Dinámica y morfología de paredes de dominios magnéticos en láminas delgadas desde la perspectiva de la física estadística / Dynamics and morphology of driven domain wall in magnetic thin films from the standpoint of statical physics

Albornoz, Lucas J. (2021) Dinámica y morfología de paredes de dominios magnéticos en láminas delgadas desde la perspectiva de la física estadística / Dynamics and morphology of driven domain wall in magnetic thin films from the standpoint of statical physics. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
11Mb

Resumen en español

El estudio de paredes de dominios magnéticos (PDM) en láminas delgadas es de gran interés para la comprensión de los mecanismos de inversión de la magnetización y para el desarrollo de dispositivos de electrónica de spin. Dado que las PDM tienen una energía asociada y se encuentran en materiales con inhomogeneidades intrínsecas, pueden ser estudiadas en el marco de la teoría de interfases elásticas en medios desordenados. En esta tesis, investigamos la dinámica y la morfología de PDM en láminas delgadas con anisotropía magnética perpendicular desde dicho enfoque. La técnica experimental principal que utilizamos es la microscopía magneto-óptica por efecto Kerr polar (PMOKE), que permite la observación directa de las PDM. Las muestras estudiadas son una lámina ferrimagnética de GdFeCo de 10 nm de espesor, y una bicapa ferromagnética de (Ga,Mn)(As,P)/(Ga,Mn)As de 4 nm de espesor. En la muestra de GdFeCo, estudiamos la dinámica de PDM impulsadas por campo magnético en un rango amplio de temperaturas, entre 10K y 353K, en los regímenes de creep (reptación) y depinning (desanclaje). Encontramos que el campo de depinning H_d diverge en la temperatura de compensación magnética T_M, y que la barrera de energía de anclaje característica k_BT_d crece al bajar la temperatura T. Esto último resulta en efectos térmicos excepcionalmente débiles por debajo de ∽ 100K, y permite la observación directa de la transición de depinning a bajas temperaturas y la determinación de exponentes críticos asociados. Determinamos independientemente los valores del exponente β del parámetro de orden y del exponente ᵛ_dep de la longitud de correlación, obteniendo β = 0.30 ± 0.03 y ᵛdep = 1.3 ± 0.3. Ambos valores son consistentes sólo con la clase de universalidad de quenched Edwards-Wilkinson (qEW). Por otro lado, estudiamos las propiedades estadísticas de la morfología de PDM en la muestra de GdFeCo. Para diferentes temperaturas y campos aplicados, obtuvimos valiores representativos del exponente de rugosidad ζ y de la amplitud de la rugosidad B_0. Encontramos que los valores de ζ obtenidos no pueden ser identificados directamente con ninguno de los exponentes teóricamente predichos, ζ_eq, ζ_dep y ζ_th. Para explicar esta discordancia, proponemos una interpretación cuantitativa basada en estudios teóricos previos. Consideramos que los exponentes predichos dominan la rugosidad de PDM a distintas escalas de longitud separadas por dos longitudes características: la longitud de correlación ℓ_opt asociada a saltos sobre barreras de energía características, y la longitud de correlación ℓ_av asociada al tamaño característico de las avalanchas en la transición de depinning. En base a estas ideas, interpretamos los exponentes ζ medidos como valores efectivos y cuantificamos experimentalmente por primera vez la longitud de correlación ℓav para distintos campos y temperaturas. Asimismo, encontramos que ℓ_av es finita incluso para H < H_d, de acuerdo con ideas teóricas previas para temperaturas finitas. En la muestra de (Ga,Mn)(As,P)/(Ga,Mn)As, estudiamos la dinámica de PDM impulsadas tanto por campo como por corriente. Para comparar la magnitud de estas dos fuerzas de empuje, analizamos las condiciones tales que, al empujar en direcciones opuestas, ambas fuerzas están balanceadas. Mostramos que existe un factor de proporcionalidad constante ∈ = (1.3±0.2)mT/(GA/m"2) en un amplio rango de temperaturas cercano al punto de Curie de la muestra. Encontramos que este mismo factor describe satisfactoriamente la dinámica de PDM en el régimen de creep cerca de la transición de depinning cuando ambos estímulos son aplicados tanto separada como simultaneamente. Esto sugiere que la fuerza efectiva que actúa sobre las PDM puede ser descrita como una suma de las fuerzas debidas al campo y a la corriente, es decir ƒ∼ μ_0H +∈J. Sin embargo, esta relación no se mantiene a velocidades relativamente bajas, lo cual puede ser asociado a la naturaleza anisotrópica de la fuerza inducida por corriente. Los resultados presentados en esta tesis amplían nuestro conocimiento sobre la naturaleza universal de las PDM y sobre las propiedades efectivas de las fuerzas de empuje.

Resumen en inglés

Studying magnetic domain walls (DWs) in thin films is of great interest for the understanding of magnetization inversion mechanisms and for the development of spintronics devices. As DWs have an associated energy and lie in a material with intrinsic inhomogeneities, they can be studied within the theory of elastic interfaces in disordered media. In this thesis, we investigate the dynamic and morphological properties of DWs in thin films from this viewpoint. Our main experimental tool is the polar magneto-optical Kerr-effect (PMOKE) microscopy, which permits the direct observation of DWs. The studied samples are a ferrimagnetic 10 nm-thick film of GdFeCo, and a ferromagnetic 4 nm-thick semiconducting bilayer of (Ga,Mn)(As,P)/(Ga,Mn)As, both of them presenting perpendicular magnetic anisotropy. For the GdFeCo sample, we have studied the dynamics of field-driven DWs in a wide temperature range, from 10K to 353K, in the creep and depinning regimes. We have found that the depinning field Hd diverges at the magnetic compensation temperature T_M, and that the characteristic pinning energy barrier k_BT_d grows in magnitude for decreasing temperature, what results in exceptionally low thermal effects below 100K. This has allowed for the direct observation of the depinning transition at low temperatures and the subsequent determination of associated critical exponents. We have independently determined values of the order-parameter exponent β = 0.30±0.03 and the correlation length exponent ᵛ_dep = 1.3 ± 0.3, both of them being consistent only with the quenched Edwards-Wilkinson (qEW) universality class. Another investigation of this thesis concerns the statistical analysis of DW morphology in the GdFeCo sample. For different temperatures and applied fields, we have obtained representative values for the roughness exponent ζ and the roughness amplitude B_0. We have found that the obtained ζ values cannot be directly identified with any of the theoreticallypredicted roughness exponents ζ_eq, ζ_dep and ζ_th. In order to explain this disagreement, we propose a quantitative interpretation based on previous theoretical studies. We consider that the predicted exponents govern DW roughness at different length scales separated by two crossover lengths: the correlation length ℓ_lop associated to jumps over characteristic energy barriers, and the correlation length ℓ_av associated to the characteristic size of depinning avalanches. Based on these ideas, we interpret the measured ζ exponents as effective values and experimentally quantify for the first time the depinning correlation length ℓ_av for different fields and temperatures. Moreover, we have found that ℓav is finite even for H < H_d in accordance with previous theoretical ideas for DW dynamics at finite temperatures. For the (Ga,Mn)(As,P)/(Ga,Mn)As sample, we have studied the field- and currentdriven DW motion when both stimuli are applied separately and simultaneously. In order to compare the strength of these two driving forces, we have analyzed the conditions of balance between them when they push oppositely. We show that there is a constant proportionality factor ∈ = (1.3±0.2)mT/(GA/m"2) over a large temperature range close to the Curie point. We find that this same factor successfully describes the DW dynamics in the creep regime close to the depinning transition both when field and current are applied separately and simultaneously. This suggests that the effective force ƒ exerted on DWs can be described by a sum of the forces due to field and current, i.e. ƒ∼ μ_0H + ∈J. However, this relation does not stand at relatively low velocities, which could be associated with the non-isotropic nature of current-driven DW motion. The results presented in this thesis shed light on the universal nature of driven DWs and broadens our knowledge on the effective features of the driving forces.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Thin films; Capas finitas; Morphology; Morfología; Dynamics; Dinámica; [Magnetization dynamics; Dinámica de la magnetización Magnetic domain wall ; Paredes de dominios magnéticos; Nanostructured systems; Sistemas nanoestructurados; Disordered systems; Sistemas desordenados; Depinning transition; Transición de desanclaje]
Referencias:[1] A. Hubert and R. Schäfer. Magnetic Domains: the analysis of magnetic nanostructures. Springer-Verlag, Berlin Heidelberg, 1998. [2] A. P. Malozemoff and J. C. Slonczewski. Magnetic Domain Walls in Bubble Materials. Academic Press, New York, 1979. [3] A.-L. Barabási and H. E. Stanley. Fractal Concepts in Surface Growth. Cambridge University Press, Cambridge, 1995. [4] E. E. Ferrero, S. Bustingorry, A. B. Kolton, and A. Rosso. Numerical approaches on driven elastic interfaces in random media. Comptes Rendus Physique, 14(8):641–650, 2013. [5] E. E. Ferrero, L. Foini, T. Giamarchi, A. B. Kolton, and A. Rosso. Creep Motion of Elastic Interfaces Driven in a Disordered Landscape. Annual Review of Condensed Matter Physics, 12(1):111–134, 2021. [6] John M. D. Coey. Magnetism and Magnetic Materials. Cambridge University Press, Cambridge, 2010. [7] Blas Cabrera. El Magnetismo de la Materia. Institución Cultural Española, Buenos Aires, 1944. [8] Hideo Ohno. A window on the future of spintronics. Nature Materials, 9(12):952–954, 2010. [9] Teruya Shinjo. Nanomagnetism and Spintronics. Elsevier, London, 2013. [10] Yongbing Xu, David D. Awschalom, and Junsaku Nitta. Handbook of spintronics. Springer Science+Business Media, New York London, 2016. [11] Bernard Dieny, Ronald B. Goldfarb, and Kyung-Jin Lee. Introduction to magnetic random-access memory. John Wiley & Sons, Inc., Hoboken, New Jersey, 2016. [12] Atsufumi Hirohata, Keisuke Yamada, Yoshinobu Nakatani, Lucian Prejbeanu, Bernard Diény, Philipp Pirro, and Burkard Hillebrands. Review on spintronics: Principles and device applications. Journal of Magnetism and Magnetic Materials, 509:166711, 2020. [13] S Lemerle, J Ferré, C Chappert, V Mathet, T Giamarchi, and P Le Doussal. Domain Wall Creep in an Ising Ultrathin Magnetic Film. Physical Review Letters, 80(4):849– 852, 1998. [14] P J Metaxas, J P Jamet, A Mougin, M Cormier, J Ferré, V Baltz, B Rodmacq, B Dieny, and R L Stamps. Creep and flow regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy. Physical Review Letters, 99(21):217208, 2007. [15] J Gorchon, S Bustingorry, J Ferré, V Jeudy, A B Kolton, and T Giamarchi. Pinningdependent field-driven domain wall dynamics and thermal scaling in an ultrathin Pt/Co/Pt magnetic film. Physical Review Letters, 113(2):027205, 2014. [16] V Jeudy, A Mougin, S Bustingorry, W Savero Torres, J Gorchon, A B Kolton, A Lemaître, and J P Jamet. Universal Pinning Energy Barrier for Driven Domain Walls in Thin Ferromagnetic Films. Physical Review Letters, 117(5):057201, 2016. [17] Nirvana B. Caballero, Iván Fernández Aguirre, Lucas J. Albornoz, Alejandro B. Kolton, Juan Carlos Rojas-Sánchez, Sophie Collin, Jean Marie George, Rebeca Diaz Pardo, Vincent Jeudy, Sebastian Bustingorry, and Javier Curiale. Excess velocity of magnetic domain walls close to the depinning field. Physical Review B, 96(22):224422, 2017. [18] R Díaz Pardo, W Savero Torres, A B Kolton, S Bustingorry, and V Jeudy. Universal depinning transition of domain walls in ultrathin ferromagnets. Physical Review B, 95(18):184434, 2017. [19] J C Slonczewski. Current-driven excitation of magnetic multilayers. Journal of Magnetism and Magnetic Materials, 159(1-2):L1–L7, 1996. [20] S Zhang, P M Levy, and A Fert. Mechanisms of spin-polarized current-driven magnetization switching. Physical Review Letters, 88(23):2366011–2366014, 2002. [21] A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, and T. Shinjo. Real-Space Observation of Current-Driven Domain Wall Motion in Submicron Magnetic Wires. Physical Review Letters, 92(7):077205, 2004. [22] S Zhang and Z Li. Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Physical Review Letters, 93(12):127204, 2004. [23] A Thiaville, Y Nakatani, J Miltat, and Y Suzuki. Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhysics Letters, 69(March):990–996, 2005. [24] J P Adam, N Vernier, J Ferré, A Thiaville, V Jeudy, A Lemaître, L Thevenard, and G Faini. Nonadiabatic spin-transfer torque in (Ga,Mn)As with perpendicular anisotropy. Physical Review B - Condensed Matter and Materials Physics, 80(19):193204, 2009. [25] V. Jeudy, J. Curiale, J. P. Adam, A. Thiaville, A. Lemaître, and G. Faini. Current induced domain wall motion in GaMnAs close to the Curie temperature. Journal of Physics: Condensed Matter, 23(44):446004, 2011. [26] J Curiale, A Lemaître, C Ulysse, G Faini, and V Jeudy. Spin drift velocity, polarization, and current-driven domain-wall motion in (Ga,Mn)(As,P). Physical Review Letters, 108(7):076604, 2012. [27] R. Díaz Pardo, N. Moisan, L. J. Albornoz, A. Lemaître, J. Curiale, and V. Jeudy. Common universal behavior of magnetic domain walls driven by spin-polarized electrical current and magnetic field. Physical Review B, 100(18):184420, 2019. [28] F. J.A. den Broeder, W. Hoving, and P. J.H. Bloemen. Magnetic anisotropy of multilayers. Journal of Magnetism and Magnetic Materials, 93:562–570, 1991. [29] V. G. Harris, K. D. Aylesworth, B. N. Das, W. T. Elam, and N. C. Koon. Structural origins of magnetic anisotropy in sputtered amorphous Tb-Fe films. Physical Review Letters, 69(13):1939, 1992. [30] H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye. (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs. Applied Physics Letters, 69(3):363, 1996. [31] F. Keffer and C. Kittel. Theory of antiferromagnetic resonance. Physical Review, 85(2):329, 1952. [32] P. Hansen, C. Clausen, G. Much, M. Rosenkranz, and K. Witter. Magnetic and magneto-optical properties of rare-earth transition-metal alloys containing Gd, Tb, Fe, Co. Journal of Applied Physics, 66(2):756–767, 1989. [33] Tadashi Kobayashi, Hideaki Hayashi, Yuji Fujiwara, and Shigeru Shiomi. Damping parameter and wall velocity of RE-TM films. IEEE Transactions on Magnetics, 41(10):2848–2850, 2005. [34] C. D. Stanciu, A. V. Kimel, F. Hansteen, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th Rasing. Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo: The role of angular momentum compensation. Physical Review B - Condensed Matter and Materials Physics, 73(22):220402(R), 2006. [35] Kab Jin Kim, Se Kwon Kim, Yuushou Hirata, Se Hyeok Oh, Takayuki Tono, Duck Ho Kim, Takaya Okuno, Woo Seung Ham, Sanghoon Kim, Gyoungchoon Go, Yaroslav Tserkovnyak, Arata Tsukamoto, Takahiro Moriyama, Kyung Jin Lee, and Teruo Ono. Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets. Nature Materials, 16:1187–1192, 2017. [36] Lucas Caretta, Maxwell Mann, Felix Büttner, Kohei Ueda, Bastian Pfau, Christian M. Günther, Piet Hessing, Alexandra Churikova, Christopher Klose, Michael Schneider, Dieter Engel, Colin Marcus, David Bono, Kai Bagschik, Stefan Eisebitt, and Geoffrey S.D. Beach. Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet. Nature Nanotechnology, 13(12):1154–1160, 2018. [37] Eloi Haltz, Sachin Krishnia, Léo Berges, Alexandra Mougin, and João Sampaio. Domain wall dynamics in antiferromagnetically coupled double-lattice systems. Physical Review B, 103(1):14444, 2021. [38] L J Albornoz, E E Ferrero, A B Kolton, V Jeudy, S Bustingorry, and J Curiale. Universal critical exponents of the magnetic domain wall depinning transition. Physical Review B, 104(6):L060404, 2021. [39] D. Jordán, L. J. Albornoz, J. Gorchon, C. H. Lambert, S. Salahuddin, J. Bokor, J. Curiale, and S. Bustingorry. Statistically meaningful measure of domain-wall roughness in magnetic thin films. Physical Review B, 101(18):184431, 2020. [40] Lucas J Albornoz, Pamela C Guruciaga, Vincent Jeudy, Javier Curiale, and Sebastian Bustingorry. Domain-wall roughness in GdFeCo thin films: Crossover length scales and roughness exponents. Physical Review B, 104(2):24203, 2021. [41] A B Kolton, A Rosso, T Giamarchi, and W Krauth. Creep dynamics of elastic manifolds via exact transition pathways. Physical Review B - Condensed Matter and Materials Physics, 79(18):184207, 2009. [42] T Dietl and H Ohno. Dilute ferromagnetic semiconductors: Physics and spintronic structures. Reviews of Modern Physics, 86(1):187–251, 2014. [43] T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich. Antiferromagnetic spintronics. Nature Nanotechnology, 11:231–241, 2016. [44] V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y. Tserkovnyak. Antiferromagnetic spintronics. Reviews of Modern Physics, 90(1):015005, 2018. [45] Yuushou Hirata, Duck Ho Kim, Se Kwon Kim, Dong Kyu Lee, Se Hyeok Oh, Dae Yun Kim, Tomoe Nishimura, Takaya Okuno, Yasuhiro Futakawa, Hiroki Yoshikawa, Arata Tsukamoto, Yaroslav Tserkovnyak, Yoichi Shiota, Takahiro Moriyama, Sug Bong Choe, Kyung Jin Lee, and Teruo Ono. Vanishing skyrmion Hall effect at the angular momentum compensation temperature of a ferrimagnet. Nature Nanotechnology, 14:232–236, 2019. [46] Joachim Stöhr and Hans Christoph Siegmann. Magnetism: From fundamentals to nanoscale dynamics. Springer-Verlag, Berlin Heidelberg, 2006. [47] Olivier Darrigol. Electrodynamics from Ampère to Einstein. Oxford University Press, New York, 2003. [48] P Weiss. L ’ hypothèse du champ moléculaire et la propriété ferromagnétique. Journal de Physique Théorique, 6(1):661–690, 1907. [49] G. E. Uhlenbeck and S. Goudsmit. Spinning Electrons and the Structure of Spectra. Nature, 117:264–265, 1926. [50] Aníbal Guillermo Bibiloni, Enrique Osvaldo Civitarese, and María Cecilia von Reichenbach. Richard Gans y la cuantificación del momento dipolar magnético. Anales de la Asociación de Física Argentina, 14:11–14, 2002. [51] N. W. Ashcroft and N. D. Mermin. Solid state physics. Harcourt College Publishers, Orlando, 1976. [52] Charles Kittel. Introduction to Solid State Physics. John Wiley & Sons, Inc., 8th edition, 1957. [53] Wolfgang Pauli. Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren. Zeitschrift für Physik, 31(1):765–783, 1925. [54] Werner Heisenberg. Zur Theorie des Ferromagnetismus. Zeitschrift fur Physik, 49(9- 10):619–636, 1928. [55] Igor Dzyaloshinsky. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. Journal of Physics and Chemistry of Solids, 4(4):241–255, 1958. [56] Tôru Moriya. Anisotropic superexchange interaction and weak ferromagnetism. Physical Review, 120:91–98, 1960. [57] M. Bode, M. Heide, K. Von Bergmann, P. Ferriani, S. Heinze, G. Bihlmayer, A. Kubetzka, O. Pietzsch, S. Blügel, and R. Wiesendanger. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature, 447:190–193, 2007. [58] C. M. Hurd. Varieties of magnetic order in solids. Contemporary Physics, 23(5):469– 493, 1982. [59] S. L. Zhang, I. Stasinopoulos, T. Lancaster, F. Xiao, A. Bauer, F. Rucker, A. A. Baker, A. I. Figueroa, Z. Salman, F. L. Pratt, S. J. Blundell, T. Prokscha, A. Suter, J. Waizner, M. Garst, D. Grundler, G. Van Der Laan, C. Pfleiderer, and T. Hesjedal. Room-temperature helimagnetism in FeGe thin films. Scientific Reports, 7:123, 2017. [60] Mathias Getzlaff. Fundamentals of magnetism. Springer-Verlag, Berlin Heidelberg, 2008. [61] R. Soucaille, M. Belmeguenai, J. Torrejon, J. V. Kim, T. Devolder, Y. Roussigné, S. M. Chérif, A. A. Stashkevich, M. Hayashi, and J. P. Adam. Probing the Dzyaloshinskii- Moriya interaction in CoFeB ultrathin films using domain wall creep and Brillouin light spectroscopy. Physical Review B, 94(10):104431, 2016. [62] Anjan Soumyanarayanan, Nicolas Reyren, Albert Fert, and Christos Panagopoulos. Emergent phenomena induced by spin-orbit coupling at surfaces and interfaces. Nature, 539:509–517, 2016. [63] S G Je, D H Kim, S C Yoo, B C Min, K Ji. Lee, and S B Choe. Asymmetric magnetic domain-wall motion by the Dzyaloshinskii-Moriya interaction. Physical Review B - Condensed Matter and Materials Physics, 88(21):214401, 2013. [64] R Lavrijsen, D M F Hartmann, A Van Den Brink, Y Yin, B Barcones, R A Duine, M A Verheijen, H J M Swagten, and B Koopmans. Asymmetric magnetic bubble expansion under in-plane field in Pt/Co/Pt: Effect of interface engineering. Physical Review B - Condensed Matter and Materials Physics, 91(10):104414, 2015. [65] E Jué, C K Safeer, M Drouard, A Lopez, P Balint, L Buda-Prejbeanu, O Boulle, S Auffret, A Schuhl, A Manchon, I M Miron, and G Gaudin. Chiral damping of magnetic domain walls. Nature Materials, 15(3):272–277, 2016. [66] J. P. Pellegren, D. Lau, and V. Sokalski. Dispersive Stiffness of Dzyaloshinskii Domain Walls. Physical Review Letters, 119(2):027203, 2017. [67] J. H. Van Vleck. On the anisotropy of cubic ferromagnetic crystals. Physical Review, 52(11):1178–1198, 1937. [68] M T Johnson, P J H Bloemen, F J A den Broeder, and J J de Vries. Magnetic anisotropy in metallic multilayers. Reports on Progress in Physics, 59:1409–1458, 1996. [69] B. Dieny and M. Chshiev. Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications. Reviews of Modern Physics, 89(2):025008, 2017. [70] André Thiaville. The demagnetizing field inside a domain wall. Journal of Magnetism and Magnetic Materials, 140-144:1877–1878, 1995. [71] A. Hrabec, N. A. Porter, A. Wells, M. J. Benitez, G. Burnell, S. McVitie, D. McGrouther, T. A. Moore, and C. H. Marrows. Measuring and tailoring the Dzyaloshinskii-Moriya interaction in perpendicularly magnetized thin films. Physical Review B - Condensed Matter and Materials Physics, 90(2):020402(R), 2014. [72] M Vanatka, J C Rojas-Sánchez, J Vogel, M Bonfim, M Belmeguenai, Y Roussigné, A Stashkevich, A Thiaville, and S Pizzini. Velocity asymmetry of Dzyaloshinskii domain walls in the creep and flow regimes. Journal of Physics Condensed Matter, 27(32):326002, 2015. [73] Andre Thiaville, Stanislas Rohart, Emilie Jue, Vincent Cros, and Albert Fert. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. EPL (Europhysics Letters), 100(5):57002, 2012. [74] Thomas L. Gilbert. A Lagrangian Formulation of the Gyromagnetic Equation of the Magnetization Field. Physical Review, 100:1243, 1955. [75] L Landau and E Lifshits. On the Theory of the Dispersion of Magnetic Permeability in Ferromagnetic Bodies. Physikalische Zeitschrift der Sowjetunion, 8:153–169, 1935. [76] André Thiaville and Yoshinobu Nakatani. Domain-Wall Dynamics in Nanowires and Nanostrips. In Spin Dynamics in Confined Magnetic Structures III. Topics in Applied Physics. Springer, Berlin Heidelberg, 2006. [77] A. Thiaville, Y. Nakatani, J. Miltat, and N. Vernier. Domain wall motion by spinpolarized current: A micromagnetic study. Journal of Applied Physics, 95(11):7049, 2004. [78] N L Schryer and L R Walker. The motion of 180° domain walls in uniform dc magnetic fields. Journal of Applied Physics, 45(12):5406–5421, 1974. [79] A Mougin, M Cormier, J P Adam, P J Metaxas, and J Ferré. Domain wall mobility, stability and Walker breakdown in magnetic nanowires. EPL (Europhysics Letters), 78(5):57007, 2007. [80] G S D Beach, C Nistor, C Knutson, M Tsoi, and J L Erskine. Dynamics of field-driven domain-wall propagation in ferromagnetic nanowires. Nature Materials, 4:741–744, 2005. [81] A Dourlat, V Jeudy, A Lemaître, and C Gourdon. Field-driven domain-wall dynamics in (Ga,Mn)As films with perpendicular anisotropy. Physical Review B - Condensed Matter and Materials Physics, 78(16):161303(R), 2008. [82] Mark D. Stiles and Jacques Miltat. Spin-Transfer Torque and Dynamics. In Spin Dynamics in Confined Magnetic Structures III. Topics in Applied Physics. Springer, Berlin Heidelberg, 2006. [83] L Berger. Emission of spin waves by a magnetic multilayer traversed by a current. Physical Review B, 54(13):9353–9358, 1996. [84] M Kläui, C A F Vaz, J A C Bland, W Wernsdorfer, G Faini, E Cambril, and L J Heyderman. Domain wall motion induced by spin polarized currents in ferromagnetic ring structures. Applied Physics Letters, 83(1):105–107, 2003. [85] J. Grollier, P. Boulenc, V. Cros, A. Hamzic, A. Vaurès, A. Fert, and G. Faini. Switching a spin valve back and forth by current-induced domain wall motion. Applied Physics Letters, 83(3):509, 2003. [86] N. Vernier, D. A. Allwood, D. Atkinson, M. D. Cooke, and R. P. Cowburn. Domain wall propagation in magnetic nanowires by spin-polarized current injection. EPL (Europhysics Letters), 65(4):526–532, 2004. [87] Michele Voto, Luis Lopez-Diaz, Luis Torres, and Simone Moretti. Disorder-induced domain wall velocity shift at high fields in perpendicularly magnetized thin films. Physical Review B, 94(17):174438, 2016. [88] L. D. Geng and Y. M. Jin. Domain wall creep in magnetic thin films near the depinning transition. EPL (Europhysics Letters), 116(3):36002, 2016. [89] J. Leliaert, M. Dvornik, J.Mulkers, J. De Clercq, M. V. Miloševic, and B. VanWaeyenberge. Fast micromagnetic simulations on GPU - Recent advances made with mumax3. Journal of Physics D: Applied Physics, 51(12):123002, 2018. [90] Nirvana B. Caballero, Ezequiel E. Ferrero, Alejandro B. Kolton, Javier Curiale, Vincent Jeudy, and Sebastian Bustingorry. Magnetic domain wall creep and depinning: A scalar field model approach. Physical Review E, 97(6):062122, 2018. [91] Pamela C. Guruciaga, Nirvana B. Caballero, Vincent Jeudy, Javier Curiale, and Sebastian Bustingorry. Ginzburg-Landau micromagnetic model to study domain wall dynamics in thin ferromagnetic systems. Journal of Statistical Mechanics: Theory and Experiment, 2021(3):033211, 2021. [92] Nirvana Caballero, Elisabeth Agoritsas, Vivien Lecomte, and Thierry Giamarchi. From bulk descriptions to emergent interfaces: Connecting the Ginzburg-Landau and elastic-line models. Physical Review B, 102(10):104204, 2020. [93] Nikolas Provatas, Tapio Ala-Nissila, Martin Grant, K. R. Elder, and Luc Piché. Scaling, propagation, and kinetic roughening of flame fronts in random media. Journal of Statistical Physics, 81(3-4):737–759, 1995. [94] P. G. De Gennes. Wetting: Statics and dynamics. Reviews of Modern Physics, 57(3):827–863, 1985. [95] P. Le Doussal, K. J. Wiese, S. Moulinet, and E. Rolley. Height fluctuations of a contact line: A direct measurement of the renormalized disorder correlator. EPL (Europhysics Letters), 87(5):56001, 2009. [96] Juan A. Bonachela, Carey D. Nadell, João B. Xavier, and Simon A. Levin. Universality in Bacterial Colonies. Journal of Statistical Physics, 144(2):303–315, 2011. [97] M. A.C. Huergo, M. A. Pasquale, A. E. Bolzán, A. J. Arvia, and P. H. González. Morphology and dynamic scaling analysis of cell colonies with linear growth fronts. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 82(3):031903, 2010. [98] N. E. Muzzio, M. A. Pasquale, P. H. González, and A. J. Arvia. Influence of individual cell motility on the 2D front roughness dynamics of tumour cell colonies. Journal of Biological Physics, 40(3):285–308, 2014. [99] E. Bouchaud, J. P. Bouchaud, D. S. Fisher, S. Ramanathan, and J. R. Rice. Can crack front waves explain the roughness of cracks? Journal of the Mechanics and Physics of Solids, 50(8):1703–1725, 2002. [100] D. Bonamy, S. Santucci, and L. Ponson. Crackling dynamics in material failure as the signature of a self-organized dynamic phase transition. Physical Review Letters, 101(4):045501, 2008. [101] E. A. Jagla and A. B. Kolton. A mechanism for spatial and temporal earthquake clustering. Journal of Geophysical Research: Solid Earth, 115(B5):B05312, 2010. [102] Patrycja Paruch and Jill Guyonnet. Nanoscale studies of ferroelectric domain walls as pinned elastic interfaces. Comptes Rendus Physique, 14(8):667–684, 2013. [103] Jacques Ferré, Peter J Metaxas, Alexandra Mougin, Jean Pierre Jamet, Jon Gorchon, and Vincent Jeudy. Universal magnetic domain wall dynamics in the presence of weak disorder. Comptes Rendus Physique, 14(8):651–666, 2013. [104] J. Guyonnet, E. Agoritsas, P. Paruch, and S. Bustingorry. Statistics of roughness for fluctuating interfaces: A survey of different scaling analyses. arXiv:1904.11726 [cond-mat.dis-nn], 2020. [105] S Bustingorry, J Guyonnet, P Paruch, and E Agoritsas. A numerical study of the statistics of roughness parameters for fluctuating interfaces. Journal of Physics: Condensed Matter, 33(34):345001, 2021. [106] P Meakin. The growth of rough surfaces and interfaces. Physics Reports, 235(4- 5):189–289, 1993. [107] J M López, M A Rodriguez, and R Cuerno. Superroughening versus intrinsic anomalous scaling of surfaces. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 56(4):3993–3998, 1997. [108] María José Cortés Burgos, Pamela C. Guruciaga, Daniel Jordán, Cynthia P. Quinteros, Elisabeth Agoritsas, Javier Curiale, Mara Granada, and Sebastian Bustingorry. Field-dependent roughness of moving domain walls in a Pt/Co/Pt magnetic thin film. Physical Review B, 104(14):144202, 2021. [109] P Chauve, T Giamarchi, and P Le Doussal. Creep and depinning in disordered media. Physical Review B - Condensed Matter and Materials Physics, 62(10):6241–6267, 2000. [110] M Kardar, G Parisi, and Y C Zhang. Dynamic Scaling of Growing Interfaces. Physical Review Letters, 56(9):889, 1986. [111] A Rosso and W Krauth. Origin of the Roughness Exponent in Elastic Strings at the Depinning Threshold. Physical Review Letters, 87(18):187002, 2001. [112] A Rosso, A Hartmann, and W Krauth. Depinning of elastic manifolds. Physical Review E, 67(2):21602, 2003. [113] Onuttom Narayan and Daniel S Fisher. Threshold critical dynamics of driven interfaces in random media. Physical Review B, 48(10):7030–7042, 1993. [114] S Bustingorry, A B Kolton, and T Giamarchi. Thermal rounding of the depinning transition. EPL (Europhysics Letters), 81(16):260005, 2008. [115] S Bustingorry, A B Kolton, and T Giamarchi. Thermal rounding exponent of the depinning transition of an elastic string in a random medium. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 85(2):021144, 2012. [116] S Bustingorry, A B Kolton, and T Giamarchi. Thermal rounding of the depinning transition in ultrathin Pt/Co/Pt films. Physical Review B - Condensed Matter and Materials Physics, 85(21):214416, 2012. [117] K J Kim, J C Lee, S M Ahn, K S Lee, C W Lee, Y J Cho, S Seo, K H Shin, S B Choe, and H W Lee. Interdimensional universality of dynamic interfaces. Nature, 458(7239):740–742, 2009. [118] W. Savero Torres, R. Díaz Pardo, S. Bustingorry, A. B. Kolton, A. Lemaître, and V. Jeudy. Universal dimensional crossover of domain wall dynamics in ferromagnetic films. Physical Review B, 99(20):201201(R), 2019. [119] E E Ferrero, S Bustingorry, and A B Kolton. Nonsteady relaxation and critical exponents at the depinning transition. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 87(3):032122, 2013. [120] Vincent Jeudy, Rebeca Díaz Pardo, Williams Savero Torres, Sebastian Bustingorry, and Alejandro Kolton. Pinning of domain walls in thin ferromagnetic films. Physical Review B - Condensed Matter and Materials Physics, 98(5):054406, 2018. [121] A. I. Larkin and Yu N. Ovchinnikov. Pinning in type II superconductors. Journal of Low Temperature Physics, 34:409–428, 1979. [122] G Blatter, M V Feigel’Man, V B Geshkenbein, A I Larkin, and V M Vinokur. Vortices in high-temperature superconductors. Reviews of Modern Physics, 66(4):1125–1388, 1994. [123] S Bustingorry, A B Kolton, and T Giamarchi. Random-manifold to random-periodic depinning of an elastic interface. 82(9):094202, 2010. [124] Hyung Keun Gweon, Seok Jin Yun, and Sang Ho Lim. A very large perpendicular magnetic anisotropy in Pt/Co/MgO trilayers fabricated by controlling the MgO sputtering power and its thickness. Scientific Reports, 8:1266, 2018. [125] D. Mergel, H. Heitmann, and P. Hansen. Pseudocrystalline model of the magnetic anisotropy in amorphous rare-earth transition-metal thin films. Physical Review B, 47(2):882–891, 1993. [126] Jean-Paul Adam. Du renversement sous champ de l’aimantation d’un nano-plot au déplacement sous courant d’une paroi de domaines dans une nano-piste par microscopie Kerr polaire. PhD thesis, Université Paris-Sud, 2008. [127] T. Shono, T. Hasegawa, T. Fukumura, F. Matsukura, and H. Ohno. Observation of magnetic domain structure in a ferromagnetic semiconductor (Ga, Mn)As with a scanning Hall probe microscope. Applied Physics Letters, 77(9):1363, 2000. [128] Stuart S P Parkin, Masamitsu Hayashi, and Luc Thomas. Magnetic Domain-Wall Racetrack Memory. Science, 320(5873):190–194, 2008. [129] Stuart Parkin and See-Hun Yang. Memory on the racetrack. Nature Nanotechnology, 10:195–198, 2015. [130] Jacob Torrejon, Mathieu Riou, Flavio Abreu Araujo, Sumito Tsunegi, Guru Khalsa, Damien Querlioz, Paolo Bortolotti, Vincent Cros, Kay Yakushiji, Akio Fukushima, Hitoshi Kubota, Shinji Yuasa, Mark D. Stiles, and Julie Grollier. Neuromorphic computing with nanoscale spintronic oscillators. Nature, 547:428–431, 2017. [131] A Fert, V Cros, and J Sampaio. Skyrmions on the track. Nature Nanotechnology, 8(3):152–156, 2013. [132] Kamil Olejník, Tom Seifert, Zdenek Kašpar, Vít Novák, Peter Wadley, Richard P. Campion, Manuel Baumgartner, Pietro Gambardella, Petr Nemec, Joerg Wunderlich, Jairo Sinova, Petr Kužel, Melanie Müller, Tobias Kampfrath, and Tomas Jungwirth. Terahertz electrical writing speed in an antiferromagnetic memory. Science Advances, 4(3):eaar3566, 2018. [133] See Hun Yang, Kwang Su Ryu, and Stuart Parkin. Domain-wall velocities of up to 750 m s-1 driven by exchange-coupling torque in synthetic antiferromagnets. Nature Nanotechnology, 10:221–226, 2015. [134] I. A. Campbell. Indirect exchange for rare earths in metals. Journal of Physics F: Metal Physics, 2(3):L47, 1972. [135] Eloi Haltz. Domain Wall Dynamics driven by spin-current in Ferrimagnetic alloys. PhD thesis, Université Paris-Saclay, 2019. [136] Edmund C Stoner. Collective electron ferromagnetism. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 165(922):372–414, 1938. [137] Aleš Hrabec. Domain wall dynamics in magnetic nanostructures: Effect of magnetic field and electric current. PhD thesis, Université de Grenoble, 2011. [138] S. K. Malik, F. J. Arlinghaus, and W. E. Wallace. Spin-polarized energy-band structure of YCo5, SmCo5, and GdCo5. Physical Review B, 16(3):1242, 1977. [139] Hiroshi Tanaka and Shinji Takayama. Electronic structure calculations for Gd32Co68 and Gd18Co82 amorphous alloys. Journal of Applied Physics, 70(10):6577, 1991. [140] Hiroshi Tanaka, Shinji Takayama, and Takeo Fujiwara. Electronic-structure calculations for amorphous and crystalline Gd33Fe67 alloys. Physical Review B, 46(12):7390– 7394, 1992. [141] A. Gangulee and R. C. Taylor. Mean field analysis of the magnetic properties of vapor deposited amorphous Fe-Gd thin films. Journal of Applied Physics, 49(3):1762, 1978. [142] Felix Büttner, Ivan Lemesh, and Geoffrey S.D. Beach. Theory of isolated magnetic skyrmions: From fundamentals to room temperature applications. Scientific Reports, 8:4464, 2018. [143] Roald K. Wangsness. Sublattice effects in magnetic resonance. Physical Review, 91(5):1085–1091, 1953. [144] Yuushou Hirata, Duck Ho Kim, Takaya Okuno, Tomoe Nishimura, Dae Yun Kim, Yasuhiro Futakawa, Hiroki Yoshikawa, Arata Tsukamoto, Kab Jin Kim, Sug Bong Choe, and Teruo Ono. Correlation between compensation temperatures of magnetization and angular momentum in GdFeCo ferrimagnets. Physical Review B, 97(22):220403(R), 2018. [145] Yuushou Hirata, Duck Ho Kim, Takaya Okuno, Tomoe Nishimura, Yasuhiro Futakawa, Hiroki Yoshikawa, Wooseung Ham, Sanghoon Kim, Arata Tsukamoto, Yoichi Shiota, Takahiro Moriyama, Kab Jin Kim, and Teruo Ono. Effect of depinning field on determination of angular-momentum-compensation temperature of ferrimagnets. Applied Physics Express, 11(6):063001, 2018. [146] E. Haltz, J. Sampaio, S. Krishnia, L. Berges, R. Weil, and A. Mougin. Measurement of the tilt of a moving domain wall shows precession-free dynamics in compensated ferrimagnets. Scientific Reports, 10:16292, 2020. [147] Charles Kittel. On the gyromagnetic ratio and spectroscopic splitting factor of ferromagnetic substances. Physical Review, 76(6):743–748, 1949. [148] G. G. Scott. Review of gyromagnetic ratio experiments. Reviews of Modern Physics, 34:102–109, 1962. [149] Kab Jin Kim, Se Kwon Kim, Yuushou Hirata, Se Hyeok Oh, Takayuki Tono, Duck Ho Kim, Takaya Okuno, Woo Seung Ham, Sanghoon Kim, Gyoungchoon Go, Yaroslav Tserkovnyak, Arata Tsukamoto, Takahiro Moriyama, Kyung Jin Lee, and Teruo Ono. Supplementary information for "Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets". Nature Materials, 16(12):1187–1192, 2017. [150] Tomoe Nishimura, Duck Ho Kim, Yuushou Hirata, Takaya Okuno, Yasuhiro Futakawa, Hiroki Yoshikawa, Arata Tsukamoto, Yoichi Shiota, Takahiro Moriyama, and Teruo Ono. Correlation between magnetic properties and depinning field in field-driven domain wall dynamics in GdFeCo ferrimagnets. Applied Physics Letters, 112(17):172403, 2018. [151] K Edmonds, G Van Der Laan, and G Panaccione. Electronic structure of (Ga,Mn)As as seen by synchrotron radiation. Semiconductor Science and Technology, 30(4):043001, 2015. [152] T Ishii, T Kawazoe, Y Hashimoto, H Terada, I Muneta, M Ohtsu, M Tanaka, and S Ohya. Electronic structure near the Fermi level in the ferromagnetic semiconductor GaMnAs studied by ultrafast time-resolved light-induced reflectivity measurements. Physical Review B, 93(24):2413031(R), 2016. [153] A. Yamaguchi, S. Nasu, H. Tanigawa, T. Ono, K. Miyake, K. Mibu, and T. Shinjo. Effect of Joule heating in current-driven domain wall motion. Applied Physics Letters, 86(1):012511, 2005. [154] G. S. D. Beach, C. Knutson, C. Nistor, M. Tsoi, and J. L. Erskine. Nonlinear domainwall velocity enhancement by spin-polarized electric current. Physical Review Letters, 97(5):057203, 2006. [155] M. Hayashi, L. Thomas, Ya B. Bazaliy, C. Rettner, R. Moriya, X. Jiang, and S. S.P. Parkin. Influence of current on field-driven domain wall motion in permalloy nanowires from time resolved measurements of anisotropic magnetoresistance. Physical Review Letters, 96(19):197207, 2006. [156] J C Lee, K.-J. Kim, J Ryu, K.-W. Moon, S.-J. Yun, G H Gim, K.-So. Lee, K H Shin, H W Lee, and S B Choe. Universality Classes of Magnetic Domain Wall Motion. Physical Review Letters, 107(6):67201, 2011. [157] S Le Gall, N Vernier, F Montaigne, A Thiaville, J Sampaio, D Ravelosona, S Mangin, S Andrieu, and T Hauet. Effect of spin transfer torque on domain wall motion regimes in [Co/Ni] superlattice wires. Physical Review B, 95(18):184419, 2017. [158] D. Ravelosona, D. Lacour, J. A. Katine, B. D. Terris, and C. Chappert. Nanometer scale observation of high efficiency thermally assisted current-driven domain wall depinning. Physical Review Letters, 95(11):117203, 2005. [159] D. Ravelosona, S. Mangin, J. A. Katine, Eric E. Fullerton, and B. D. Terris. Threshold currents to move domain walls in films with perpendicular anisotropy. Applied Physics Letters, 90(7):072508, 2007. [160] K W Moon, D H Kim, S C Yoo, C G Cho, Hwang S., B Kahng, Min B C., Shin K H., and Choe S. Distinct universality classes of domain wall roughness in two-dimensional Pt/Co/Pt films. Physical Review Letters, 110(10):107203, 2013. [161] M. Yamanouchi, D. Chiba, F. Matsukura, T. Dietl, and H. Ohno. Velocity of domain-wall motion induced by electrical current in the ferromagnetic semiconductor Ga,Mn)As. Physical Review Letters, 96(9):096601, 2006. [162] M Yamanouchi, J Ieda, F Matsukura, S E Barnes, S Maekawa, and H Ohno. Universality Classes for Domain Wall Motion in the Ferromagnetic Semiconductor (Ga,Mn)As. 317:1726–1729, 2007. [163] J Curiale, A Lemaître, G Faini, and V Jeudy. Track heating study for current-induced domain wall motion experiments. Applied Physics Letters, 97(24):243505, 2010. [164] J Curiale, A Lemaître, T Niazi, G Faini, and V Jeudy. Joule heating and currentinduced domain wall motion. Journal of Applied Physics, 112(10):103922, 2012. [165] Wolfgang Kuch, Rudolf Schäfer, Peter Fischer, and Franz Ulrich Hillebrecht. Magnetic Microscopy of Layered Structures. Springer-Verlag, Berlin Heidelberg, 2015. [166] Michael Faraday. On the magnetization of light and the illumination of magnetic lines of force. Philosophical Transactions of the Royal Society, 136:1–20, 1846. [167] John Kerr. On Rotation of the Plane of Polarization by reflection from the Pole of a Magnet. Philosophical Magazine and Journal of Science, 3(19):321–343, 1877. [168] Hendrik Antoon Lorentz. Le Phénomène Découvert Par Hall et la Rotation Électromagnétique du Plan de Polarisation de la Lumière, pages 136–163. Springer, Dordrecht, 1936. [169] Woldemar Voigt. Doppelbrechung von im Magnetfelde befindlichem Natriumdampf in der Rischtung normal zu den Kraftlinien. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1898:355–359, 1898. [170] A Cotton and H Mouton. Sur les propriétés magnétooptiques des colloides et des liqueurs hétérogenes. Ann Chim Phys, 11:145–203, 1907. [171] R Schäfer and A Hubert. A new magnetooptic effect related to non-uniform magnetization on the surface of a ferromagnet. physica status solidi (a), 118(1):271–288, 1990. [172] Pieter Zeeman. XXXII. On the influence of magnetism on the nature of the light emitted by a substance. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 43(262):226–239, 1897. [173] F Schmidt, WRave, and A Hubert. Enhancement of magneto-optical domain observation by digital image processing. IEEE Transactions on Magnetics, 21(5):1596–1598, 1985. [174] Jon Gorchon. Current and field induced magnetization reversal in Pt/Co/Pt and (Ga,Mn)(As,P) ferromagnetic films. PhD thesis, Université Paris-Sud, 2014. [175] Daniel Jordán Ringgold. Estudio de la rugosidad de paredes de dominio en GdFeCo. Tesis carrera de maestría en ciencias físicas, Instituto Balseiro - Universidad Nacional de Cuyo, 2018. [176] P Domenichini, F Paris, M G Capeluto, M Granada, J.-M. George, G Pasquini, and A B Kolton. Curvature-driven ac-assisted creep dynamics of magnetic domain walls. Physical Review B, 103(22):L220409, 2021. [177] L. Herrera Diez, M. Voto, A. Casiraghi, M. Belmeguenai, Y. Roussigné, G. Durin, A. Lamperti, R. Mantovan, V. Sluka, V. Jeudy, Y. T. Liu, A. Stashkevich, S. M. Chérif, J. Langer, B. Ocker, L. Lopez-Diaz, and D. Ravelosona. Enhancement of the Dzyaloshinskii-Moriya interaction and domain wall velocity through interface intermixing in Ta/CoFeB/MgO. Physical Review B, 99(5):054431, 2019. [178] L Berger and G Bergmann. The Hall Effect of Ferromagnets. In The Hall Effect and Its Applications, pages 55–76. Springer, Boston, 1980. [179] A Lemaître, A Miard, L Travers, O Mauguin, L Largeau, C Gourdon, V Jeudy, M Tran, and J M George. Strain control of the magnetic anisotropy in (Ga,Mn) (As,P) ferromagnetic semiconductor layers. Applied Physics Letters, 93(2):211231–211233, 2008. [180] T Niazi, M Cormier, D Lucot, L Largeau, V Jeudy, J Cibert, and A Lemaître. Electricfield control of the magnetic anisotropy in an ultrathin (Ga,Mn)As/(Ga,Mn)(As,P) bilayer. Applied Physics Letters, 102(12):122403, 2013. [181] M Cormier, V Jeudy, T Niazi, D Lucot, M Granada, J Cibert, and A Lemaître. Electric-field-induced magnetization reorientation in a (Ga,Mn)As/(Ga,Mn)(As,P) bilayer with out-of-plane anisotropy. Physical Review B - Condensed Matter and Materials Physics, 90(17):174418, 2014. [182] Rebeca Díaz Pardo. Universal behaviors of magnetic domain walls in thin ferromagnets. PhD thesis, Université Paris-Saclay, 2018. [183] Lei Han Tang, Mehran Kardar, and Deepak Dhar. Driven depinning in anisotropic media. Physical Review Letters, 74(6):920–923, 1995. [184] Olaf Duemmer and Werner Krauth. Critical exponents of the driven elastic string in a disordered medium. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 71(6):061601, 2005. [185] E E Ferrero, L Foini, T Giamarchi, A B Kolton, and A Rosso. Spatiotemporal Patterns in Ultraslow Domain Wall Creep Dynamics. Physical Review Letters, 118(14):147208, 2017. [186] E Haltz, J Sampaio, R Weil, Y Dumont, and A Mougin. Strong current actions on ferrimagnetic domain walls in the creep regime. Physical Review B, 99(10):104413, 2019. [187] A Kirilyuk, J Ferré, V Grolier, J P Jamet, and D Renard. Magnetization reversal in ultrathin ferromagnetic films with perpendicular anisotropy. Journal of Magnetism and Magnetic Materials, 171(1):45–63, 1997. [188] Keisuke Yamada, Jean-Pierre Jamet, Yoshinobu Nakatani, Alexandra Mougin, André Thiaville, Teruo Ono, and Jacques Ferré. Influence of Instabilities on High-Field Magnetic Domain Wall Velocity in (Co/Ni) Nanostrips. Applied Physics Express, 4(11):113001, 2011. [189] S. Le Gall, N. Vernier, F. Montaigne, M. Gottwald, D. Lacour, M. Hehn, D. Ravelosona, S. Mangin, S. Andrieu, and T. Hauet. Thermally activated domain wall motion in [Co/Ni](111) superlattices with perpendicular magnetic anisotropy. Applied Physics Letters, 106(6):062406, 2015. [190] Duck Ho Kim, Takaya Okuno, Se Kwon Kim, Se Hyeok Oh, Tomoe Nishimura, Yuushou Hirata, Yasuhiro Futakawa, Hiroki Yoshikawa, Arata Tsukamoto, Yaroslav Tserkovnyak, Yoichi Shiota, Takahiro Moriyama, Kab Jin Kim, Kyung Jin Lee, and Teruo Ono. Low Magnetic Damping of Ferrimagnetic GdFeCo Alloys. Physical Review Letters, 122(12):127203, 2019. [191] T Shibauchi, L Krusin-Elbaum, Valerii M. Vinokur, B E Argyle, D Weller, and B D Terris. Deroughening of a 1D Domain Wall in an Ultrathin Magnetic Film by a Correlated Defect. Physical Review Letters, 87(26):267201, 2001. [192] M. Huth, P. Haibach, and H. Adrian. Scaling properties of magnetic domain walls in Pt/Co/Pt trilayers on MgO (1 1 1). Journal of Magnetism and Magnetic Materials, 240(1-3):311–313, 2002. [193] P. Domenichini, C. P. Quinteros, M. Granada, S. Collin, J. M. George, J. Curiale, S. Bustingorry, M. G. Capeluto, and G. Pasquini. Transient magnetic-domain-wall ac dynamics by means of magneto-optical Kerr effect microscopy. Physical Review B, 99(21):214401, 2019. [194] Kang Soo Lee, Chang Won Lee, Young Jin Cho, Sunae Seo, Dong Hyun Kim, and Sug Bong Choe. Roughness exponent of domain interface in CoFe/Pt multilayer films. IEEE Transactions on Magnetics, 45(6):2548–2550, 2009. [195] Matías Pablo Grassi, Alejandro B. Kolton, Vincent Jeudy, Alexandra Mougin, Sebastian Bustingorry, and Javier Curiale. Intermittent collective dynamics of domain walls in the creep regime. Physical Review B, 98(22):224201, 2018. [196] S. Mangin, D. Ravelosona, J. A. Katine, M. J. Carey, B. D. Terris, and Eric E. Fullerton. Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nature Materials, 5(3):210–215, 2006. [197] J Ryu, S B Choe, and H W Lee. Magnetic domain-wall motion in a nanowire: Depinning and creep. Physical Review B - Condensed Matter and Materials Physics, 84(7):075469, 2011. [198] Kab Jin Kim, Jae Chul Lee, Kyung Ho Shin, Hyun Woo Lee, and Sug Bong Choe. Universal classes of magnetic-field- and electric-current-induced magnetic domain-wall dynamics in one and two dimensional regimes. Current Applied Physics, 13(1):228– 236, 2013. [199] S DuttaGupta, S Fukami, C Zhang, H Sato, M Yamanouchi, F Matsukura, and H Ohno. Adiabatic spin-transfer-torque-induced domain wall creep in a magnetic metal. Nature Physics, 12(4):333–336, 2015.
Materias:Física > Materia condensada
Física
Divisiones:Investigación y aplicaciones no nucleares > Física > Resonancias magnéticas
Código ID:1046
Depositado Por:Tamara Cárcamo
Depositado En:13 Jun 2022 12:43
Última Modificación:13 Jun 2022 12:43

Personal del repositorio solamente: página de control del documento