Generación de entrelazamiento en circuitos de qubits superconductores y resonadores cuánticos / Entanglement generation in superconducting qubit circuits and quantum resonators

Gallardo, Sebastián L. (2022) Generación de entrelazamiento en circuitos de qubits superconductores y resonadores cuánticos / Entanglement generation in superconducting qubit circuits and quantum resonators. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
18Mb

Resumen en español

En este trabajo se realizo un estudio teórico y numérico de la generación de entrelazamiento mediante interferometra Landau-Zener-Stuckelberg (LZS) en arquitecturas de electrodinámica cuántica de circuitos (circuit-QED). Se estudiaron dos tipos de arquitecturas de dos qubits superconductores: una en la cual ambos qubits están acoplados a un resonador compartido y otra en la cual cada qubit esta acoplado a un resonador y además están acoplados de forma directa entre s. En ambos casos los qubits se someten a un forzado armónico y simétrico. Se estudio la dinámica para el régimen unitario en ambas arquitecturas y para el régimen disipativo en la arquitectura con un resonador. Para estudiar el régimen unitario, se utilizaron aproximaciones de onda rotante (RWA) para reducir los Hamiltonianos de las arquitecturas correspondientes a Hamiltonianos efectivos diagonales en bloques, validos en el régimen resonante, donde las frecuencias características de los qubits y los resonadores son similares. Para obtener resultados numéricos se utilizo el formalismo de Floquet y el método de diagonalización del operador evolución para calcular las correspondientes cuasienergías y autoestados de Floquet. Se estudio la dependencia de las poblaciones y concurrencia (una medida de entrelazamiento entre los qubits) como función de los parámetros del sistema y del forzado armónico sobre los qubits. Para estudiar el régimen disipativo, se obtuvieron resultados numéricos usando la ecuación maestra de Floquet-Born-Markov con una RWA moderada aplicada, valida para acoplamiento suficientemente débil al ambiente. Se estudiaron las poblaciones y concurrencia del estado estacionario. Se propusieron dos protocolos para generar estados máximamente entrelazados en la arquitectura de dos qubits acoplados a un resonador compartido. El primero es un método valido en el régimen unitario y consiste en inducir interferometría LZS de dos niveles entre un estado máximamente entrelazado y uno separable, deteniendo el forzado tras un tiempo adecuado. El segundo método hace uso de la disipación y aprovecha las resonancias unitarias inducidas por la asimetría de los acoplamientos qubit-resonador combinadas con procesos de perdida de fotones.

Resumen en inglés

In this work a theoretical and numerical study of entanglement generation via Landau-Zener-Stuckelberg interferometry was done in the context of circuit quantum electrodynamics (circuit-QED) architectures. Two types of architectures containing two superconducting qubits were studied: one in which both qubits are coupled to a shared resonator and another in which each qubit is coupled to a separate resonator and both qubits are coupled directly to each other. In both cases the qubits are subjected to a harmonic and symmetric driving. The dynamics was studied for the unitary regime in both architectures and for the dissipative regime in the architecture with a single resonator. To study the unitary regime, Rotating Wave Approximations (RWA) were made use of to reduce the Hamiltonians of the corresponding architectures to block diagonal effective Hamiltonians, valid in the resonant regime, where the characteristic frequencies of the qubits and the resonators are similar. To obtain numerical results the Floquet formalism and the method of evolution operator diagonalization were employed to calculate the corresponding quasienergies and Floquet eigenstates. The dependence of populations and concurrence (a measure of entanglement between the qubits) was studied as a function of the system and driving parameters. To study the dissipative regime, numerical results were obtained using the Floquet- Born-Markov master equation with a moderate RWA applied, valid for suciently weak coupling to the environment. The populations and concurrence of the stationary state were analysed. Two protocols were proposed to generate maximally entangled states in the architecture of two qubits coupled to a shared resonator. The rst method valid in the unitary regime, and consists on inducing two-level LZS interferometry between a separable and a maximally entangled state, stopping the driving after an adequate amount of time. The second is a method that makes use of dissipation, which consists on utilizing the unitary resonances induced by the asymmetry of the qubit-resonator couplings in combination with photon loss processes.

Tipo de objeto:Tesis (Maestría en Ciencias Físicas)
Palabras Clave:[Entanglement generation; Generación de entrelazamiento; Landau-zener-stückelberg interferometry; Interferometría Landau-Zener-stückelberg; Superconducting qubits; Qubits superconductores; Open quantum systems; Sistemas cuánticos abiertos; Circuit quantum electrodynamics; Electrodinámica cuántica de circuitos; Floquet theory; Teoría de floquet]
Referencias:[1] Jozsa, R., Schumacher, B. A new proof of the quantum noiseless coding theorem. Journal of Modern Optics, 41 (12), 2343-2349, 1994. URL https://doi.org/10.1080/09500349414552191. 1 [2] Schumacher, B. Quantum coding. Phys. Rev. A, 51, 2738-2747, Apr 1995. URL https://link.aps.org/doi/10.1103/PhysRevA.51.2738. 1 [3] Steane, A. Quantum computing. Reports on Progress in Physics, 61 (2), 117-173, feb 1998. URL https://doi.org/10.1088/0034-4885/61/2/002. 1 [4] Ladd T., L. R. e. a., Jelezko F. Quantum computers. Nature, 464, 45-53, 2010. URL https://doi.org/10.1038/nature08812. 1 [5] Politi, A., Matthews, J. C., O'brien, J. L. Shor's quantum factoring algorithm on a photonic chip. Science, 325 (5945), 1221-1221, 2009. 1 [6] Matthews, J. C., Politi, A., Stefanov, A., O'brien, J. L. Manipulation of multiphoton entanglement in waveguide quantum circuits. Nature Photonics, 3 (6), 346-350, 2009. 1 [7] Blatt, R., Wineland, D. Entangled states of trapped atomic ions. Nature, 453 (7198), 1008-1015, 2008. 1 [8] Platzman, P., Dykman, M. Quantum computing with electrons oating on liquid helium. Science, 284 (5422), 1967-1969, 1999. 1 [9] Leuenberger, M. N., Loss, D. Quantum computing in molecular magnets. Nature, 410 (6830), 789-793, 2001. 1 [10] Kane, B. E. A silicon-based nuclear spin quantum computer. nature, 393 (6681), 133-137, 1998. 1 [11] Vrijen, R., Yablonovitch, E.,Wang, K., Jiang, H. W., Balandin, A., Roychowdhury, V., et al. Electron-spin-resonance transistors for quantum computing in silicongermanium heterostructures. Physical Review A, 62 (1), 012306, 2000. 1 [12] DiCarlo, L., Chow, J. M., Gambetta, J. M., Bishop, L. S., Johnson, B. R., Schuster, D., et al. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature, 460 (7252), 240-244, 2009. 1 [13] Solyom, J. Fundamentals of the Physics of Solids: Volume 3-Normal, Broken- Symmetry, and Correlated Systems, tomo 3. Springer Science & Business Media, 2010. 2 [14] Langford, N. K. Circuit qed (notas de clase), 2013. 3, 4 [15] J. Clarke, W. W. Superconducting quantum bits. Nature, 453, 1031-1042, 2008. 5 [16] Gu, X., Kockum, A. F., Miranowicz, A., xi Liu, Y., Nori, F. Microwave photonics with superconducting quantum circuits. Physics Reports, 718-719, 1-102, 2017. URL http://www.sciencedirect.com/science/article/pii/ S0370157317303290, microwave photonics with superconducting quantum circuits. 6 [17] Buluta, I., Ashhab, S., Nori, F. Natural and articial atoms for quantum computation. Reports on Progress in Physics, 74 (10), 104401, sep 2011. URL https://doi.org/10.1088/0034-4885/74/10/104401. 6 [18] Blais, A., Huang, R.-S., Wallra, A., Girvin, S. M., Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A, 69, 062320, Jun 2004. URL https://link.aps.org/doi/10.1103/PhysRevA.69.062320. 7 [19] Blais, A., Girvin, S. M., Oliver, W. D. Quantum information processing and quantum optics with circuit quantum electrodynamics. Nature Physics, 16 (3), 247-256, 2020. 7, 9 [20] Blais, A., Grimsmo, A. L., Girvin, S., Wallra, A. Circuit quantum electrodynamics. Reviews of Modern Physics, 93 (2), 025005, 2021. 7 [21] Mabuchi, H., Doherty, A. Cavity quantum electrodynamics: coherence in context. Science, 298 (5597), 1372-1377, 2002. 7 [22] Hood, C. J., Lynn, T., Doherty, A., Parkins, A., Kimble, H. The atom-cavity microscope: Single atoms bound in orbit by single photons. Science, 287 (5457), 1447-1453, 2000. [23] Raimond, J.-M., Brune, M., Haroche, S. Manipulating quantum entanglement with atoms and photons in a cavity. Reviews of Modern Physics, 73 (3), 565, 2001. 7 [24] Yan, F., Gustavsson, S., Kamal, A., Birenbaum, J., Sears, A. P., Hover, D., et al. The flux qubit revisited to enhance coherence and reproducibility. Nature com- munications, 7 (1), 1-9, 2016. 8 [25] Braak, D. Integrability of the rabi model. Physical Review Letters, 107 (10), 100401, 2011. 8 [26] Berns, D. M. Large amplitude driving of a persistent current qubit. Tesis Doctoral, MIT, 2008. 8 [27] Wallra, A., Schuster, D. I., Blais, A., Frunzio, L., Huang, R.-S., Majer, J., et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature, 431 (7005), 162-167, 2004. 9 [28] Xiang, Z.-L., Ashhab, S., You, J., Nori, F. Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Reviews of Modern Physics, 85 (2), 623, 2013. 9 [29] Nielsen, M. A., Chuang, I. Quantum computation and quantum information. American Association of Physics Teachers, 2002. 11 [30] Walter, M., Gross, D., Eisert, J. Multipartite entanglement. Quantum Information: From Foundations to Quantum Technology Applications, pags. 293-330, 2016. 12 [31] Sauer, S. Entanglement in periodically driven quantum systems. Tesis Doctoral, Physikalisches Institut, Albert-Ludwigs Universitat, 2013. 12 [32] Vedral, V., Plenio, M. B., Rippin, M. A., Knight, P. L. Quantifying entanglement. Phys. Rev. Lett., 78, 2275-2279, Mar 1997. URL https://link.aps.org/doi/10.1103/PhysRevLett.78.2275. 12 [33] Wootters, W. K. Entanglement of formation of an arbitrary state of two qubits. Physical Review Letters, 80 (10), 2245, 1998. 12 [34] Wootters, W. K. Entanglement of formation and concurrence. Quantum Inf. Comput., 1 (1), 27-44, 2001. 12 [35] Wendin, G. Quantum information processing with superconducting circuits: a review. Reports on Progress in Physics, 80 (10), 106001, sep 2017. URL https://doi.org/10.1088/1361-6633/aa7e1a. 13 [36] Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K. Quantum entanglement. Rev. Mod. Phys., 81, 865, 2009. 13 [37] Guhne, O., Toth, G. Entanglement detection. Phys. Rep., 474, 1, 2009. 13 [38] Berkley, A., Xu, H., Ramos, R., Gubrud, M., Strauch, F., Johnson, P., et al. Entangled macroscopic quantum states in two superconducting qubits. Science, 300 (5625), 1548-1550, 2003. 14 [39] Gramajo, A. L., Domnguez, D., Sanchez, M. J. Amplitude tuning of steady-state entanglement in strongly driven coupled qubits. Phys. Rev. A, 98, 042337, Oct 2018. URL https://link.aps.org/doi/10.1103/PhysRevA.98.042337. 15 [40] Gramajo, A. L., Domnguez, D., Sanchez, M. J. Ecient steady-stateentanglement generation in strongly driven coupled qubits. Phys. Rev. A, 104, 032410, Sep 2021. URL https://link.aps.org/doi/10.1103/PhysRevA.104.032410. 15 [41] Kimchi-Schwartz, M. E., Martin, L., Flurin, E., Aron, C., Kulkarni, M., Tureci, H. E., et al. Stabilizing entanglement via symmetry-selective bath engineering in superconducting qubits. Phys. Rev. Lett., 116, 240503, Jun 2016. URL https: //link.aps.org/doi/10.1103/PhysRevLett.116.240503. 16 [42] Fink, J. M., Bianchetti, R., Baur, M., Goppl, M., Steen, L., Filipp, S., et al. Dressed collective qubit states and the tavis-cummings model in circuit qed. Phys. Rev. Lett., 103, 083601, Aug 2009. URL https://link.aps.org/doi/10.1103/ PhysRevLett.103.083601. 16, 73 [43] Romero, G., Ballester, D.,Wang, Y. M., Scarani, V., Solano, E. Ultrafast quantum gates in circuit qed. Phys. Rev. Lett., 108, 120501, Mar 2012. URL https: //link.aps.org/doi/10.1103/PhysRevLett.108.120501. 16 [44] von Lupke, U., Beaudoin, F., Norris, L. M., Sung, Y., Winik, R., Qiu, J. Y., et al. Two-qubit spectroscopy of spatiotemporally correlated quantum noise in superconducting qubits. PRX Quantum, 1 (1), 010305, 2020. 18 [45] Orgiazzi, J.-L., Deng, C., Layden, D., Marchildon, R., Kitapli, F., Shen, F., et al. Flux qubits in a planar circuit quantum electrodynamics architecture: Quantum control and decoherence. Phys. Rev. B, 93, 104518, Mar 2016. URL https: //link.aps.org/doi/10.1103/PhysRevB.93.104518. 16 [46] Johnson, P. R., Strauch, F. W., Dragt, A. J., Ramos, R. C., Lobb, C., Anderson, J., et al. Spectroscopy of capacitively coupled josephson-junction qubits. Physical Review B, 67 (2), 020509, 2003. 18 [47] You, J. Q., Nakamura, Y., Nori, F. Fast two-bit operations in inductively coupled flux qubits. Phys. Rev. B, 71, 024532, Jan 2005. URL https://link.aps.org/doi/10.1103/PhysRevB.71.024532. 18 [48] Landau, L. Phys. Z. Sowjetunion 1, 88., 1932. 19 [49] Zener, C. Proc. R. Soc. (Lond.) A 137, 696, 1932. 19 [50] S.N. Shevchenko, F. N., S. Ashhab. Landau-zener-stuckelberg interferometry. Physics Reports, 492 (1), 1 - 30, 2010. URL http://www.sciencedirect.com/science/article/pii/S0370157310000815. 19, 20, 21, 22, 23 [51] Oliver, W. D., Yu, Y., Lee, J. C., Berggren, K. K., Levitov, L. S., Orlando, T. P. Mach-zehnder interferometry in a strongly driven superconducting qubit. Science, 310 (5754), 1653-1657, 2005. 19 [52] Berns, D. M., Oliver, W. D., Valenzuela, S. O., Shytov, A. V., Berggren, K. K., Levitov, L. S., et al. Coherent quasiclassical dynamics of a persistent current qubit. Phys. Rev. Lett., 97, 150502, Oct 2006. URL https://link.aps.org/doi/10.1103/PhysRevLett.97.150502. [53] Berns, D. M., Rudner, M. S., Valenzuela, S. O., Berggren, K. K., Oliver, W. D., Levitov, L. S., et al. Amplitude spectroscopy of a solid-state articial atom. Nature, 455 (7209), 51-57, 2008. [54] Oliver, W. D., Valenzuela, S. O. Large-amplitude driving of a superconducting articial atom. Quantum Information Processing, 8 (2), 261-281, 2009. [55] Izmalkov, A., van der Ploeg, S. H. W., Shevchenko, S. N., Grajcar, M., Il'ichev, E., Hubner, U., et al. Consistency of ground state and spectroscopic measurements on flux qubits. Phys. Rev. Lett., 101, 017003, Jul 2008. URL https://link.aps. org/doi/10.1103/PhysRevLett.101.017003. 19 [56] Sillanpaa, M., Lehtinen, T., Paila, A., Makhlin, Y., Hakonen, P. Continuous-time monitoring of landau-zener interference in a cooper-pair box. Phys. Rev. Lett., 96, 187002, May 2006. URL https://link.aps.org/doi/10.1103/PhysRevLett. 96.187002. 19 [57] Wilson, C. M., Duty, T., Persson, F., Sandberg, M., Johansson, G., Delsing, P. Coherence times of dressed states of a superconducting qubit under extreme driving. Phys. Rev. Lett., 98, 257003, Jun 2007. URL https://link.aps.org/doi/ 10.1103/PhysRevLett.98.257003. [58] Petta, J., Lu, H., Gossard, A. A coherent beam splitter for electronic spin states. Science, 327 (5966), 669-672, 2010. [59] Ribeiro, H., Petta, J. R., Burkard, G. Interplay of charge and spin coherence in landau-zener-stuckelberg-majorana interferometry. Phys. Rev. B, 87, 235318, Jun 2013. URL https://link.aps.org/doi/10.1103/PhysRevB.87.235318. [60] Forster, F., Petersen, G., Manus, S., Hanggi, P., Schuh, D., Wegscheider, W., et al. Characterization of qubit dephasing by landau-zener-stuckelberg-majorana interferometry. Phys. Rev. Lett., 112, 116803, Mar 2014. URL https://link.aps.org/doi/10.1103/PhysRevLett.112.116803. 19 [61] Blattmann, R., Hanggi, P., Kohler, S. Qubit interference at avoided crossings: The role of driving shape and bath coupling. Phys. Rev. A, 91, 042109, Apr 2015. URL https://link.aps.org/doi/10.1103/PhysRevA.91.042109. 19 [62] Mi, X., Kohler, S., Petta, J. R. Landau-zener interferometry of valley-orbit states in si/sige double quantum dots. Phys. Rev. B, 98, 161404, Oct 2018. URL https://link.aps.org/doi/10.1103/PhysRevB.98.161404. [63] Ferron, A., Domnguez, D., Sanchez, M. J. Tailoring population inversion in landau-zener-stuckelberg interferometry of flux qubits. Phys. Rev. Lett., 109, 237005, Dec 2012. URL https://link.aps.org/doi/10.1103/PhysRevLett. 109.237005. [64] Ferron, A., Domnguez, D., Sanchez, M. J. Dynamic transition in landau-zenerst uckelberg interferometry of dissipative systems: The case of the flux qubit. Phys. Rev. B, 93, 064521, Feb 2016. URL https://link.aps.org/doi/10.1103/PhysRevB.93.064521. [65] Gramajo, A. L., Domnguez, D., Sanchez, M. J. Revealing the system-bath coupling via landau-zener-stuckelberg interferometry in superconducting qubits. Phys. Rev. B, 100, 075410, Aug 2019. URL https://link.aps.org/doi/10. 1103/PhysRevB.100.075410. 19 [66] Ashhab, S., Johansson, J. R., Zagoskin, A. M., Nori, F. Two-level systems driven by large-amplitude elds. Phys. Rev. A, 75, 063414, Jun 2007. URL https://link.aps.org/doi/10.1103/PhysRevA.75.063414. 23, 68 [67] Shirley, J. H. Solution of the schrodinger equation with a hamiltonian periodic in time. Physical Review, 138 (4B), B979, 1965. 27 [68] Hatano, N., Suzuki, M. Finding exponential product formulas of higher orders. En: Quantum annealing and other optimization methods, pags. 37-68. Springer, 2005. 28 [69] Kohler, S. The interplay of chaos and dissipation in driven quantum systems. Tesis Doctoral, 1999. 54 [70] Wustmann, W. Statistical mechanics of time-periodic quantum systems. Tesis Doctoral, 2010. 54 [71] Szczygielski, K. On the application of floquet theorem in development of timedependent lindbladians. Journal of mathematical physics, 55 (8), 083506, 2014. 57, 58 [72] Diosi, L. Calderia-leggett master equation and medium temperatures. Physica A: Statistical Mechanics and its Applications, 199 (3-4), 517-526, 1993. 57 [73] Diosi, L. On high-temperature markovian equation for quantum brownian motion. EPL (Europhysics Letters), 22 (1), 1, 1993. [74] Gans, W., Blumen, A., Amann, A. Large-Scale Molecular Systems: Quantum and Stochastic Aspects|Beyond the Simple Molecular Picture, tomo 258. Springer Science & Business Media, 2013. [75] Pechukas, P. Reduced dynamics need not be completely positive. Physical review letters, 73 (8), 1060, 1994. 57 [76] A. L. Gramajo, M. J. S., D. Domnguez. Entanglement generation through the interplay of harmonic driving and interaction in coupled superconducting qubits. Eur. Phys. J. B, 90: 255, 2017. 68, 69, 75
Materias:Física > Computación cuántica
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Materia condensada > Teoría de sólidos
Código ID:1064
Depositado Por:Tamara Cárcamo
Depositado En:12 Jul 2022 09:51
Última Modificación:12 Jul 2022 09:51

Personal del repositorio solamente: página de control del documento