Producción de hidrogeno a partir del reciclado de aleaciones de magnesio / Hydrogen production from the recycling of magnesium alloys

Rodríguez, María (2021) Producción de hidrogeno a partir del reciclado de aleaciones de magnesio / Hydrogen production from the recycling of magnesium alloys. Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
105Mb

Resumen en español

En esta tesis se analiza la factibilidad del reciclado de virutas de descarte de aleaciones base magnesio para utilizarlas en producción de H_2 mediante la reacción de hidrolisis. La particularidad del reprocesamiento es que se basa en la molienda mecánica de las virutas en atmosfera de aire. Para esto se llevaron a cabo distintos procedimientos: Se molieron virutas de descarte del maquinado de ánodos de sacrificio sin aditivos durante distintos tiempos. Se probaron distintas estrategias para el agregado de grato como aditivo a estas virutas: (i) se molió durante 5, 10 y 20 horas con grato agregado desde el inicio, (ii) se agrego grato a un material premolido mezclando los polvos con un mortero, y (iii) se realizo una premolienda sin aditivos y luego se incorporo el grato moliendo distintos tiempos adicionales. Se analizo el efecto de la incorporación de hierro durante la molienda. Se probo en dos materiales distintos un procedimiento de reciclado optimizado: virutas de anodos de sacrificio y virutas del maquinado de cajas de velocidad. El mismo consistió en premoler los materiales durante 10 h con el agregado de 15% p/p de Fe e incorporar luego 5% p/p de grato moliendo una hora mas. Los tres primeros procedimientos se realizaron para encontrar una forma satisfactoria de reprocesar las virutas y poder producir H_2 con buen rendimiento y buena cinética. Estos estudios permitieron seleccionar los aditivos a utilizar, la cantidad de los mismos, y el mejor procesamiento de incorporación. Los últimos experimentos permitieron validar la estrategia de reciclado diseñada, probandola exitosamente en dos materiales con características diferentes. Con los materiales descartados de la fabricación de anodos de sacrificio se alcanzo una producción de hidrogeno de 747 ± 24 mL por gramo de material en 5,0 minutos. Esto corresponde a un rendimiento del 78 ± 3 %. La velocidad de producción de hidrogeno fue también satisfactoria ya que se pudieron producir 371 ± 24 mL=g en los primeros 1,2 minutos. Con los materiales descartados en la fabricación de cajas de velocidad se alcanzo una producción de H_2 de 787 ± 24 mL=g en 3,5 minutos (rendimiento del 84 ± 3 %) y con una velocidad de 371 ± 24 mL=g en los primeros 0,5 minutos. Además de haber logrado un reciclado y una producción de hidrogeno muy satisfactorios, se identificaron algunas características interesantes de los procesos involucrados mediante el análisis sistemático de los resultados. Se encontró que la cinética de la reacción se encuentra controlada por un mecanismo de contracción geométrica. Por lo tanto la velocidad de la reacción es directamente proporcional a la velocidad de avance de la interfase de reacción e inversamente proporcional al tamaño de las partículas. Se observo que la presencia de Fe, Mg_17Al_12 y grato acelera la velocidad de avance de la interfase debido a la formación de pares galvánicos con el Mg. Además, el grato agregado luego de una premolienda, actúa como agente regulador del proceso de molienda evitando la soldadura en frio y provocando una disminución en el tamaño de las partículas. Consideramos que la formación de pares galvanicos y la reducción del tamaño son las causas principales que han permitido alcanzar producciones de H_2 satisfactorias tanto en rendimiento como en velocidad a través de la hidrolisis de los materiales reciclados.

Resumen en inglés

In this Master's degree thesis we analyze the feasibility of reprocessing waste chips from Mg-based alloys to produce hydrogen by the hydrolysis reaction. The recycling process is based on mechanical milling the chips under air atmosphere. With this aim, different procedures were carried out: Chips from the manufacturing of sacricial anodes were milled without additives for different times. Different strategies were tested for the addition of graphite as an additive: (i) chips were milled during 5, 10 and 20 hours with graphite added from the beginning, (ii) graphite was added to a pre-milled material by mixing the powders with a mortar, and (iii) chips were pre-milled 10 h milling without additives and after that graphite was added and the mixture was further milled for different times. The effect of iron as an additive was explored. An optimized procedure was tested in two different materials: chips from the manufacturing of sacricial anodes, and chips from the fabrication of gear boxes. The procedure included a 10 h pre-milling with 1.5 wt% of Fe and a further milling of 1 h after adding 5 wt% of graphite. The rst experiments were carried out to identify a satisfactory strategy to reprocess the chips and to be able to produce H_2 with satisfactory yield and kinetics. These studies allowed us to select the used additives, their amount and the best procedure to incorporate them. The last experiments allowed us to validate the designed reprocessing strategy by successfully testing it in two materials with different properties. In the case of the sacricial anodes chips 747 ± 24 mL of hydrogen were produced per gram of material in 5.0 minutes. This corresponds to a yield of 78 ± 3 %. The rate of hydrogen production has also been successful, as 371 ± 24 mL of H_2 per gram of material was produced during the rst 1.2 minutes. In the case of the gear boxes chips, 787 ± 24 mL of H_2 were produced per gram of material (yield of 84 ± 3 %) with 371 ± 24 mL/g of H_2 produced in the rst 0.5 minutes. Besides the successful reprocessing of the chips and the consequent hydrogen production, some interesting characteristics of the involved processes have been identiffed. It has been found that reaction kinetics is controlled by a geometric contraction mechanism. Therefore, the rate of the reaction is directly proportional to the rate of advance of the reaction interface and inversely proportional to the size of the particles. It was observed that the presence of Fe, Mg_17Al_12 and graphite accelerates this rate due to the formation of galvanic pairs with Mg. Furthermore, the addition of graphite after the pre-milling affects as a control agent of the grinding process, avoiding cold welding and causing a decrease in the size of the particles. We think that the formation of galvanic pairs and the particle size decrease are the main causes of the successful kinetics and yield observed when H_2 was produced by the hydrolysis of the reprocessed materials.

Tipo de objeto:Tesis (Maestría en Ingeniería)
Palabras Clave:Hydrogen; Hidrógeno; Magnesium; Magnesio; Iron; Hierro; Graphite; Grafito; Hydrolysis; Hidrólisis
Referencias:[1] Crabtree, G. W., Dresselhaus, M. S., Buchanan, M. V. The hydrogen economy. Physics Today, 57 (12), 39-44, 2004. [2] Dincer, _I., Zamrescu, C. Sustainable hydrogen production. Elsevier, 2016. [3] Nikolaidis, P., Poullikkas, A. A comparative overview of hydrogen production processes. Renewable and Sustainable Energy Reviews, 67, 597-611, 2017. [4] Mazloomi, K., Gomes, C. Hydrogen as an energy carrier: Prospects and challenges. Renewable and Sustainable Energy Reviews, 16 (5), 3024-3033, 2012. [5] Chen, H. L., Lee, H. M., Chen, S. H., Chao, Y., Chang, M. B. Review of plasma catalysis on hydrocarbon reforming for hydrogen production|interaction, integration, and prospects. Applied Catalysis B: Environmental, 85 (1-2), 1-9, 2008. [6] Ersoz, A. Investigation of hydrocarbon reforming processes for micro-cogeneration systems. International Journal of Hydrogen Energy, 33 (23), 7084-7094, 2008. [7] Steinberg, M., Cheng, H. C. Modern and prospective technologies for hydrogen production from fossil fuels. International Journal of Hydrogen Energy, 14 (11), 797-820, 1989. [8] Balthasar, W. Hydrogen production and technology: today, tomorrow and beyond. International Journal of Hydrogen Energy, 9 (8), 649-668, 1984. [9] Muradov, N. How to produce hydrogen from fossil fuels without CO2 emission. International Journal of Hydrogen Energy, 18 (3), 211-215, 1993. [10] Demirbas, A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management, 42 (11), 1357-1378, 2001. [11] Ni, M., Leung, D. Y., Leung, M. K., Sumathy, K. An overview of hydrogen production from biomass. Fuel Processing Technology, 87 (5), 461-472, 2006. [12] Liu, S., Zhu, J., Chen, M., Xin, W., Yang, Z., Kong, L. Hydrogen production via catalytic pyrolysis of biomass in a two-stage xed bed reactor system. International Journal of Hydrogen Energy, 39 (25), 13128-13135, 2014. [13] Kapdan, I. K., Kargi, F. Bio-hydrogen production from waste materials. Enzyme and Microbial Technology, 38 (5), 569-582, 2006. [14] Levene, J. I., Mann, M. K., Margolis, R. M., Milbrandt, A. An analysis of hydrogen production from renewable electricity sources. Solar Energy, 81 (6), 773-780, 2007. [15] Rossmeisl, J., Logadottir, A., Nrskov, J. K. Electrolysis of water on (oxidized) metal surfaces. Chemical Physics, 319 (1-3), 178-184, 2005. [16] Holladay, J. D., Hu, J., King, D. L.,Wang, Y. An overview of hydrogen production technologies. Catalysis today, 139 (4), 244-260, 2009. [17] Funk, J. E. Thermochemical hydrogen production: past and present. International Journal of Hydrogen Energy, 26 (3), 185-190, 2001. [18] Kothari, R., Buddhi, D., Sawhney, R. Comparison of environmental and economic aspects of various hydrogen production methods. Renewable and Sustainable Energy Reviews, 12 (2), 553-563, 2008. [19] Marrero-Alfonso, E. Y., Beaird, A. M., Davis, T. A., Matthews, M. A. Hydrogen generation from chemical hydrides. Industrial & Engineering Chemistry Research, 48 (8), 3703-3712, 2009. [20] Xu, S., Liu, J. Metal-based direct hydrogen generation as unconventional high density energy. Frontiers in Energy, 13 (1), 27-53, 2019. [21] Liu, Z., Zhong, J., Leng, H., Xia, G., Yu, X. Hydrolysis of Mg-based alloys and their hydrides for ecient hydrogen generation. International Journal of Hydrogen Energy, 2021. [22] Al Bacha, S., Thienpont, A., Zakhour, M., Nakhl, M., Bobet, J.-L. Clean hydrogen production by the hydrolysis of magnesium-based material: Eect of the hydrolysis solution. Journal of Cleaner Production, 282, 124498, 2021. [23] Tegel, M., Schone, S., Kieback, B., Rontzsch, L. An ecient hydrolysis of MgH2- based materials. International Journal of Hydrogen Energy, 42 (4), 2167-2176, 2017. [24] Hou, X., Yang, L., Hou, K., Shu, Q., Cao, Q., Liu, Y., et al. Hydrolysis hydrogen generation medium regulated by alkali metal cations for Mg-based alloy-green seawater modication strategy. Journal of Power Sources, 509, 230364, 2021. [25] Al Bacha, S., Pighin, S. A., Urretavizcaya, G., Zakhour, M., Castro, F., Nakhl, M., et al. Hydrogen generation from ball milled Mg alloy waste by hydrolysis reaction. Journal of Power Sources, 479, 228711, 2020. [26] Tan, Z., Ouyang, L., Liu, J., Wang, H., Shao, H., Zhu, M. Hydrogen generation by hydrolysis of Mg-Mg2Si composite and enhanced kinetics performance from introducing of MgCl2 and Si. International Journal of Hydrogen Energy, 43 (5), 2903-2912, 2018. [27] Grosjean, M.-H., Roue, L. Hydrolysis of Mg{salt and MgH2{salt mixtures prepared by ball milling for hydrogen production. Journal of Alloys and Compounds, 416 (1-2), 296-302, 2006. [28] Liu, Y., Wang, X., Dong, Z., Liu, H., Li, S., Ge, H., et al. Hydrogen generation from the hydrolysis of Mg powder ball-milled with AlCl3. Energy, 53, 147-152, 2013. [29] Yang, B., Zou, J., Huang, T., Mao, J., Zeng, X., Ding, W. Enhanced hydrogenation and hydrolysis properties of core-shell structured Mg-MOx (M= Al, Ti and Fe) nanocomposites prepared by arc plasma method. Chemical Engineering Journal, 371, 233-243, 2019. [30] Wang, S., Sun, L.-X., Xu, F., Jiao, C.-L., Zhang, J., Zhou, H.-Y., et al. Hydrolysis reaction of ball-milled Mg-metal chlorides composite for hydrogen generation for fuel cells. international Journal of Hydrogen Energy, 37 (8), 6771-6775, 2012. [31] Sevastyanova, L., Genchel, V., Klyamkin, S., Larionova, P., Bulychev, B. Hydrogen generation by oxidation of \mechanical alloys" of magnesium with iron and copper in aqueous salt solutions. International Journal of Hydrogen Energy, 42 (27), 16961-16967, 2017. [32] Kravchenko, O., Sevastyanova, L., Urvanov, S., Bulychev, B. Formation of hydrogen from oxidation of Mg, Mg alloys and mixture with Ni, Co, Cu and Fe in aqueous salt solutions. International Journal of Hydrogen Energy, 39 (11), 5522-5527, 2014. [33] Ma, M., Yang, L., Ouyang, L., Shao, H., Zhu, M. Promoting hydrogen generation from the hydrolysis ofMg-Graphite composites by plasma-assisted milling. Energy, 167, 1205-1211, 2019. [34] Awad, A. S., El-Asmar, E., Tayeh, T., Mauvy, F., Nakhl, M., Zakhour, M., et al. Effect of carbons (G and CFs), TM (Ni, Fe and Al) and oxides (Nb2O5 and V2O5) on hydrogen generation from ball milled Mg-based hydrolysis reaction for fuel cell. Energy, 95, 175-186, 2016. [35] Prasad, S. S., Prasad, S., Verma, K., Mishra, R. K., Kumar, V., Singh, S. The role and signicance of magnesium in modern day research-A review. Journal of Magnesium and Alloys, 2021. [36] King, J., Hopkins, A., Thistlethwaite, S. Recycling of by-products from magnesium diecasting. En: Proceedings of the Third International Magnesium Conference, pags. 51-61. 1996. [37] Matsuzaki, K., Murakoshi, Y., Shimizu, T. Microstructure and Mechanical Properties of Solid State Recycled Mg Alloy Chips. En: Magnesium Technology 2011, pags. 485-489. Springer, 2011. [38] Lucci, R. Reciclado de magnesio: recuperacion de la aleacion AZ91 a partir de virutas de mecanizado. Tesis Doctoral, Universidad Nacional de Cordoba, 2015. [39] Grosjean, M.-H., Zidoune, M., Roue, L., Huot, J.-Y. Hydrogen production via hydrolysis reaction from ball-milled Mg-based materials. International Journal of Hydrogen Energy, 31 (1), 109-119, 2006. [40] Matsuzaki, K., Murakami, T. Formation of hydrogen by ball milling of Mg and Mg alloy in seawater. En: Materials Science Forum, tomo 879, pags. 1265-1269. Trans Tech Publ, 2017. [41] Figen, A. K., Coskuner, B., Piskin, S. Hydrogen generation from waste Mg based material in various saline solutions (NiCl2, CoCl2, CuCl2, FeCl3, MnCl2). International Journal of Hydrogen Energy, 40 (24), 7483-7489, 2015. [42] Yu, S.-H., Uan, J.-Y., Hsu, T.-L. Eects of concentrations of NaCl and organic acid on generation of hydrogen from magnesium metal scrap. international journal of hydrogen energy, 37 (4), 3033-3040, 2012. [43] Uan, J.-Y., Lin, M.-C., Cho, C.-Y., Liu, K.-T., Lin, H.-I. Producing hydrogen in an aqueous NaCl solution by the hydrolysis of metallic couples of low-grade magnesium scrap and noble metal net. International Journal of Hydrogen Energy, 34 (4), 1677-1687, 2009. [44] Uan, J.-Y., Cho, C.-Y., Liu, K.-T. Generation of hydrogen from magnesium alloy scraps catalyzed by platinum-coated titanium net in NaCl aqueous solution. In- ternational Journal of Hydrogen Energy, 32 (13), 2337-2343, 2007. [45] Al Bacha, S., Pighin, S. A., Urretavizcaya, G., Zakhour, M., Nakhl, M., Castro, F., et al. Eect of ball milling strategy (milling device for scaling-up) on the hydrolysis performance of Mg alloy waste. International Journal of Hydrogen Energy, 45 (41), 20883-20893, 2020. [46] Al Bacha, S., Awad, A. S., El Asmar, E., Tayeh, T., Bobet, J.-L., Nakhl, M., et al. Hydrogen generation via hydrolysis of ball milled WE43 magnesium waste. International Journal of Hydrogen Energy, 44 (33), 17515-17524, 2019. [47] Al Bacha, S., Aubert, I., Zakhour, M., Nakhl, M., Bobet, J. Valorization of AZ91 by the hydrolysis reaction for hydrogen production (electrochemical approach). Journal of Magnesium and Alloys, 2021. [48] Lu, L., Lai, M. Mechanical Alloying. Springer US, 2013. [49] Suryanarayana, C. Mechanical Alloying And Milling. Mechanical Engineering. CRC Press, 2004. [50] Egerton, R. Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM. Springer International Publishing, 2016. [51] De Graef, M., McHenry, M. Structure of Materials: An Introduction to Crystallography, Diraction and Symmetry. Cambridge University Press, 2007. [52] Suryanarayana, C., Norton, M. X-Ray Diraction: A Practical Approach. Springer US, 2013. [53] Rodrguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diraction. Physica B: Condensed Matter, 192 (1-2), 55-69, 1993. [54] Murray, J. L. The Al- Mg (aluminum- magnesium) system. Journal of Phase Equilibria, 3 (1), 60-74, 1982. [55] Pighin, S. A., Urretavizcaya, G., Bobet, J.-L., Castro, F. Nanostructured Mg for hydrogen production by hydrolysis obtained by MgH2 milling and dehydriding. Journal of Alloys and Compounds, 827, 154000, 2020. [56] Khawam, A., Flanagan, D. R. Solid-state kinetic models: basics and mathematical fundamentals. The journal of physical chemistry B, 110 (35), 17315-17328, 2006. [57] Song, G. Corrosion of Magnesium Alloys. Woodhead Publishing Series in Metals and Surface Engineering. Elsevier Science, 2011. [58] Al Bacha, S., Aubert, I., Devos, O., Zakhour, M., Nakhl, M., Bobet, J.-L. Corrosion of pure and milled Mg17Al12 in \model" seawater solution. International Journal of Hydrogen Energy, 45 (32), 15805-15813, 2020. 59] Sherif, E.-S. M. Corrosion and corrosion inhibition of pure iron in neutral chloride solutions by 1, 1'-thiocarbonyldiimidazole. Int. J. Electrochem. Sci, 6 (3077-3092), 2011. [60] Chartier, D., Muzeau, B., Stefan, L., Sanchez-Canet, J., Monguillon, C. Magnesium alloys and graphite wastes encapsulated in cementitious materials: Reduction of galvanic corrosion using alkali hydroxide activated blast furnace slag. Journal of Hazardous Materials, 326, 197-210, 2017. [61] Bouaricha, S., Dodelet, J., Guay, D., Huot, J., Schulz, R. Study of the activation process of Mg-based hydrogen storage materials modied by graphite and other carbonaceous compounds. Journal of Materials Research, 16 (10), 2893-2905, 2001. [62] Kumar, D. S., Sasanka, C. T., Ravindra, K., Suman, K. Magnesium and its alloys in automotive applications{a review. Am. J. Mater. Sci. Technol, 4 (1), 12-30, 2015. [63] Quensel, C.-E. Studies of the logarithmic normal curve. Scandinavian Actuarial Journal, 1945 (3-4), 141-153, 1945.
Materias:Química > Materiales
Divisiones:Gcia. de área de Aplicaciones de la tecnología nuclear > Gcia. de Investigación aplicada > Fisicoquímica de materiales
Código ID:1039
Depositado Por:Tamara Cárcamo
Depositado En:09 Jun 2022 13:13
Última Modificación:09 Jun 2022 13:13

Personal del repositorio solamente: página de control del documento