Análisis y modelado de combustibles nucleares avanzados en estacionarios y durante rampas de potencia / Analysis and modelling of advanced nuclear fuels in steady states and during power ramps

Ruiz, Kevin S. (2022) Análisis y modelado de combustibles nucleares avanzados en estacionarios y durante rampas de potencia / Analysis and modelling of advanced nuclear fuels in steady states and during power ramps. Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
19Mb

Resumen en español

En el presente trabajo se lleva a cabo el estudio, desarrollo, mejora y validación de códigos y modelos de simulación del comportamiento de combustibles nucleares bajo irradiación en estados estacionarios y frente a rampas de potencia de combustibles PHWR, PWR, BWR, VVER, CAREM y diseños avanzados tipo ATF (Accident Tole- rant Fuels). En particular, se estudiaron los códigos FUELROD, BaCo y FRAPCON y para cada uno de ellos se analizaron los aspectos computacionales, se evaluaron las capacidades predictivas bajo distintos estados de carga e historias de potencia y se realizaron tareas de validación y comparación con otros códigos dentro de marcos internacionales de intercomparación y testeo de códigos como los CRP FUMEX I, II, III y ACTOF de IAEA y de análisis de PCI-SCC en rampas de potencias de NEA-OECD. FUELROD es un código simple y de orientación académica que demostró ser muy eficaz para cálculos en estado estacionario y se considera una herramienta notable para análisis paramétrico, diseño conceptual, entrenamiento en el área de diseño de elementos combustibles y para docencia en el curso de elementos combustibles de la carrera de Ingeniería Nuclear. Como parte del trabajo se desarrolló la versión 3.0 del código en la cual se destacan diversas actualizaciones de modelos físicos, mejoras y correcciones en los cálculos y una extensión de la aplicación del código para combustibles ATF. Por otro lado, BaCo y FRAPCON resultan ser herramientas mucho más complejas que permiten un tratamiento detallado de los fenómenos termo-mecánicos involucrados durante la operación de las barras combustibles. Estos últimos dos códigos resultan ideales para realizar cálculos y análisis sumamente precisos. La investigación finaliza con un extenso estudio sobre combustibles tolerantes a accidentes, donde se evalúa su desempeño bajo diversas condiciones de operación, utilizando todas las herramientas computacionales disponibles. A modo de complementar el abanico de herramientas de análisis de ATF, se desarrolló un código termo-mecánico por elementos finitos escrito en lenguaje OCTAVE. Los resultados indican que la línea de combustibles avanzados es prometedora ya que permitiría mejorar el desempeño global de los combustibles nucleares actuales.

Resumen en inglés

This work presents the study, development, improvement and validation of codes and simulation models of the behavior of nuclear fuels under irradiation in steady states and power ramps, including of PHWR, PWR, CAREM fuels and advanced designs such as the ATFs (Accident Tolerant Fuels ). In particular, the FUELROD, BaCo and FRAPCON codes were studied. For each of them, the computational aspects were analyzed and the predictive capacities were evaluated under different load states and power histories. In addition, several validation and comparison tasks were carried out within international frameworks for intercomparison and testing of codes, such as CRP FUMEX I, II, III, ACTOF of IAEA and analysis of PCI-SCC during power ramps of NEA-OECD. FUELROD is a simple and academically oriented code that proved to be very effective for steady-state calculations and is considered as a remarkable tool for parametric analysis, conceptual design, training in the area of fuel rods design, and for teaching in nuclear fuel and materials courses of the Nuclear Engineering career. As part of the research, version 3.0 of the FUELROD code was developed, which presents several updates to physical models, improvements and corrections in the calculations and an extension of the code's application for accident-tolerant fuels with advanced materials. On the other hand, BaCo and FRAPCON turn out to be much more complex tools that allow a detailed treatment of the thermo-mechanical phenomena involved during the operation of the fuel rods. These last two codes are ideal for extremely precise calculations and analysis. The investigation ends with an extensive study on accident-tolerant fuels, where their performance under various operating conditions was evaluated using all available computational tools. To complement the range of ATF analysis tools, a finite element thermo-mechanical code written in OCTAVE language was developed. The results indicate that this new line of advanced fuels is very promising since they would improve the thermo-mechanical performance of current nuclear fuels.

Tipo de objeto:Tesis (Maestría en Ingeniería)
Palabras Clave:Nuclear fuels; Combustibles nucleares; Simulation; Simulación; Modeling; Modelización; Nuclear reactors; Reactores nucleares; [Analysis; Análisis; Designs; Diseño; Advanced materials; Materiales avanzados]
Referencias:[1] Marino, A. C., Baruj, A., Furlano, L., Losada, E. Combustibles tolerantes a accidentes. Revista de la CNEA, Año XVI - N° 63-64, Julio-Diciembre 2016. [2] Weisman, J., Eckart, R. Basic Elements of Light Water Reactor Fuel Rod Design. Nuclear Technology, 53 (3), 326-343, 1981. [3] Marino, A. C., Savino, E. J., Harriague, S. BACO (BArra COmbustible) Code Version 2.20: a thermo-mechanical description of a nuclear fuel rod. Journal of Nuclear Materials, 229, 155-168, 1996. [4] Geelhood, K., Luscher, W., Raynaud, P., Porter, I. FRAPCON-4.0: A Computer Code for the Calculation of Steady-State, Thermal Mechanical Behavior of Oxide Fuel Rods for High Burnup, 2015. [5] Garzarolli F, S. H., von Jan R. The main causes of fuel element failure in watercooled power reactors. Atomic Energy Review, 17, 31-128, 1979. [6] Fuel Modelling at Extended Burnup (FUMEX-II). No 1687 en TECDOC Series. Vienna: IAEA, 2012. URL https://www.iaea.org/publications/8782/ fuel-modelling-at-extended-burnup-fumex-ii. [7] Freeburn, H., Pati, S., Fiero, I. Light water reactor fuel rod modeling code evaluation.Final report. Inf. téc., Combustion Engineering, Inc., Windsor, CT (USA), 1977. EPRI NP-369. [8] Lassmann, K. Preliminary comparison of URANUS-code results with results from EPRI modeling code evaluation project. Nuclear Engineering and Design, 56 (1), 151-161, 1980. [9] Whitmarsh, C. Review of Zircaloy-2 and Zircaloy-4 properties relevant to NS Savannah reactor design. Inf. téc., Oak Ridge National Laboratory, 1962. [10] MatWeb, L. MatWeb: Material Property Data, 2021. URL http://www.matweb.com. [11] Thermophysical Properties of Materials for Water Cooled Reactors. No 949 en TECDOC Series. Vienna: IAEA, 1997. URL https://www.iaea.org/publications/5601. [12] Analysis of Options and Experimental Examination of Fuels for Water Cooled Reactors with Increased Accident Tolerance (ACTOF). No 1921 en TECDOC Series. Vienna: IAEA, 2020. URL https://www.iaea.org/publications/14691. [13] Field, K. G., Snead, M. A., Yamamoto, Y., Terrani, K. A. Handbook on the Material Properties of FeCrAl Alloys for Nuclear Power Production Applications. Inf. téc., Oak Ridge National Laboratory, 2018. [14] Koyanagi, T., Katoh, Y., Jacobsen, G., Deck, C. Handbook of LWR SiC/SiC Cladding Properties-Rev 1, 2018. [15] Marino, A., Demarco, G., Furlano, L., Mosca, H., Bozzolo, G. An approach to the simulation of the behaviour of accident tolerant fuels. Reactor Fuel Performance Conference (Top Fuel 2018), 2018. [16] Gamble, K. A., Pastore, G., Andersson, D., Cooper, M. ATF material model development and validation for priority fuel concepts. Inf. téc., Idaho National Laboratory, 2019. [17] Purohit, A., Moszynaki, J. Thermal conductivity of the helium-argon system. Inf. téc., Argonne National Laboratory, 1979. [18] Marino, A. C. Computer simulation of the behaviour and performance of a CANDU fuel rod. 5th International Conference on CANDU fuel, Toronto, Ontario, Canada, 1997. [19] Marino, A. C., Florido, P. C. High power ramping in commercial phwr fuel at extended burnup. Nuclear Engineering and Design, 236 (13), 1371-1383, 2006. [20] Misfeldt, I. The D-COM blind problem on fission gas release. Inf. téc., International Atomic Energy Agency (IAEA), 1983. URL http://inis.iaea.org/search/search.aspx?orig_q=RN:15059452. [21] Chantoine, P. Fuel modelling at extended burnup. Report of the Coordinated Research Programme on Fuel Modelling at Extended Burnup-FUMEX, 1996, 1993. [22] Killeen, J., Turnbull, J., Sartori, E. Fuel modelling at extended burnup: IAEA coordinated research project FUMEX-II. En: International Meeting on LWR Fuel Performance, NUCLEAR FUEL: Addressing the future, Top Fuel, tomo 2006. 2006. [23] Calabrese, R. FUMEX III Project (Improvement of Computer Codes Used for Fuel Behaviour Simulation). ENEA Contribution. Inf. téc., 2013. [24] Marino, A., Demarco, G. An approach to WWER fuels with BaCo. 7 th International Conference on WWER Fuel Performance, Modelling and Experimental Support, 2007. [25] Marino, A., Pérez, E., Adelfang, P. Irradiation of Argentine MOX fuels: Postirradiation results and analysis. IAEA Technical Committee Meeting on Recycling of Plutonium and Uranium in Water Reactor Fuel IAEA-TECDOC-941, 1995. [26] Marino, A. C. Starting Point, Keys and Milestones of a Computer Code for the Simulation of the Behaviour of a Nuclear Fuel Rod. Science and Technology of Nuclear Installations, 2011, 2011. [27] Boneva, S., Calabrese, R., Chassie, G., Chulkin, D., Denis, A., Dutta, B., et al. Improvement of Computer Codes used for Fuel Behaviour Simulation (FUMEXIII), 2013. [28] Kolstad, E. A Study of the Thermal Behaviour of LWR Fuel Designs under Transient Power Conditions, 1984. [29] MacDonald, P., Thompson, L. MATPRO: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior. Inf. téc., SEE CODE-9502158 Aerojet Nuclear Co., Idaho Falls (USA)., 1976. [30] Rossiter, G., Massara, S., Amaya, M. OECD/NEA benchmark on pellet-clad mechanical interaction modelling with fuel performance codes. Inf. téc., Atomic Energy of Canada Limited, 2016. [31] Jens, W. H., Lottes, P. Analysis of heat transfer, burnout, pressure drop and density date for high-pressure water. Inf. téc., Argonne National Laboratory, 1951. [32] Wu, X., Sabharwall, P., Hales, J. Neutronics and fuel performance evaluation of accident tolerant fuel under normal operation conditions. Inf. téc., Idaho National Laboratory, 2014. [33] Feve£ek, M., Gurgen, A., Seshadri, A., Che, Y., Wagih, M., Phillips, B., et al. Development of Cr cold spray-coated fuel cladding with enhanced accident tolerance. Nuclear Engineering and Technology, 50 (2), 229-236, 2018. [34] Sweeney Jr, W. E., Batt, A. Electron probe and X-ray difraction measurements of intermediate phases in Zr difused with Cr, Fe, Ni, Cu and Mo. Journal of Nuclear Materials, 13 (1), 87-91, 1964. [35] Wenxin, X., Shihao, Y. Reaction diusion in chromium-zircaloy-2 system. China Nuclear Science and Technology Report, 2001. [36] Geelhood, K., Luscher, W. Degradation and Failure Phenomena of Accident Tolerant Fuel Concepts: Chromium Coated Zirconium Alloy Cladding. Report PNNL- 28437, January, 2019. [37] Bischo, J., Delafoy, C., Chaari, N., Vauglin, C., Buchanan, K., Barberis, P., et al. Cr-coated cladding development at Framatome. Top Fuel, 2018, A0152, 2018. [38] Leppänen, J., Pusa, M., Viitanen, T., Valtavirta, V., Kaltiaisenaho, T. The Serpent Monte Carlo code: Status, development and applications in 2013. Annals of Nuclear Energy, 82, 142-150, 2015. [39] Eaton, J. W., Bateman, D., Hauberg, S., et al. Gnu octave. Network thoery London, 1997. [40] Terrani, K. A. Accident tolerant fuel cladding development: Promise, status, and challenges. Journal of Nuclear Materials, 501, 13-30, 2018. [41] Alberty, J., Carstensen, C., Funken, S. A. Remarks around 50 lines of matlab: short finite element implementation. Numerical algorithms, 20 (2), 117-137, 1999. [42] Alberty, J., Carstensen, C., Funken, S. A., Klose, R. Matlab implementation of the finite element method in elasticity. Computing, 69 (3), 239-263, 2002. [43] Geuzaine, C., Remacle, J.-F. Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. International journal for numerical methods in engineering, 79 (11), 1309-1331, 2009. [44] Hallman, L. H. Advanced Fuels Modeling: Evaluating the Steady-State Performance of Carbide Fuel in Helium-Cooled Reactors Using FRAPCON 3.4, 2013. [45] Pastore, G., Gamble, K., Cherubini, M., Giovedi, C., Marino, A., Yamaji, A., et al. Benchmark of fuel performance codes for fecral cladding behavior analysis. págs. 1038-1047. 2020. 14th International Nuclear Fuel Cycle Conference, GLOBAL 2019 and Light Water Reactor Fuel Performance Conference, TOP FUEL 2019 ; Conference date: 22-09-2019 Through 27-09-2019.
Materias:Química > Materiales
Ingeniería nuclear > Combustibles nucleares
Divisiones:Presidencia > Gcia. Ciclo de combustible nuclear > Diseño, simulación y materiales > Laboratorio de simulación de materiales combustibles
Código ID:1052
Depositado Por:Tamara Cárcamo
Depositado En:09 Jun 2022 15:45
Última Modificación:09 Jun 2022 15:45

Personal del repositorio solamente: página de control del documento