Remaggi, María Laura (2022) Efecto casimir estático y dinámico en espejos imperfectos / Static and dynamic casimir effect on imperfect mirrors. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 1955Kb |
Resumen en español
El efecto Casimir es una de las más importantes consecuencias macroscópicas de las fluctuaciones del vacío cuántico. Su formulación original o efecto Casimir estático, consiste de dos placas paralelas infinitas, perfectamente conductoras y eléctricamente neutras, entre las cuales surge una fuerza atractiva, no predicha clásicamente, como consecuencia de las condiciones de contorno que imponen sobre el vacío. En la versión dinámica del efecto, estas condiciones varían con el tiempo y pueden inducir una transferencia de energía tal que dé lugar a la creación de partículas reales (fotones). En esta Tesis, exponemos resultados acerca de la investigación realizada sobre diferentes modelos en los que se manifiestan el efecto Casimir estático y el dinámico, empleando descripciones que tengan en cuenta los grados de libertad microscópicos o “materiales” de las placas, con el objetivo de representar situaciones más realistas. Representamos la interacción entre el campo electromagnético de vacío y estos “espejos imperfectos” a través de la acción efectiva, en lugar de suponer condiciones de contorno ideales. Obtenemos expresiones generales de las cantidades físicas relevantes para casos con diferentes geometrías, considerando medios conductores y dieléctricos, y con especial énfasis en la aplicación de las mismas a ejemplos que involucran materiales planares, incluyendo efectos como ruptura de paridad.
Resumen en inglés
The Casimir effect is one of the most relevant macroscopic consequences of the quantum vacuum fluctuations. Its original formulation or static Casimir effect, consists of two infinite parallel plates, perfectly conductive and electrically neutral, between which an attractive not classically predicted force arises, as a consequence of the boundary conditions imposed by the plates on the vacuum. In the dynamic version of the effect, these conditions vary over time and may induce such a transfer of energy that it gives rise to the creation of real particles (photons). In this Thesis, we present results about our research on different models in which the Casimir effect is manifested, both in its static and dynamic versions, using descriptions that take into account the microscopic or “material” degrees of freedom, with the aim of represent more realistic situations. We represent the interaction between the vacuum electromagnetic field and these “imperfect mirrors” through the effective action, rather than assuming ideal boundary conditions. We obtain general expressions for the relevant physical quantities in cases with different geometries, considering conductive and dielectric media, and specially emphasizing on their application to examples involving planar materials including, among others, parity breaking effects.
Tipo de objeto: | Tesis (Tesis Doctoral en Física) |
---|---|
Palabras Clave: | Casimir effect; Efecto casimir; Graphene; Grafeno, [Static casimir effect; Efecto casimir estático; Dynamic casimir effect; Efecto casimir dinámico; Imperfect mirrors; Espejos imperfectos; Dissipative effects; Efectos disipativos] |
Referencias: | [1] Saunders, S., Brown, H. R. The philosophy of vacuum. Oxford University Press, 1991. 1 [2] Daywitt, W. C. The planck vacuum. Progress in Physics, 1, 20, 2009. 4 [3] Casimir, H. B. G. On the Attraction Between Two Perfectly Conducting Plates. Indag. Math., 10, 261–263, 1948. 4 [4] Milonni, P. W. The quantum vacuum: an introduction to quantum electrodynamics. Academic press, 2013. 5, 16, 25 [5] Milton, K. A. The Casimir effect: physical manifestations of zero-point energy. World Scientific, 2001. 5, 6, 25 [6] Bordag, M., Klimchitskaya, G. L., Mohideen, U., Mostepanenko, V. M. Advances in the Casimir effect, tomo 145. OUP Oxford, 2009. 5, 25 [7] Casimir, H. B. G., Polder, D. The influence of retardation on the London-van der Waals forces. Physical Review, 73 (4), 360, 1948. 5, 14 [8] Sparnaay, M. J. Measurements of attractive forces between flat plates. Physica, 24 (6-10), 751–764, 1958. 6 [9] van Blokland, P. H., Overbeek, J. T. G. Van derWaals forces between objects covered with a chromium layer. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 74, 2637–2651, 1978. 6 [10] Derjaguin, B. Molekulartheorie der äußeren Reibung. Zeitschrift für Physik, 88 (9), 661–675, 1934. 6 [11] Derjaguin, B., Abrikosova, I., Lifshitz, E. Direct measurement of molecular attraction between solids separated by a narrow gap. Quarterly Reviews, Chemical Society, 10 (3), 295–329, 1956. 6 [12] Derjaguin, B. V., Churaev, N. V., Muller, V. M., Kisin, V. Surface forces. Springer, 1987. 6 [13] Lamoreaux, S. K. Demonstration of the Casimir force in the 0.6 to 6 μ m range. Physical Review Letters, 78 (1), 5, 1997. 6 [14] Mohideen, U., Roy, A. Precision measurement of the Casimir force from 0.1 to 0.9 μ m. Physical Review Letters, 81 (21), 4549, 1998. 6 [15] Roy, A., Lin, C.-Y., Mohideen, U. Improved precision measurement of the Casimir force. Physical Review D, 60 (11), 111101, 1999. 6 [16] Harris, B., Chen, F., Mohideen, U. Precision measurement of the Casimir force using gold surfaces. Physical Review A, 62 (5), 052109, 2000. 6 [17] Bordag,M., Mohideen, U., Mostepanenko, V. M. New developments in the Casimir effect. Physics reports, 353 (1-3), 1–205, 2001. 6, 25 [18] Bressi, G., Carugno, G., Onofrio, R., Ruoso, G. Measurement of the Casimir force between parallel metallic surfaces. Physical review letters, 88 (4), 041804, 2002. 6 [19] Lambrecht, A. The Casimir effect: a force from nothing. Physics world, 15 (9), 29, 2002. 7 [20] Lu, B.-S. The Casimir effect in topological matter. Universe, 7 (7), 237, 2021. 7 [21] Buks, E., Roukes, M. Stiction, adhesion energy, and the Casimir effect in micromechanical systems. Physical Review B, 63 (3), 033402, 2001. 7 [22] Chan, H. B., Aksyuk, V. A., Kleiman, R. N., Bishop, D. J., Capasso, F. Quantum mechanical actuation of microelectromechanical systems by the Casimir force. Science, 291 (5510), 1941–1944, 2001. 7 [23] Klimchitskaya, G. L., Mohideen, U., Mostepanenko, V. M. The Casimir force between real materials: Experiment and theory. Reviews of Modern Physics, 81 (4), 1827, 2009. 8 [24] Neto, P. A. M., Lambrecht, A., Reynaud, S. Casimir energy between a plane and a sphere in electromagnetic vacuum. Physical Review A, 78 (1), 012115, 2008. 8 [25] Wang, M., Tang, L., Ng, C. Y., Messina, R., Guizal, B., Crosse, J. A., et al. Strong geometry dependence of the Casimir force between interpenetrated rectangular gratings. Nature communications, 12 (1), 1–9, 2021. 8 [26] Fosco, C. D., Lombardo, F. C., Mazzitelli, F. D. Derivative expansion for the Casimir effect at zero and finite temperature in d+ 1 dimensions. Physical Review D, 86 (4), 045021, 2012. 8 [27] Dodonov, V. Fifty years of the dynamical Casimir effect. Physics, 2 (1), 67–104, 2020. 8 [28] Moore, G. T. Quantum theory of the electromagnetic field in a variable-length one-dimensional cavity. Journal of Mathematical Physics, 11 (9), 2679–2691, 1970. 8 [29] Fulling, S. A., Davies, P. C.W. Radiation from a moving mirror in two dimensional space-time: conformal anomaly. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 348 (1654), 393–414, 1976. 8 [30] Barton, G., Dodonov, V. V., Man’ko, V. I. The nonstationary Casimir effect and quantum systems with moving boundaries. Journal of Optics B: Quantum and Semiclassical Optics, 7 (3), S1, 2005. 9 [31] Dodonov, V. V. Current status of the dynamical Casimir effect. Physica Scripta, 82 (3), 038105, 2010. 9 [32] Dalvit, D. A. R., Neto, P. A. M., Mazzitelli, F. D. Fluctuations, dissipation and the dynamical Casimir effect. En: Casimir Physics, págs. 419–457. Springer, 2011. 9 [33] Nation, P. D., Johansson, J. R., Blencowe, M. P., Nori, F. Colloquium: Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits. Reviews of Modern Physics, 84 (1), 1, 2012. 9 [34] Schützhold, R. Refractive index perturbations–Unruh effect, Hawking radiation or dynamical Casimir effect? arXiv preprint arXiv:1110.6064, 2011. 9 [35] Wilson, C. M., Johansson, G., Pourkabirian, A., Simoen, M., Johansson, J. R., Duty, T., et al. Observation of the dynamical Casimir effect in a superconducting circuit. nature, 479 (7373), 376–379, 2011. 9 [36] Lähteenmäki, P., Paraoanu, G., Hassel, J., Hakonen, P. J. Dynamical Casimir effect in a Josephson metamaterial. Proceedings of the National Academy of Sciences, 110 (11), 4234–4238, 2013. 9 [37] Vezzoli, S., Mussot, A., Westerberg, N., Kudlinski, A., Saleh, H. D., Prain, A., et al. Optical analogue of the dynamical Casimir effect in a dispersion-oscillating fibre. Communications Physics, 2 (1), 1–6, 2019. 9 [38] Klimchitskaya, G. L., Mostepanenko, V. M. Casimir and Casimir-Polder forces in graphene systems: Quantum field theoretical description and thermodynamics. Universe, 6 (9), 150, 2020. 9 [39] Rodriguez-Lopez, P., Kort-Kamp, W. J. M., Dalvit, D. A. R., Woods, L. M. Casimir force phase transitions in the graphene family. Nature communications, 8 (1), 1–9, 2017. 9 [40] Liu, M., Zhang, Y., Klimchitskaya, G. L., Mostepanenko, V. M., Mohideen, U. Demonstration of an Unusual Thermal Effect in the Casimir Force from Graphene. Physical Review Letters, 126 (20), 206802, 2021. 9 [41] Liu, M., Zhang, Y., Klimchitskaya, G., Mostepanenko, V., Mohideen, U. Experimental and theoretical investigation of the thermal effect in the Casimir interaction from graphene. Physical Review B, 104 (8), 085436, 2021. 9 [42] Zinn-Justin, J. Quantum field theory and critical phenomena, tomo 171. Oxford university press, 2021. 12 [43] Lifshitz, E. M. The theory of molecular attractive forces between solids. Sov. Phys. JETP, 2, 73–83, 1956. 14, 15 [44] Fosco, C. D., Lombardo, F. C., Mazzitelli, F. D. Casimir effect with dynamical matter on thin mirrors. Phys. Lett. B, 669, 371–375, 2008. 16, 25, 34 [45] Fosco, C. D., Lombardo, F. C., Mazzitelli, F. D. Casimir energies with finite-width mirrors. Physical Review D, 77 (8), 085018, 2008. 16, 25 [46] Fosco, C. D., Lombardo, F. C., Mazzitelli, F. D. Quantum dissipative effects in moving mirrors: A functional approach. Phys. Rev. D, 76 (8), 085007, 2007. 19, 49, 57, 78 [47] Golestanian, R., Kardar, M. Path-integral approach to the dynamic Casimir effect with fluctuating boundaries. Phys. Rev. A, 58 (3), 1713, 1998. 19, 49 [48] Barton, G., Calogeracos, A. On the quantum electrodynamics of a dispersive mirror.: I. Mass shifts, radiation, and radiative reaction. Annals of Physics, 238 (2), 227–267, 1995. 19, 63 [49] Lamoreaux, S. K. The Casimir force: background, experiments, and applications. Reports on progress in Physics, 68 (1), 201, 2004. 25 [50] Graham, N., Jaffe, R. L., Khemani, V., Quandt, M., Schroeder, O., Weigel, H. The dirichlet casimir problem. Nuclear Physics B, 677 (1-2), 379–404, 2004. 25 [51] Fosco, C. D., Losada, E. Casimir effect with nonlocal boundary interactions. Physics Letters B, 675 (2), 252–256, 2009. 26 [52] Ccapa Ttira, C., Fosco, C. D., Mazzitelli, F. D. Lifshitz formula for the Casimir force and the Gelfand-Yaglom theorem. J. Phys. A, 44, 465403, 2011. 26, 27, 33, 42 [53] Gelfand, I. M., Yaglom, A. M. Integration in functional spaces and it applications in quantum physics. J. Math. Phys., 1, 48, 1960. 27 [54] Dunne, G. V. Functional determinants in quantum field theory. J. Phys. A, 41, 304006 1–15, 2008. 27 [55] Fosco, C. D., Oxman, L. Vacuum fluctuations in the presence of nonlinear boundary conditions. Physical Review D, 92 (12), 125021, 2015. 28 [56] Bordag, M., Geyer, B., Klimchitskaya, G. L., Mostepanenko, V. M. Lifshitztype formulas for graphene and single-wall carbon nanotubes: van der Waals and Casimir interactions. Phys. Rev. B, 74, 205431 1–9, 2006. 34, 77 [57] Bordag, M., Fialkovsky, I. V., Gitman, D. M., Vassilevich, D. V. Casimir interaction between a perfect conductor and graphene described by the Dirac model. Phys. Rev. B, 80, 245406 1–5, 2009. 34, 77 [58] Fialkovsky, I. V., Marachevsky, V. N., , Vassilevich, D. V. Finite temperature Casimir effect for graphene. Phys. Rev. B, 84, 035446 1–13, 2011. 34, 77 [59] Bordag, M., Vassilevich, D. V. Casimir force between Chern-Simons surfaces. Phys. Lett. A, 268, 75–80, 2000. 37, 38, 42, 43 [60] Canfora, F., Rosa, L., Zanelli, J. Theta term in a bounded region. Phys. Rev. D, 84, 105008, 2011. 38 [61] Rodriguez-Lopez, P., Grushin, A. G. Repulsive Casimir Effect with Chern insulators. Phys. Rev. Lett., 112 (5), 056804, 2014. 38 [62] Pavlovsky, O. V., Ulybyshev, M. V. Casimir energy calculations for Chern-Simons surfaces and dielectric plates within the formalism of lattice quantum field theory. Phys. Part. Nucl. Lett., 7, 345–348, 2010. 38 [63] Pavlovsky, O. V., Ulybyshev, M. V. Casimir energy in noncompact lattice electrodynamics. Theor. Math. Phys., 164, 1051–1063, 2010. 38 [64] Fialkovsky, I. V., Vassilevich, D. V. Parity-odd effects and polarization rotation in graphene. J. Phys. A, 42 (44), 442001, 2009. 38 [65] Deser, S., Jackiw, R., Templeton, S. Three-Dimensional Massive Gauge Theories. Phys. Rev. Lett., 48, 975–978, 1982. 38 [66] Fosco, C. D., Lombardo, F. C., Mazzitelli, F. D. Derivative expansion of the electromagnetic Casimir energy for two thin mirrors. Phys. Rev. D, 85, 125037, 2012. 39 [67] Barci, D. G., Fosco, C. D., Oxman, L. E. On bosonization in 3 dimensions. Phys. Lett. B, 375 (1-4), 267–272, 1996. 43 [68] Maghrebi, M. F., Golestanian, R., Kardar, M. Scattering approach to the dynamical Casimir effect. Phys. Rev. D, 87 (2), 025016, 2013. 49, 63 [69] Fosco, C. D., Lombardo, F. C., Mazzitelli, F. D. Quantum dissipative effects in moving imperfect mirrors: Sidewise and normal motions. Phys. Rev. D, 84 (2), 025011, 2011. 49, 63 [70] Fosco, C. D., Lombardo, F. C., Mazzitelli, F. D. Inertial forces and dissipation on accelerated boundaries. Phys. Rev. D, 82 (12), 125039, 2010. 51, 56 [71] Fialkovsky, I. V., Marachevsky, V. N., Vassilevich, D. V. Finite-temperature Casimir effect for graphene. Phys. Rev. B, 84 (3), 035446, 2011. 54 [72] Inc., W. R. Mathematica, Version 10.4, 2016. Champaign, IL. 56 [73] Neto, P. A. M. Vacuum radiation pressure on moving mirrors. J. Phys. A, 27 (6), 2167, 1994. 56, 57, 59 [74] Bordag, M. Reconsidering the quantization of electrodynamics with boundary conditions and some measurable consequences. Phys. Rev. D, 70 (8), 085010, 2004. 57 [75] Milton, K. A., Wagner, J. Multiple scattering methods in Casimir calculations. J. Phys. A, 41 (15), 155402, 2008. 57 [76] Fradkin, E. H. Field theories of condensed matter physics. Cambridge University Press, 2013. 63 [77] Kleinert, H. Gauge fields in Condensed Matter, Vol. I: Superflow and Vortex Lines, Disorder Fields. Phase Transitions, 2, 1989. 63 [78] Kleinert, H. Gauge Fields in Condensed Matter, Vol. II–Stresses and Defects, 1989. 63 [79] Goldman, H., Sohal, R., Fradkin, E. Landau-Ginzburg theories of non-Abelian quantum Hall states from non-Abelian bosonization. Physical Review B, 100 (11), 115111, 2019. 63 [80] Lambrecht, A., Jaekel, M. T., Reynaud, S. Motion induced radiation from a vibrating cavity. Phys. Rev. Lett., 77 (4), 615, 1996. 63 [81] Barton, G. The quantum radiation from mirrors moving sideways. Annals of Physics, 245 (2), 361–388, 1996. 63 [82] Frolov, V., Singh, D. Quantum effects in the presence of expanding semitransparent spherical mirrors. Classical and Quantum Gravity, 16 (11), 3693, 1999. 63 [83] Obadia, N., Parentani, R. Notes on moving mirrors. Phys. Rev. D, 64 (4), 044019, 2001. 63 [84] Nicolaevici, N. Quantum radiation from a partially reflecting moving mirror. Classical and Quantum Gravity, 18 (4), 619, 2001. 63 [85] Haro, J., Elizalde, E. Dynamical Casimir effect and the black body spectrum. J. Phys. A, 41 (3), 032002, 2008. 63 [86] Nicolaevici, N. On the dynamics of a semitransparent moving mirror. Classical and Quantum Gravity, 28 (2), 025014, 2011. 63 [87] Wang, Q., Unruh, W. G. Mirror moving in quantum vacuum of a massive scalar field. Phys. Rev. D, 92 (6), 063520, 2015. 63 [88] Silva, J. D. L., Braga, A. N., Alves, D. T. Dynamical Casimir effect with δ- δ′ mirrors. Phys. Rev. D, 94 (10), 105009, 2016. 63 [89] Fosco, C. D., Giraldo, A., Mazzitelli, F. D. Dynamical Casimir effect for semitransparent mirrors. Phys. Rev. D, 96 (4), 045004, 2017. 63 [90] Frieman, J. A. Particle creation in inhomogeneous spacetimes. Physical Review D, 39 (2), 389, 1989. 71 |
Materias: | Física > Teoría de campos |
Divisiones: | Investigación y aplicaciones no nucleares > Física > Partículas y campos |
Código ID: | 1050 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 13 Jun 2022 15:29 |
Última Modificación: | 13 Jun 2022 15:29 |
Personal del repositorio solamente: página de control del documento