KDSource: desarrollo de una herramienta computacional para calculo de blindajes / KDSource: development of a computational tool for shielding calculation

Abbate, Osiris I. (2021) KDSource: desarrollo de una herramienta computacional para calculo de blindajes / KDSource: development of a computational tool for shielding calculation. Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual.

Español
5Mb

Resumen en español

El presente proyecto consistió en el desarrollo de una herramienta computacional de modelado de fuentes distribucionales, denominada KDSource. La misma se orienta principalmente a aplicaciones en cálculos de blindajes y/o haces de partículas, y permite la comunicación con varios códigos Monte Carlo, con particular enfoque en McStas y TRIPOLI. Se desarrolló un paquete de herramientas para el modelado general de fuentes de partículas por el método Kernel Density Estimation, método superador de la técnica de histogramas empleada anteriormente. Dichas fuentes se basan en listas de tracks capturadas en simulaciones Monte Carlo, y permiten la generación ilimitada de nuevas partículas respetando la distribución estimada, sin repeticiones. El paquete se compone de una librería en Python, a través de la cual se realiza el análisis y optimización de la fuente, y una librería en C, mediante la cual se generan nuevas partículas. Además cuenta con una aplicación de línea de comando y un conjunto de archivos auxiliares que facilitan la utilización de las fuentes. Los principales beneficios de la herramienta, en simulaciones Monte Carlo, son la reducción de varianza y el acople entre códigos. Se demostró el funcionamiento y la utilidad de la herramienta en un cálculo de blindajes sobre un diseño conceptual de guía neutrónica, basado en el haz GF1 del reactor RA10. El cálculo incluyó un acople entre óptica y transporte de radiación, y permitió obtener mapas de dosis por neutrones, fotones prompt, fotones de fuente y fotones de activación en posiciones lejanas al núcleo.

Resumen en inglés

The present project consisted in the development of a computational tool for distributional sources modelling, named KDSource. It is mainly oriented to shielding and/or particle beams calculations, and allows communication with several Monte Carlo codes, with special focus on McStas and TRIPOLI. A tools package for general modelling of particle sources by Kernel Density Estimation was developed, being said method an overcomer of the previously used histograms technique. The sources are based on tracks lists captured in Monte Carlo simulations, and allow unlimited new particles generation respecting the estimated distribution, without repetitions. The package is composed of a Python library, through which analysis and optimization of sources is performed, and a C library, by means of which new particles are generated. It also includes a command line application and a set of auxiliary files which help sources utilization. The tool’s main benefits, in Monte Carlo simulations, are variance reduction and coupling between codes. The tool operation and utility was demonstrated in a shielding calculation on a conceptual neutron guide design, based on GF1 beam of RA10 reactor. The calculation included coupling between optics and radiation transport, and allowed to obtain dose maps caused by neutrons, prompt photons, source photones and activation photons at positions distant from the core.

Tipo de objeto:Tesis (Maestría en Ingeniería)
Palabras Clave:Shielding; Brindaje; Monte Carlo method; Método Monte Carlo; [KDE; McStas; TRIPOLI]
Referencias:[1] Abbate, O. I. Cálculo de blindajes asociado a guías de neutrones. Proyecto Fin de Carrera, Instituto Balseiro, 6 2017. 2, 4, 45, 65, 66 [2] Fairhurst, R. E. Cálculo neutrónico detallado de haces y guías de neutrones del reactor RA-10. Proyecto Fin de Carrera, Instituto Balseiro, 6 2017. 2, 4, 45, 48, 65, 69 [3] Ayala, J. E. Implementación de una línea de cálculo basada en el código Tripoli a problemas de blindaje del reactor RA-10. Proyecto Fin de Carrera, Instituto Balseiro, 6 2019. 2, 4 [4] Lefmann, K., Nielsen, K. Mcstas, a general software package for neutronraytracing simulations. Neutron News, 10 (3), 20–23, 1999. URL https://doi.org/10.1080/10448639908233684. 5, 27 [5] Willendrup, P., Farhi, E., Lefmann, K. Mcstas 1.7 - a new version of the flexible monte carlo neutron scattering package. Physica B: Condensed Matter, 350 (1, Supplement), E735–E737, 2004. URL https://doi.org/10.1016/j.physb.2004.03.193, proceedings of the Third European Conference on Neutron Scattering. [6] Willendrup, P., Farhi, E., Knudsen, E., Filges, U., Lefmann, K. Mcstas: Past, present and future. Journal of Neutron Research, 17 (1), 35 – 43, 2014. URL https://doi.org/10.3233/JNR-130004. 5, 27 [7] Brun, E., Damian, F., Diop, C., Dumonteil, E., Hugot, F., Jouanne, C., et al. Tripoli-4®, cea, edf and areva reference monte carlo code. Annals of Nuclear Energy, 82, 151–160, 2015. URL https://doi.org/10.1016/j.anucene.2014. 07.053, Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013, SNA + MC 2013. Pluri- and Trans-disciplinarity, Towards New Modeling and Numerical Simulation Paradigms. 6, 27 [8] Scott, D. W. Multivariate density estimation: theory, practice, and visualization. John Wiley & Sons, 2015. 9, 28 [9] Hansen, B. E. Lecture notes on nonparametrics. University of Wisconsin, 2009. [Online]. Available at: https://www.ssc.wisc.edu/~bhansen/718/ NonParametrics1.pdf. [Accesed: 5-nov-2021]. 12, 115 [10] Weinberger, K. Machine learning for intelligent systems, cap. 16: KD Trees. Cornell University, 2018. [Online]. Available at: http://www.cs.cornell. edu/courses/cs4780/2018fa/lectures/lecturenote16.html. [Accesed: 5-nov-2021]. 13, 24, 29 [11] Turlach, B. Bandwidth selection in kernel density estimation: A review. Handbook of Systemic Autoimmune Diseases, 02 1999. [Online]. Available at: https://www.researchgate.net/publication/2316108_Bandwidth_Selection_in_Kernel_Density_Estimation_A_Review. [Accesed: 5-nov-2021].14 [12] Silverman, B. Density Estimation for Statistics and Data Analysis (1st ed.). Routledge, 1998. URL https://doi.org/10.1201/9781315140919. 15, 28, 34 [13] Arlot, S., Celisse, A. A survey of cross-validation procedures for model selection. Statistics Surveys, 4, Jan 2010. URL http://doi.org/10.1214/09-SS054. 15, 28 [14] Duin, R. On the choice of smoothing parameters for parzen estimators of probability density functions. IEEE Transactions on Computers, C-25 (11), 1175–1179, 1976. URL http://doi.org/10.1109/TC.1976.1674577. 16, 28, 34 [15] Terrell, G. R., Scott, D. W. Variable kernel density estimation. The Annals of Statistics, 20 (3), 1236 – 1265, 1992. URL https://doi.org/10.1214/aos/1176348768. 17, 34 [16] Papamakarios, G. Neural density estimation and likelihood-free inference. ar-Xiv:1910.13233, 2019. URL https://arxiv.org/abs/1910.13233. 18, 20 [17] Germain, M., Gregor, K., Murray, I., Larochelle, H. Made: Masked autoencoder for distribution estimation. arXiv:1502.03509, 2015. URL https://arxiv.org/ abs/1502.03509. 19 [18] Papamakarios, G., Pavlakou, T., Murray, I. Masked autoregressive flow for density estimation. arXiv:1705.07057, 2018. URL https://arxiv.org/abs/1705.07057. 20 [19] Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M. Improving variational inference with inverse autoregressive flow. arXiv:1606.04934, 2017. URL https://arxiv.org/abs/1606.04934. 20, 24 [20] T. Kittelmann, e. a. Monte Carlo Particle Lists: MCPL. Computer Physics Communications, 218, 17–42, 2017. URL https://doi.org/10.1016/j.cpc.2017.04.012. 26, 31 [21] K. A. Olive, e. Review of particle physics. Chinese Physics C, 38 (9), 2014. URL https://doi.org/10.1088/1674-1137/38/9/090001. 26, 101, 109 [22] Pelowitz, D. MCNPX Users Manual Version 2.7.0, 2011. Report LA-CP-11-00438. 27 [23] Team, X.-. M. C. MCNP - Version 5, Vol. I: Overview and Theory, 2003. Report LA-UR-03-1987. [24] Werner, C. MCNP Users Manual - Code Version 6.2, 2017. Report LA-UR-17- 29981. 27 [25] Sato, T., Iwamoto, Y., Hashimoto, S., Ogawa, T., Furuta, T., ichiro Abe, S., et al. Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02. Journal of Nuclear Science and Technology, 55 (6), 684–690, 2018. URL https://doi.org/10.1080/00223131.2017.1419890. 27 [26] Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., et al. Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506 (3), 250–303, 2003. URL https://doi.org/10.1016/S0168-9002(03) 01368-8. 27 [27] Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce Dubois, P., Asai, M., et al. Geant4 developments and applications. IEEE Transactions on Nuclear Science, 53 (1), 270–278, 2006. URL https://doi.org/10.1109/TNS.2006.869826. [28] Allison, J., Amako, K., Apostolakis, J., Arce, P., Asai, M., Aso, T., et al. Recent developments in Geant4. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 835, 186–225, 2016. URL https://doi.org/10.1016/j.nima.2016.06.125. 27 [29] Bergbäck Knudsen, E., Prodi, A., Baltser, J., Thomsen, M., Willendrup, P., Sanchez Del Rio, M., et al. McXtrace: A Monte Carlo software package for simulating X-ray optics, beamlines and experiments. Journal of Applied Crystallography, 46 (3), 679–696, 2013. URL https://doi.org/10.1107/S0021889813007991. 27 [30] Jones, E., Oliphant, T., Peterson, P., et al. SciPy: Open source scientific tools for Python, 2001–. URL http://www.scipy.org/. 28 [31] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. Scikit-learn: Machine learning in Python, 2007. URL https://scikit-learn.org. 28 [32] Seabold, S., Perktold, J. statsmodels: Econometric and statistical modeling with python, 2010. URL https://www.statsmodels.org/. 28 [33] tommyod. Kdepy, 2018. URL https://kdepy.readthedocs.io/en/latest/. 28, 30 [34] Gramacki, A., Gramacki, J. FFT-based fast computation of multivariate kernel density estimators with unconstrained bandwidth matrices. Journal of Computational and Graphical Statistics, 26 (2), 459–462, 2017. URL https://doi.org/10.1080/10618600.2016.1182918. 29 [35] Jakob, W. Numerically stable sampling of the von mises fisher distribution on S2 (and other tricks). Realistic Graphics Lab, 2012. [Online]. Available at: https: //www.mitsuba-renderer.org/~wenzel/files/vmf.pdf. [Accesed: 5-nov-2021]. 32 [36] Kolevatov, R., Schanzer, C., Boeni, P. Neutron absorption in supermirror coatings: Effects on shielding. arXiv:1708.04486, 2018. URL https://arxiv.org/abs/1708.04486. 37, 66 [37] IAEA. Live chart of nuclides — IAEA Nuclear Data Services. [Online]. Available at: https://www.finds.iaea.org/relnsd/vcharthtml/VChartHTML.html. [Accesed: 5-nov-2021]. 38, 100 [38] Aygün, B. Neutron and gamma radiation shielding properties of high-temperatureresistant heavy concretes including chromite and wolframite. Journal of Radiation Research and Applied Sciences, 12 (1), 352–359, 2019. URL https://doi.org/ 10.1080/16878507.2019.1672312. 49 [39] IAEA. Prompt gamma activation analysis database files. [Online]. Available at: https://www-nds.iaea.org/pgaa. [Accesed: 5-nov-2021]. 67 [40] G. I. Bell, S. G. Nuclear Reactor Theory. Van Nostrand Reinhold Co., New York, 1970. 112 [41] Shintaro Hashimoto, T. S. Estimation method of systematic uncertainties in monte carlo particle transport simulation based on analysis of variance. Journal of Nuclear Science and Technology, 2019. URL https://doi.org/10.1080/00223131. 2019.1585989. 116
Materias:Ingeniería mecánica > Cálculo de blindajes
Divisiones:Energía nuclear > Ingeniería nuclear > Física de reactores y radiaciones
Código ID:1043
Depositado Por:Tamara Cárcamo
Depositado En:09 Jun 2022 15:14
Última Modificación:09 Jun 2022 15:14

Personal del repositorio solamente: página de control del documento