma-ray spectra from thermal neutron capture in the region A=104 to 198. Phys. Rev., 114, :268–278, 1958. 122 BIBLIOGRAF´IA 123 [22] Draper J E, Fenstermacher C A, and Schultz H L. Variations in spectra of resonance neutron capture gamma rays in indium. Phys. Rev., 111, :906–912, 1958. [23] Filippov N V, Filippova T I, and Vinogradov V P. Dense, high temperature plasma in a non-cylindrical Z-pinch compression. Nuclear Fusion Supp., Part 2, page 577, 1962. [24] Shirley V (Ed.) Firestone R. Table of Isotopes. Wiley-Interscience, New York, 8th edition, 1996. [25] Fetter S, Frolov V, Miller M, Mozley R, Prilutsky O, Rodionov S, and Sagdeev R. Detecting Nuclear Warheads. Science & Global Security, 1, :225–302, 1990. [26] Gozani T. Novel applications of fast neutron interrogation methods. Nucl. Instr. Meth. Phys. Res. A, 353, :635–640, 1994. [27] Hamermesh B and Hummel V. Neutron capture γ-ray spectra from the elements Z=17-30 and Z=45-57. Phys. Rev., 88, :916–919, 1952. [28] Hall J, Asztalos S, Biltoft P, Church J, Descalle M, Luu T, Manatt D, Mauger G, Norman E, Petersen D, Pruet J, Prussin S, and Slaughter D. The Nuclear Car Wash: Neutron interrogation of cargo containers to detect hidden SNM. Nucl. Instr. Meth Phys. Res. B, 261, :337–340, 2007. [29] Hoskins R. Measures to Prevent, Intercept and Respond to Illicit Uses of Nuclear Material and Radioactive Sources. Agencia Internacional de Energ´ıa At´omica, Vienna, Austria, 2002. [30] Hubbell J H and Seltzer S M. Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients (version 1.4). Publicado Online en http://physics.nist.gov/xaamdi, 2004. Ultima consulta: 30 de marzo de 2009. [31] Jordan K and Gozani T. Detection of 235U in hydrogenous cargo with Differential Die–Away Analysis and optimized neutron detectors. Nucl. Instr. Meth Phys. Res. A, April 2007. [32] Jordan K, Vujic J, and Gozani T. Remote thermal neutron die–away measurements to improve Differential Die–Away Analysis. Nucl. Instr. Meth Phys. Res. A, April 2007. [33] Jordan K, Vujic J, Phillips E, and Gozani T. Improving differential die–away analysis via the use of neutron poisons in detectors. Nucl. Instr. Meth Phys. Res. A, April 2007. 123 BIBLIOGRAF´IA 124 [34] Jordan K and Gozani T. Pulsed neutron differential die away analysis for detection of nuclear materials. Nucl. Instr. Meth Phys. Res. B, May 2007. [35] Jordan K and Gozani T Vujic J. Differential die–away analysis system response modeling and detector design. Nucl. Instr. Meth Phys. Res. A, 589, :436–444, 2008. [36] Kaneko K, Kamiyama T, Kiyanagi Y, Sakuma T, and Ikeda S. Neutron resonance absorption spectroscopy on ionic conductor AgI. Journal of Physics and Chemistry of Solids, 60, :1499–1502, 1999. [37] Keepin G, Wimett T, and Zeigler R. Delayed Neutrons from Fisionable Isotopes of Uranium, Plutonium, and Thorium. Physical Review, 107, (4):1044–1049, 1957. [38] Kerr P, Rowland M, Dietrich D, Stoeffl W, Wheeler B, Nakae L, Howard D, Hagmann C, Newby J, and Porter R. Active detection of small quantities of shielded highly–enriched uranium using low–dose 60–keV neutron interrogation. Nuclear Instruments and Methods B, 261, :347–350, 2007. [39] Knoll G F. Radiation detection and measurement. Wiley, New York, 2nd edition, 1989. [40] Lanter R and Bannerman D. The silver counter: A detector for bursts of neutrons. LA-3498-MS, Los Alamos National Laboratory, Los Alamos, 1966. Informe T´ecnico. [41] Lee W C, Mahood D B, Ryge P, Shea P, and Gozani T. Thermal neutron analysis (TNA) explosive detection based on electronic neutron generators. Nucl. Instr. Meth. Phys. Res. B, 99, :739–742, 1995. [42] Lee S, Lee P, Zhang G, Feng X, Gribkov V, Liu M, Serban A, and Wong T. High rep rate high performance Plasma Focus as a powerful radiation source. IEEE Trans. on Plasma Sci., 26, (4):1119–1126, August 1998. [43] Lipton E. U.S. to Spend Billions More to Alter Security Systems. The New York Times, 8 de marzo 2005. [44] LoneMA, Earle E D, and Bartholomew G A. The 115In(n,γ)116In reaction. Nucl. Phys., 156, :113–132, 1970. [45] Lorch E A. Neutron spectra of 241Am/B, 241Am/Be, 241Am/F, 242Cm/Be, 238Am/13C and 252Cf isotopic neutron sources. Int. J. Appl. Radiat. Isot., 24, :585–591, 1973. 124 BIBLIOGRAF´IA 125 [46] Norman D, Jones J, haskell K, Vanier P, and Forman L. Active Nuclear Material Detection and Imaging. IEEE Nuclear Science Symposium Conference Record, pages 1004–1008, 2005. [47] Mather J W. Dense Plasma Focus, in Methods of Experimental Physics 9 Part B, pages 187–249. Edited by: Lovberg H and Griem H R, Academic Press, New York and London, 1971. [48] Mather J W. Investigation of the high-energy acceleration mode in the coaxial gun. Phys. Fluids, Suppl. 7, :5–28, 1964. [49] Mayer R, Tartaglione A, and Blostein J. Integrating Education and Research in Illegal Substances Detection. In IAEA Proceedings Series, editor, Combined Devices Humanitarian Demining and Explosive Detectionn: Proceedings of a Technical Meeting Padova, 13–17 November 2006, Vienna, Austria, 2007. Agencia Internacional de Energ´ıa At´omica. [50] Marsh JW, Thomas D J, and Burke M. High resolution measurements of neutron energy spectra from Am-Be and Am-B neutron sources. Nucl. Instrum. Methods A, 366, :340–348, 1995. [51] Meyerhof W E. Elements of Nuclear Physics, pages 211–222. McGraw-Hill Book Company, New York, 1967. [52] Micklich B and Smith D. Nuclear materials detection using high–energy γ–rays. Nucl. Instr. Meth. Phys. Res. B, 241, :782–786, 2005. [53] Mil´antiev V and Temk´o S. F´ısica del Plasma. Editorial MIR, Mosc´u, URSS, 1987. [54] Moss C, Goulding A, Hollas C, and MyersW. Neutron Detectors for Active Interrogation of Highly Enriched Uranium. IEEE Transactions on Nuclear Science, 51, (4):1677–1681, 2004. [55] Moss C, Brener M, Hollas C, and MyersW. Portable active interrogation system. Nucl. Instr. Meth. Phys. Res. B, 241, :793–797, 2005. [56] Mughabghab S F, Divadeenam M, and Holden E. Neutron Cross Section, volume 1. Academic Press, New York, 12th edition, 1981. [57] Ogorodnikov S and Petrunin V. Processing of interlaced images in 4-10 MeV dual energy customs systems for material recognition. Physical Review Special Topics–Accelerators and Beams, 5, :104701(11 pages), 2002. 125 BIBLIOGRAF´IA 126 [58] Orphan V, Muenchau E, Gormley J, and Richardson R. Advanced γ ray technology for scanning cargo containers. Applied Radiation and Isotopes, 63, :723– 732, 2005. [59] Overley J C. Element-sensitive computed tomography with fast neutrons. Nucl. Instr. Meth. Phys. Res. B, 24–25, :1058–1062, 1987. [60] Overley J C, Chmelik M S, Rasmussen R J, Schofield R M S, Sieger G E, and Lefevre H W. Explosives detection via fast neutron transmission spectroscopy. Nucl. Instr. Meth. Phys. Res. B, 251, :470–478, 2006. [61] Pouzo J O. El Plasma Focus como una posible l´ınea de la fusi´on controlada. Tesis Doctoral, FCEyN, Universidad de Buenos Aires, Laboratorio de F´ısica del Plasma, CONICET, 1979. [62] PriedhorskyW, Borozin K, Hogan G,Morris C, Saunders A, Schultz L, and Teasdale M. Detection of high–z objects using multiple scattering of cosmic ray muons. Review of Scientific Instruments, 74, :4294–4297, 2003. [63] Rabenstein D, Harrach D, Vonach H, Dussel G G, and Perazzo R P I. 116In level scheme and p-n configurations. Nucl. Phys. A, 197, :129–162, 1972. [64] Raspa V, Sigaut L, Llovera R, Cobelli P, Knoblauch P, Vieytes R, Clausse A, and Moreno C. Plasma Focus as a Powerful Hard X-Ray Source for Ultrafast Imaging of Moving Metallic Objects. Brazilian Journal of Physics, 34(4B), :1696–1699, 2004. [65] Raspa V, Di Lorenzo F, Knoblauch P, Lazarte A, Tartaglione A, Clausse A, and Moreno C. Plasma focus based repetitive source of fusion neutrons and hard X-rays. PMC Physics A, 2, :5, 2008. [66] Rodr´ıguez Palomino L A. Determinaci´on del espectro r´apido de neutrones provenientes de un blanco de plomo usando el c´odigo de c´alculo MCNP5. Informe T´ecnico, CNEA-CAB, San Carlos de Bariloche, R´ıo Negro, Argentina, 2006. [67] Rynes J, Bendahan J, Gozani T, Loveman R, Stevenson J, and Bell C. Gammaray and neutron radiography as part of a pulsed fast neutron analysis inspection system. Nucl. Instr. Meth. Phys. Res. A, 422, :895–899, 1999. [68] Schmitzer C and Beck P. Experiences from the ITRAP Pilot Study. In C&S Papers Series 12/P, editor, Measures to Prevent, Intercept and Respond to Illicit Uses of Nuclear Material and Radioactive Sources, pages 402–414, Vienna, Austria, 2002. Agencia Internacional de Energ´ıa At´omica. 126 BIBLIOGRAF´IA 127 [69] Smith A B, Chiba S, Smith D L, Meadows J W, Guenther PT, Lawson R D, and Howerton R J. Evaluated Neutronic File for Indium. Nuclear Data and Measurements Series, ANL/NDM-115, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A., 1990. [70] Smith R C, Hurwitz M J, and Tran K C. System to detect contraband in cargo containers using fast and slow neutron irradiation and collimated gamma detectors. Nucl. Instr. Meth. Phys. Res. B, 99, :733–735, 1995. [71] Tartaglione A. Caracterizaci´on de un equipo plasma focus como generador de pulsos de neutrones de fusi´on nuclear y su aplicaci´on a la detecci´on no intrusiva de substancias hidrogenadas. Tesis de Licenciatura, FCEyN, Universidad de Buenos Aires, Instituto de F´ısica del Plasma, UBA - CONICET, 2004. [72] Tartaglione A, Blostein J J, and Mayer R E. Prompt gamma emissions in the reaction 115In(n,γ)116In for neutrons around the 1.45 eV absorption resonance. Appl. Rad. Isot., 2009,(doi:10.1016/j.apradiso.2009.03.078). [73] Tartaglione A, Di Lorenzo F, and Mayer R E. Detection of thermal induced prompt fission neutrons of highly-enriched uranium: a position sensitive technique. Nucl. Instr. Meth. Phys. Res. B, Trabajo aceptado, abril de 2009. [74] Vourvopoulos G and Womble P C. Pulsed fast/thermal neutron analysis: a technique for explosives detection. Talanta, 54, :459–468, 2001. [75] Waldo R, Karam R, and Meyer R. Delayed neutron yields: Time dependent measurements and a predictive model. Physical Review C, 23, (3):1113–1127, 1987. [76] Womble P C, Schultz F J, and Vourvopoulos G. Non-destructive characterization using pulsed fast-thermal neutrons. Nucl. Instr. Meth. Phys. Res. B, 99, :757–760, 1995. 127 |
Materias: | Ingeniería Física > Física nuclear |
Divisiones: | Energía nuclear > Ingeniería nuclear > Física de neutrones |
Código ID: | 103 |
Depositado Por: | Marisa G. Velazco Aldao |
Depositado En: | 12 Aug 2010 10:42 |
Última Modificación: | 19 Aug 2010 10:00 |
Personal del repositorio solamente: página de control del documento