Procesos de reseteo estocástico en modelos de sistemas socioeconómicos / Stochastic reset processes in models of socioeconomic systems

Gómez Garay, Ignacio T. (2021) Procesos de reseteo estocástico en modelos de sistemas socioeconómicos / Stochastic reset processes in models of socioeconomic systems. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
4Mb

Resumen en español

Los sistemas de agentes multiplicativos con reseteo estocástico son un modelo basado en agentes (MBA) conocido por generar distribuciones de probabilidad estacionarias de ley de potencia para los recursos individuales. Esta propiedad se considera valiosa en la literatura dada la abundancia de variables que presentan distribución de ley de potencias en diversos campos como la biología, economía, lingüística, entre otros. En esta Tesis de Maestría introducimos distintos esquemas de acoplamiento en el modelo original, tanto cooperativos como competitivos, lineales como no lineales, globales y distribuidos en el espacio, y estudiamos las propiedades estadísticas emergentes de cada caso. En particular, nos interesan las distribuciones marginales de recursos, que estudiamos combinando herramientas analíticas y computacionales. Encontramos que las leyes de potencia persisten en la gran mayoría de las poblaciones interactuantes estudiadas. En los capítulos sucesivos se establecen comparaciones entre las propiedades distintivas de cada modelo, y se discute el rango de validez de las soluciones analíticas obtenidas, que abarcan desde aproximaciones de campo medio a soluciones exactas para sistemas de pocos agentes.

Resumen en inglés

Multiplicative agent systems with stochastic reset are agent-based models (ABM) known for generating stationary power-law probability distributions for individual resources. This property is considered valuable in the literature, given the abundance of power-law distributed variables in various fields such as biology, economics, and linguistics. In this Master's Thesis, we introduce different coupling schemes in the original model, both cooperative and competitive, linear and nonlinear, global and space-extended, and we study the emergent statistical properties of each case. In particular, we are interested in the marginal distributions of resources we obtain by combining analytical and computational tools. We find that power laws persist in the vast majority of the studied populations. In the chapters that follow, we compare the distinctive properties of each model and the range of validity of the analytical solutions obtained, ranging from mean-field approximations to exact solutions for systems with few agents.

Tipo de objeto:Tesis (Maestría en Ciencias Físicas)
Palabras Clave:Chapman-kolmogorov equation; Ecuación de chapman-kolmogorov; [Stochastic resets; Reseteo estocástico Agent based models; Modelo basado en agentes; Power-law; Ley de potencias; Replicator dynamics; Dinámica del replicador; Multiplicative processes; Procesos multiplicativos]
Referencias:[1] Bruch, E., Atwell, J. Agent-based models in empirical social research. Sociological Methods & research, 44 (2), 186–221, 2015. [2] De Marchi, S., Page, S. E. Agent-based models. Annual Review of Political Science, 17, 1–20, 2014. [3] Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., et al. A standard protocol for describing individual-based and agent-based models. Ecological Modelling, 198 (1-2), 115–126, 2006. [4] Samanidou, E., Zschischang, E., Stauffer, D., Lux, T. Agent-based models of financial markets. Reports on Progress in Physics, 70 (3), 409, 2007. [5] Deissenberg, C., Van Der Hoog, S., Dawid, H. Eurace: A massively parallel agentbased model of the european economy. Applied Mathematics and Computation, 204 (2), 541–552, 2008. [6] Alfi, V., Cristelli, M., Pietronero, L., Zaccaria, A. Minimal agent based model for financial markets i. The European Physical Journal B, 67 (3), 385–397, 2009. [7] Bertoin, J. Random Fragmentation and Coagulation Processes. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2006. [8] Miller, J. A., Sivaramakrishnan, R., Tao, Y., Goldsmith, C. F., Burke, M. P., Jasper, A. W., et al. Combustion chemistry in the twenty first century: Developing theory-informed chemical kinetics models. Progress in Energy and Combustion Science, 83, 100886, 2021. [9] Hanopolskyi, A. I., Smaliak, V. A., Novichkov, A. I., Semenov, S. N. Autocatalysis: Kinetics, mechanisms and design. ChemSystemsChem, 3 (1), e2000026, 2021. [10] Mikhailov, A. S., Loskutov, A. Y. Foundations of Synergetics II: Chaos and Noise, tomo 52. Springer Science & Business Media, 2013. [11] Guerrini, L. The solow–swan model with a bounded population growth rate. Journal of Mathematical Economics, 42 (1), 14–21, 2006. [12] Taleb, N. N. The black swan: The impact of the highly improbable, tomo 2. Random house, 2007. [13] Zanette, D. H., Manrubia, S. Fat tails and black swans: Exact results for multiplicative processes with resets. Chaos: An Interdisciplinary Journal of Nonlinear Science, 30 (3), 033104, 2020. [14] Burlando, B. The fractal dimension of taxonomic systems. Journal of Theoretical Biology, 146 (1), 99–114, 1990. [15] Manrubia, S. C., Zanette, D. H. At the boundary between biological and cultural evolution: The origin of surname distributions. Journal of Theoretical Biology, 216 (4), 461–477, 2002. [16] Albeverio, S., Andrey, D., Giordano, P., Vancheri, A. The dynamics of complex urban systems: An interdisciplinary approach. Springer, 2007. [17] Gabaix, X. Power laws in economics and finance. Annu. Rev. Econ., 1 (1), 255– 294, 2009. [18] Manrubia, S. C., Zanette, D. H. Stochastic multiplicative processes with reset events. Phys. Rev. E, 59, 4945–4948, May 1999. [19] Nirei, M., Souma, W. Income distribution and stochastic multiplicative process with reset event. En: The Complex Dynamics of Economic Interaction, p´ags. 161–168. Springer, 2004. [20] Gardiner, C. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences, p´ags. 38, 47–51. Springer Series on Synergetics. Springer, 1985. [21] Sanders, J., Kandrot, E. CUDA by example: an introduction to general-purpose GPU programming. Addison-Wesley Professional, 2010. [22] Piessens, R., de Doncker, E. URL http://www.lahey.com/docs/lfpro79help/ slatec/DQAGIE.htm. [23] Chowdhury, D., Stauffer, D. Statistical Physics of Ideal Quantum Gases, p´ags. 216–251. 2005. [24] Schuster, P., Sigmund, K. Replicator dynamics. Journal of Theoretical Biology, 100 (3), 533–538, 1983. [25] Dawkins, R. Replicator selection and the extended phenotype 3. Zeitschrift f¨ur Tierpsychologie, 47 (1), 61–76, 1978. [26] Akin, E. The geometry of population genetics, tomo 31. Springer Science & Business Media, 2013. [27] Coste, J., Peyraud, J., Coullet, P. Asymptotic behaviors in the dynamics of competing species. SIAM Journal on Applied Mathematics, 36 (3), 516–543, 1979. [28] Eigen, M., Schuster, P. A principle of natural self-organization. Naturwissenschaften, 64 (11), 541–565, 1977. [29] Smith, J. M. The theory of games and the evolution of animal conflicts. Journal of Theoretical Biology, 47 (1), 209–221, 1974. [30] Hofbauer, J., Sigmund, K. Evolutionary Games and Population Dynamics. Cambridge University Press, 1998. [31] Masud, A., Bergman, L. A. Application of multi-scale finite element methods to the solution of the fokker–planck equation. Computer methods in applied mechanics and engineering, 194 (12-16), 1513–1526, 2005.
Materias:Física > Econofísica
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Sistemas complejos y altas energías > Física estadística interdisciplinaria
Código ID:1057
Depositado Por:Tamara Cárcamo
Depositado En:22 Jun 2022 15:49
Última Modificación:29 Jun 2022 10:41

Personal del repositorio solamente: página de control del documento