Roddick, Cristian J. (2022) Diseño e implementación de filtros sintonizables de microondas para telecomunicaciones / Design and implementation of tunable microwave filters for telecommunication. Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 8Mb |
Resumen en español
Hoy en día los sistemas de comunicaciones se encuentran omnipresentes en virtualmente todos los aspectos de la vida cotidiana. Sea inalámbrico o no, requieren indispensablemente filtros de radiofrecuencia y microondas en las diferentes etapas de los receptores y transmisores que los conforman. Una clase de filtro, denominado Pasabanda es de particular importancia para el funcionamiento de las cadenas de recepción y transmisión. La presente tesis tiene como objetivo explorar el diseño de filtros pasabanda reconfigurables en frecuencia. Para ello se analizarán las diferentes tecnologías de ajuste de frecuencia, con una sólida base teórica para la tecnología planar que emplearemos. Seguiremos con un estudio de la razón por la cual resultan ser difíciles de sintetizar y a continuación una solución práctica para atacar el problema de a partes. Se analizarán los mecanismos por los cuales se apartan del caso teórico ideal y los métodos para mejorarlos. Cinco filtros pasabanda se diseñarán, simularán, fabricarán, y caracterizarán en dos bandas en el rango de las microondas: Banda L y Banda C, cada uno mejorando sobre el diseño anterior. Alcanzar los 7 GHz de frecuencia central representó un desafío que logramos luego de mucho esfuerzo y aprendizaje. Finalizamos con los lineamientos para trabajos futuros de mayor complejidad.
Resumen en inglés
Nowadays communications systems are ubiquitous in virtually all aspects of everyday life. Whether wireless or otherwise, they certainly require radiofrequency and microwave filters in the different stages of the receivers and transmitters that incorporates them. One kind of filter, called Bandpass, is of particular importance for the operation of receive and transmit chains. This thesis aims to explore the design of frequency reconfigurable bandpass filters. To this end, the different frequency adjustment technologies will be analyzed, with a solid theoretical basis for the employed planar technology. We will continue with a study of the reason why they are difficult to synthesize and afterwards a practical solution to attack the problem piecewise. The mechanisms by which they step aside from the ideal theoretical case and the methods to improve them will be analyzed. Five bandpass filters will be designed, simulated, manufactured, and characterized in two bands in the microwave range: L-Band and C-Band, each one improving on the previous design. Reaching the 7 GHz central frequency represented a challenge that we achieved after much effort and learning. We end with the guidelines for future work of greater complexity.
Tipo de objeto: | Tesis (Maestría en Ingeniería) |
---|---|
Palabras Clave: | [Combline; Pseudocombline; Reconfigurable filter; Filtro reconfigurable; Varactor; Microstrip; Microtira; Electromagnetic simulation; Simulación electromagnética] |
Referencias: | [1] Tuttlebee, W. Software Defined Radio: Origins, Drivers and International Perspectives. John Wiley & Sons Ltd., 2002. 1 [2] Pollin, S., Timmers, M., Van der Perre, L. Software Defined Radios: From Smart(er) to Cognitive. Springer Netherland, 2011. 1 [3] Fette, B. Cognitive Radio Technology. Academic Press, Elsevier, 2009. 1 [4] Sadhu, B., Harjani, R. Cognitive Radio Receiver Front-Ends: RF/Analog Circuit Techniques. Springer, 2014. 1 [5] Cameron, R., Kudsia, C., Mansour, R. Microwave Filters for Communication Systems: Fundamentals, Design, and Applications. John Wiley & Sons Inc., 2009. 1 [6] Bowick, C. RF Circuit Design. Newnes, Elsevier, 2008. 2, 7 [7] Pramanick, P., Bhartia, P. Modern RF and Microwave Filter Design. Artech House Inc., 2016. 2 [8] Pozar, D. Microwave Engineering. John Wiley & Sons Inc., 2012. 3, 6, 13 [9] Hussaini, R., A. S. Abd-Alhameed, Rodriguez, J. Tunable r.f. filters: Survey and beyond. 18th IEEE International Conference on Electronics, Circuits and Systems, p´ags. 512–515, 2011. 3 [10] Hong, J. S. Microstrip Filters for RF/Microwave Applications. John Wiley & Sons Inc., 2011. 8, 13, 15, 20, 22 [11] Dishal, M. Alignment and adjustment of synchronously tuned multiple-resonantcircuit filters. Proc. IRE, 39 (11), 1448–1455, 1951. 17 [12] Matthaei, G. L., Young, L., Jones, E. M. T. Microwave Filters, Impedancematching Networks, and Coupling Structures. Artech House Inc., 1980. 18, 22 [13] Matthaei, G. L. Comb-line band-pass filters of narrow or moderate bandwidth. The Microwave Journal, 6, 82–91, 1963. 21 [14] Levy, R., Rhodes, J. D. A comb-line elliptic filter. IEEE Transactions on Microwave Theory and Techniques, 19 (1), 26–29, 1971. 22 [15] Caspi, S., Adelman, J. Design of combline and interdigital filters with tapped-line input. IEEE transactions on microwave theory and techniques, 36 (4), 759–763, 1988. 22 [16] Milligan, T. A. Dimensions of microstrip coupled lines and interdigital structures (short papers). IEEE Transactions on Microwave Theory and Techniques, 25 (5), 405–410, 1977. 22 [17] Zhu, Y., Zhang, X., Fang, G. A design method for microstrip pseudocombline filter. En: 2008 International Conference on Microwave and MillimeterWave Technology, tomo 1, p´ags. 304–307. 2008. 22 [18] Roddick, C. J., Rossini, L. A. B. Tunable microstrip combline l-band filter design, fabrication and characterization. En: 2020 IEEE Congreso Bienal de Argentina (ARGENCON), Resistencia, Argentina, p´ags. 1–5. IEEE, 2020. 25, 91 [19] Davidson, D. B. Computational electromagnetics for RF and microwave engineering. Cambridge University Press, 2011. 31 [20] Skyworks Solutions, Inc. SMV2019 to SMV2023 Series: Hyperabrupt Junction Tuning Varactors, 2020. URL https://www.skyworksinc.com/-/media/SkyWorks/ Documents/Products/201-300/SMV2019_to_SMV2023_Series_200074S.pdf. 35 [21] Quarles, T., Newton, A., Pederson, D., Sangiovanni-Vincentelli, A. Spice 3 version 3f5 user’s manual, 1994. 36 [22] Sangam, R. S., Kshetrimayum, R. S. Linear tapers: analysis, design and applications. En: 2018 IEEE MTT-S International Microwave and RF Conference (IMaRC), p´ags. 1–4. IEEE, 2018. 39 [23] Skyworks Solutions, Inc. SMV1405 to SMV1430 Series: Plastic-Packaged Abrupt Junction Tuning Varactors, 2020. URL https://www.skyworksinc.com/ -/media/SkyWorks/Documents/Products/101-200/SMV1405_1430_Series_ 200068W.pdf. 39, 65 [24] Silvester, P., Benedek, P. Microstrip discontinuity capacitances for right-angle bends, t junctions, and crossings. IEEE Transactions on Microwave Theory and Techniques, 21 (5), 341–346, 1973. 39 [25] Steer, M. B., Edwards, T. C. Foundations for Microstrip Circuit Design. John Wiley & Sons Ltd, 2016. 39 [26] Chen, C.-F., Wang, G.-Y., Li, J.-J. Microstrip switchable and fully tunable bandpass filter with continuous frequency tuning range. IEEE Microwave and Wireless Components Letters, 28 (6), 500–502, 2018. 46, 47 [27] Analog Devices, Inc. 1.0 GHz to 1.9 GHz Tunable Band-Pass Filter, 2018. URL https://www.analog.com/media/en/technical-documentation/ data-sheets/HMC890ALP5E.pdf. 46, 47 [28] Rogers Corporation. RT/duroid® 5870 /5880 High Frequency Laminates, 2017. URL https://rogerscorp.com/-/media/project/rogerscorp/ documents/advanced-electronics-solutions/english/data-sheets/ rt-duroid-5870---5880-data-sheet.pdf. 50 [29] Roddick, C. J., Rossini, L. A. B. C-band tunable microstrip filter. En: 2021 XIX Reuni´on de Trabajo en Procesamiento de la Informaci´on y Control (RPIC), San Juan, Argentina. 2021. 51, 91 [30] Skyworks Solutions, Inc. Varactor SPICE Models for RF VCO Applications, 2015. URL https://www.skyworksinc.com/-/media/SkyWorks/Documents/ Products/1-100/Varactor_SPICE_Model_AN_200315C.pdf. 57 [31] Kyocera - AVX. Ultra Low ESR “U” Series, C0G (NP0) Capacitors. URL https: //datasheets.kyocera-avx.com/U-Series.pdf. 65 [32] Analog Devices, Inc. 3.45 GHz to 6.25 GHz Tunable Band-Pass Filter, 2018. URL https://www.analog.com/media/en/technical-documentation/ data-sheets/HMC892ALP5E.pdf. 69, 70 [33] Hunter, I., Rhodes, J. Electronically tunable microwave bandpass filters. IEEE Transactions on Microwave Theory and Techniques, 30 (9), 1354–1360, 1982. 69, 70 [34] Cory, R. The nuts and bolts of tuning varactors. Skyworks Solutions, Inc, 2009. 76 [35] Hollos, S., Hollos, R. Using Varactors. Extrom Laboratories LLC, 2001. 77 |
Materias: | Ingeniería en telecomunicaciones > Telecomunicaciones |
Divisiones: | Gcia. de área de Investigación y aplicaciones no nucleares > Laboratorio de investigación aplicada en Telecomunicaciones |
Código ID: | 1065 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 13 Jun 2022 11:27 |
Última Modificación: | 13 Jun 2022 11:27 |
Personal del repositorio solamente: página de control del documento