Villavicencio, Facundo L. (2021) Evaluación de factibilidad y adquisición de imágenes para acreditar el PET/CT de INTECNUS según los nuevos estándares de calidad EARL/EANM / Feasibility evaluation and image acquisition to achieve the new EARL/EANM quality standards accreditation for the INTECNUS PET/CT device. Maestría en Física Médica, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 3376Kb |
Resumen en español
La tomografía por emisión de positrones es una técnica de imágenes de uso cada vez más extenso para el diagnóstico de diversas patologías, entre ellas oncológicas, cardiológicas y neurológicas. Además permite valorar la extensión de la enfermedad y evaluar la eficacia del tratamiento instaurado [1]. Las imágenes PET utilizan radiotrazadores marcados con radionúclidos emisores de positrones, los cuales son administrados al paciente por vía endovenosa [2]. El ¹⁸F-FDG es un análogo de la glucosa y es el radiofármaco más utilizado debido al incremento del metabolismo de la glucosa en células tumorales [3]. La tomografía por emisión de positrones es además una técnica de imágenes cuantitativas, dado que el valor de captación estándar (SUV) es una medida de la concentración de actividad en un tiempo dado t0 permitiendo realizar el seguimiento de la patología y evaluar la respuesta al tratamiento de los pacientes [4]. A pesar de ser un valor estandarizado a nivel global, la confiabilidad del valor del SUV es a menudo cuestionada debido a que se encuentra sujeto a demasiadas fuentes de variabilidad [5]. Se han estudiado y documentado la variabilidad y reproducibilidad de este parámetro, así como los factores que influyen en él como biomarcador de imágenes PET [6]. Para que el valor de SUV de imágenes adquiridas en estudios multicéntricos pueda ser comparable, se requiere de la armonización del rendimiento de los equipos PET [5,6]. En el presente trabajo se propuso evaluar la factibilidad técnica para cumplir con los nuevos estándares EARL 2 de la Asociación Europea de Medicina Nuclear, se plantearon los protocolos de adquisición que otorguen los coeficientes de recuperación de contraste dentro de los límites de tolerancia más óptimos y se obtuvieron las imágenes según los procedimientos de acreditación [7]. Finalmente, los resultados fueron evaluados y utilizados para realizar la acreditación internacional del equipo GE – Discovery 710 PET/CT del servicio de medicina nuclear de INTECNUS. Se exploraron distintas combinaciones de parámetros de adquisición y reconstrucción de las imágenes hasta que se encontró aquella que resultó óptima para los fines de este trabajo. Con estos parámetros armonizados se evaluaron diferentes casos clínicos, obteniéndose una mejor cuantificación de SUV, lo que permite a su vez una mejora en la detectabilidad de lesiones pequeñas, en comparación con las imágenes obtenidas con el protocolo previo al proceso de acreditación.
Resumen en inglés
Positron emission tomographic imaging is increasingly used to diagnose oncological, cardiological and neurological diseases, among others. It makes it also possible to assess the extent of the disease and to evaluate the effectiveness of the established treatment [1]. The contrast in PET images is obtained by using radiotracers labeled with positron-emitting radionuclides, which are administered intravenously to the patients [2]. ¹⁸F-FDG is the most widely used radiopharmaceutical, due to being a glucose analog, and being its metabolism increased in tumor cells [3]. In addition, this technique offers quantitative images by means of the standardized uptake value (SUV), which is a measure of radioactivity concentrations at a certain time and leads to patient follow-up and evaluation of the treatment response [4]. Despite the popularity of SUV, its reliability is often questioned because it is subject to many sources of variability [5]. The variability and reproducibility of this parameter and the factors that influence it as an image biomarker have been studied and documented [6]. SUV values, in order to be comparable in multicenter studies, require harmonization of the performance of PET devices [5,6]. This thesis goals were to evaluate: (1) the technical feasibility to achieve the new EARL 2 standards of the European Association of Nuclear Medicine and (2) the acquisition protocols leading to contrast recovery coefficients within the optimal tolerance limits were set and images according to the accreditation procedures were obtained [7]. Finally, the results were evaluated and used to carry out the international accreditation for the GE - Discovery 710 PET/CT INTECNUS Nuclear Medicine equipment. Different combinations of image acquisition and reconstruction parameters were explored to achieve the goals of this thesis. With these harmonized parameters, different clinical cases were evaluated, obtaining a better SUV quantification and lesion detectability, in comparison to the images obtained by using the prior established protocol.
Tipo de objeto: | Tesis (Maestría en Física Médica) |
---|---|
Palabras Clave: | Computerized tomography; Tomografía computarizada; [International accreditation; Acreditación internacional; Harmonization; Armonización; Positron emission tomography; Tomografía por emisión de positrones; Contrast Recovery Coefficient; Coeficiente de recuperación de contraste] |
Referencias: | [1] Glaudemans, A. W. J. M., de Vries, E. F. J., Galli, F., Dierckx, R. A. J. O., Slart, R. H. J. A., & Signore, A. (2013). The Use of18F-FDG-PET/CT for Diagnosis and Treatment Monitoring of Inflammatory and Infectious Diseases. In Clinical and Developmental Immunology (Vol. 2013, pp. 1–14). [2] Bailey, D.L, et al., Positron Emission Tomography. Basic Sciences, 2005, Springer. [3] Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, Coleman RE, Wahl R, Paschold JC, Avril N, Einhorn LH, Suh WW, Samson D, Delbeke D, Gorman M, Shields AF. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med. 2008 Mar;49(3):480-508. [4] IAEA Human Health series No.1. Quality Assurance for PET and PET-CT Systems. Vienna. 2009. [5] Boellaard, R. (2009). Standards for PET Image Acquisition and Quantitative Data Analysis. In Journal of Nuclear Medicine (Vol. 50, Issue Suppl 1, pp. 11S-20S). Society of Nuclear Medicine. [6] Fahey, F. H., Kinahan, P. E., Doot, R. K., Kocak, M., Thurston, H., & Poussaint, T. Y. (2010). Variability in PET quantitation within a multicenter consortium. In Medical Physics (Vol. 37, Issue 7 Part1, pp. 3660–3666). Wiley. [7] Makris NE, Huisman MC, Kinahan PE, Lammertsma AA, Boellaard R. Evaluation of strategies towards harmonization of FDG PET/CT studies in multicentre trials: comparison of scanner validation phantoms and data analysis procedures. Eur J Nucl Med Mol Imaging. 2013 Oct;40(10):1507-15. [8] Aide N, Lasnon C, Veit-Haibach P, Sera T, Sattler B, Boellaard R. EANM/EARL harmonization strategies in PET quantification: from daily practice to multicentre oncological studies. Eur J Nucl Med Mol Imaging. 2017 Aug;44(Suppl 1):17-31. [9] Kaalep, A., Burggraaff, C. N., Pieplenbosch, S., Verwer, E. E., Sera, T., Zijlstra, J., Hoekstra, O. S., Oprea-Lager, D. E., & Boellaard, R. (2019). Quantitative implications of the updated EARL 2019 PET–CT performance standards. In EJNMMI Physics (Vol. 6, Issue 1). Springer Science and Business Media LLC. [10] https://earl.eanm.org/ [11] Manual for EARL FDG-PET/CT Accreditation Version 2.1.b (March 2014). EAMN Research. [12] Boellaard, R, Willemsen, A.T, Arends, B, and Visser, E.P. EARL procedure for assessing PET/CT system specific patient FDG activity preparations for quantitative FDG PET/CT studies. Guidelines 2013. [13] Kaalep, A., Sera, T., Oyen, W., Krause, B. J., Chiti, A., Liu, Y., & Boellaard, R. (2017). EANM/EARL FDG-PET/CT accreditation - summary results from the first 200 accredited imaging systems. In European Journal of Nuclear Medicine and Molecular Imaging (Vol. 45, Issue 3, pp. 412–422). Springer Science and Business Media LLC. [14] Saha, G.B., Basics of PET Imaging Physics, Chemistry and Regulations. Second ed. 2010, New York: Springer. [15] Verel I, Visser GW, van Dongen GA. The promise of immuno-PET in radioimmunotherapy. J Nucl Med. 2005 Jan;46 Suppl 1:164S-71S. PMID: 15653665. [16] Wernick, M. N., Aarsvold, J. N., Emission Tomography. The Fundamentals of PET and SPECT, Elsevier Academic Press, California, 2004. [17] Khalil, M. Basic Science of PET Imaging. 2017. Springer. [18] Tong, S., Alessio, A. M., & Kinahan, P. E. (2010). Image reconstruction for PET/CT scanners: past achievements and future challenges. In Imaging in Medicine (Vol. 2, Issue 5, pp. 529–545). OMICS Publishing Group. [19] Powsner, R.A, Palmer, M.R. and E.R. Powsner, Essential Nuclear Medicine Physics. Third ed. 2013, Haryana: Blackwell Publishing. [20] Alessio, A.M. et. al. PET/CT scanner instrumentation, challenges, and solutions. Radiol Clin N AM. (2004); 42: 1017-1028. [21] Kinahan, P.E, Townsend, D.W, Beyer, T and Sashin, D. Attenuation correction for a combined 3D PET/CT scanner. The International Journal of Medical Physics. (1998); 25: 2046-2049. [22] Valk PE, et al., editors. Positron emission tomography:basic science and clinical practice. London:Springer; 2003. [23] Christian, P.E., Waterstram-Rich, K.M., Nuclear Medicine and PET/CT. Technology and Techniques, sixth edition. Mosby Elsevier. [24] Phelps, M.E., PET: Physics, Instrumentation and Scanners. 2006, New York: Springer. [25] Margarita Núñez, Tomografía por Emisión de Positrones (PET): Fundamentos, Escuela Universitaria de Tecnología Médica UdelaR, Montevideo, Uruguay. Comité de Tecnólogos de ALASBIMN. 2008. [26] de Galiza Barbosa F, Delso G, Ter Voert EE, Huellner MW, Herrmann K, Veit-Haibach P. Multi-technique hybrid imaging in PET/CT and PET/MR: what does the future hold? Clin Radiol. 2016 Jul;71(7):660-72. [27] Cherry, S.R, Sorenson, J.A., Phelps, M.E. Physics in Nuclear Medicine. Fourth edition. Saunders Elsevier. [28] Townsend, D. W., Reed, J., Newport, D. F., Carney, J. P. J., Tolbert, S., Newby, D., Yap, J. T., & Long, M. J. (n.d.). Continuous bed motion acquisition for an LSO PET/CT scanner. In IEEE Symposium Conference Record Nuclear Science 2004. [29] Vandenberghe, S., Moskal, P. & Karp, J.S. State of the art in total body PET. EJNMMI Phys 7, 35 (2020). [30] GE Healthcare, Discovery PET/CT 710 With 128-slice CT imaging. Data Sheet. [31] Acuff, S. N., & Osborne, D. (2016). Clinical Workflow Considerations for Implementation of Continuous-Bed-Motion PET/CT. In Journal of Nuclear Medicine Technology (Vol. 44, Issue 2, pp. 55–58). Society of Nuclear Medicine. [32] IAEA Human Health Series No. 27. PET/CT Atlas on Quality Control and Image Artefacts. [33] Huang B, Law MW, Khong PL. Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology. 2009 Apr;251(1):166-74. [34] National Electrical Manufacturers Association 2001 NEMA Performance measurements of positron emission tomographs NEMA Standards Publication NU 2-2001 (Washington, DC). [35] Zanzonico P. Positron emission tomography: a review of basic principles, scanner design and performance, and current systems. Semin Nucl Med. 2004 Apr;34(2):87-111. [36] McKeown, C., Gillen, G., Dempsey, M. F., & Findlay, C. (2016). Influence of slice overlap on positron emission tomography image quality. In Physics in Medicine and Biology (Vol. 61, Issue 3, pp. 1259–1277). IOP Publishing. [37] GE Healthcare, Clinical Implementation of VUE Point FX [White Paper].(2009). [38] Vennart NJ, Bird N, Buscombe J, Cheow HK, Nowosinska E, Heard S. Optimization of PET/CT image quality using the GE 'Sharp IR' point-spread function reconstruction algorithm. Nucl Med Commun. 2017 Jun;38(6):471-479 [39] Ross, S. and Stearns, C. SharpIR. Ge Healthcare. (2010) [40] Tong S, Alessio AM, Kinahan PE. Noise and signal properties in PSF-based fully 3D PET image reconstruction: An experimental evaluation. Phys. Med. Biol. 2010. [41] Conti, Mauritzio. Introduction to PET reconstruction. Siemens Molecular Imaging. Knoxville, Tennessee, USA. [42] Soongsathitanon, S. & Masa-Ah, P. & Tuntawiroon, Malulee. (2012). A new Standard Uptake Values (SUV) calculation based on pixel intensity values. 6. 26-33. [43] Tomasi, G., Turkheimer, F, and Aboagye, E. Importance of Quantification for the Analysis of PET Data in Oncology: Review of Current Methods and Trends for the Future. Mol Imaging Biol. (2012); 14: 131-133. [44] Gispert, J.D. et. al. Cuantificación en estudios PET: Métodos y aplicaciones. Rev.R.Acad.Cienc.Exact.Fis.Nat.(Esp). (2002); 96: 13-16. [45] Lucignani G. SUV and segmentation: pressing challenges in tumour assessment and treatment. Eur J Nucl Med Mol Imaging 2009; 36:715–720. [46] Benz MR, Evilevitch V, Allen-Auerbach MS, et al. Treatment monitoring by 18F-FDG PET/CT in patients with sarcomas: interobserver variability of quantitative parameters in treatment induced changes in histopathologically responding and nonresponding tumors. J Nucl Med 2008; 49: 1038–1046. [47] Boellaard, R. (2009). Standards for PET Image Acquisition and Quantitative Data Analysis. In Journal of Nuclear Medicine (Vol. 50, Issue Suppl 1, pp. 11S-20S). Society of Nuclear Medicine. [48] W. J. G., Medical Instrumentation-Applcation and design, Wiley, 2010. [49] Adams MC, Turkington TG, Wilson JM, Wong TZ. A systematic review of the factors affecting accuracy of SUV measurements. AJR Am J Roentgenol. 2010 Aug;195(2):310-20. [50] EANM, EARL PET/CT Accreditation User Manual Manual Version 3.3, May 2021. [51] Gontijo, Rodrigo M.G., Mamede, Marcelo, Ferreira, Andréa V., Nascimento, Leonardo T.C., Costa, Flávia M., & Silva, Juliana B. (2017). Constancy tests and quality assurance of the activimeters used in a radiopharmaceutical production unit. INAC 2017: International Nuclear Atlantic Conference, Brazil. [52] Carpintec, Inc. CRC®-55t OWNER’S MANUAL. 2010. [53] Goerner, F. L., Duong, T., Stafford, R. J., & Clarke, G. D. (2013). A comparison of five standard methods for evaluating image intensity uniformity in partially parallel imaging MRI. In Medical Physics (Vol. 40, Issue 8, p. 082302). Wiley. [54] Gonzalez R., Woods R. Digital Image Processing 2nd Edition. 2002. |
Materias: | Medicina > Medicina nuclear |
Divisiones: | Centro Integral de Medicina Nuclear y Radioterapia. Fundación INTECNUS |
Código ID: | 1034 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 14 Jun 2022 16:15 |
Última Modificación: | 14 Jun 2022 16:15 |
Personal del repositorio solamente: página de control del documento