Fogliatto, Ezequiel O. (2022) Simulación numérica del fenómeno de ebullición empleando el método de lattice Boltzmann / Numerical simulation of boiling using the lattice Boltzmann method. Tesis Doctoral en Ciencias de la Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 9Mb |
Resumen en español
En la presente tesis se analiza la expansión de la técnica de lattice Boltzmann (LB) hacia la simulación del transporte de energía en fujos multifásicos, buscando una alternativa para resolver computacionalmente el complejo fenómeno de ebullición. Desde un punto de vista formal LB puede interpretarse como un camino para encontrar la solución de una ecuación de Boltzmann, donde en lugar de discretizar directamente las ecuaciones de conservación macroscópicas, el método propone transportar una función de distribución en una grilla regular. A través de técnicas de expansión multiescala, como el análisis de Chapman-Enskog, es posible verificar que la grilla espacial, las velocidades discretas del espacio de fases, y el operador de colisión, pueden ser combinados adecuadamente para obtener la solución de las ecuaciones de conservación típicas de la mecánica de fuidos. La aplicación de esta metodología produce, en general, algoritmos de sencilla implementación, con una elevada capacidad de paralelización y una eficiencia computacional significativa. El camino propuesto en este trabajo para abordar la simulación de ebullición con LB sigue una metodología incremental. En primer lugar se comienza con la evaluación de modelos multifásicos isotérmicos existentes, que consiste en el desarrollo y aplicación de un problema de prueba, con solución analítica, que permite evaluar la capacidad de un modelo LB para representar el equilibrio termodinámico de un sistema líquido-vapor bajo diferentes condiciones hidrodinámicas. A través de esta solución de referencia es posible cuantificar el efecto de la fuerza gravitacional en la existencia y posición de una interfase en equilibrio, junto con la verificación de la reproducción adecuada de densidades de coexistencia y la resolución espacial del método analizado. Los modelos hidrodinámicos son expandidos con nuevas propuestas para resolver el transporte de energía en dos y tres dimensiones. Para ello, en esta tesis se adicionan ecuaciones de LB que permiten recuperar adecuadamente una ecuación de energía termodinámicamente consistente con la formulación pseudopotencial. Típicamente, el uso de esquemas LB tradicionales en la resolución de ecuaciones de advección-difusión escalares produce la recuperación de términos macroscópicos no deseados. En los modelos propuestos en este trabajo se demuestra que estos efectos pueden evitarse mediante la utilización de una distribución de equilibrio definida explícitamente en el espacio de momentos, de una matriz de relajación con coeficientes no nulos fuera de la diagonal principal, y de un término fuente implícito. Los nuevos modelos son validados mediante la simulación de un conjunto de experimentos numéricos con solución analítica, y demuestran una excelente capacidad para reproducir la creación y movimiento de las interfases. Por otro lado, son utilizados para demostrar cuantitativamente que aspectos tradicionales de la técnica, como consistencia e independencia de grilla, pueden evaluarse mediante una adimensionalización adecuada de las simulaciones empleando unidades reducidas. Las capacidades de los nuevos modelos y procedimientos para simular eficientemente problemas de ebullición son finalmente evaluadas mediante la reproducción de un experimento de generación de burbujas individuales sobre una superficie calefaccionada. En particular, los modelos LB de la familia pseudopotencial reproducen el comportamiento de fluidos con propiedades macroscópicas que no pueden fijarse con exactitud antes de la simulación del experimento, y cuyos valores deben determinarse mediante experimentos numéricos adicionales. La validación propuesta en esta tesis no sólo incluye la comparación de las simulaciones con los resultados experimentales, sino que incorpora un análisis detallado de la construcción del modelo computacional. En el caso bajo análisis, se evidencia una excelente reproducción del proceso de formación, crecimiento y desprendimiento de las burbujas. Los modelos introducidos en esta tesis se encuentran implementados en una herramienta numérica desarrollada en C++ que permite efectuar las simulaciones en arquitecturas de alto desempeño. El diseño de las bibliotecas posibilita una sencilla expansión e incorporación de nuevos modelos y ecuaciones.
Resumen en inglés
In this thesis, the expansion of the lattice Boltzmann (LB) technique towards the resolution of energy transport in multiphase flows is analyzed, building a path to efficiently tackle the challenging boiling phenomena. From a formal viewpoint, LB is a particular alternative to find a solution of the Boltzmann equation, where a distribution function is transported on a regular grid instead of discretizing the target equations. Multiscale expansion techniques, such as the Chapman-Enskog analysis, show that a suitable combination of the spatial grid, the discrete velocities in the phase space, and the collision operator, can solve the typical conservation equations of fuid mechanics. The application of this methodology produces simple, highly-parallelizable algorithms that exhibit a remarkable computational efficiency. The approach to simulate boiling with LB follows an incremental methodology. In the first place, existing isothermal multiphase models are evaluated using a novel test problem, with an analytical solution, which evaluates the capability of an LB model to represent the thermodynamic equilibrium of a liquid-vapor system under different hydrodynamic conditions. The use of this reference solution enables the quantification of the effect of the gravitational force on the existence and position of interphase in equilibrium, together with the verification of the adequate reproduction of coexistence densities and the spatial resolution of the method. Isothermal models are further expanded to solve the energy transport in two and three dimensions. LB equations are added to adequately recover an energy equation that is thermodynamically consistent with the pseudopotential formulation. Typically, traditional LB schemes for scalar advection-diffusion equations bring about unwanted non-physical macroscopic terms. The models proposed in this thesis show that these effects can be avoided by using an equilibrium distribution explicitly defined in the moment space, a relaxation matrix with of-diagonal coefficients, and an implicit source term. The new models are validated by simulating a set of numerical experiments with an analytical solution, and they demonstrate an excellent ability to reproduce the creation and movement of interphases. On the other hand, they are used to demonstrate quantitatively that traditional aspects of the technique, such as consistency and grid independence, can be evaluated with an adequate representation of the simulation results in reduced units. The capabilities of the new models to simulate boiling problems are finally evaluated by reproducing a single bubble generation experiment on a heated surface. In particular, pseudopotential LB models reproduce macroscopic properties that are not known before the simulation and must be determined by conducting additional numerical experiments. The validation proposed in this thesis not only includes the comparison of the simulations with the experimental results but also incorporates a detailed analysis of the setup of the computational model. In this case, an excellent reproduction of the formation, growth, and release of the bubbles is observed. The models developed in this thesis are implemented in a numerical tool developed in C ++ that can be executed on high-performance architectures. The proposed library design allows the expansion and incorporation of new models and equations in a simple way.
Tipo de objeto: | Tesis (Tesis Doctoral en Ciencias de la Ingeniería) |
---|---|
Palabras Clave: | Heat transfer; Transferencia de calor; Boiling; Ebullición; Multiphase flow; Flujo multifásico; [Lattice Boltzmann; Pseudopotential; Pseudopotencial; Numerical methods; Métodos numéricos] |
Referencias: | [1] Dhir, V. K. Boiling Heat Transfer. Annual review of fluid mechanics, 30, 365-401, 1998. 1 [2] Mudawar, I. Recent Advances in High-Flux, Two-Phase Thermal Management. Proceedings of the ASME 2013 Heat Transfer Summer Conference, HT2013-17046, 2013. 1 [3] Zhang, L., Gong, S., Lu, Z., Cheng, P., Wang, E. N. A uniffed relationship between bubble departure frequency and diameter during saturated nucleate pool boiling. International Journal of Heat and Mass Transfer, 165, 120640, 2021. 1 [4] Dhruv, A., Balaras, E., Riaz, A., Kim, J. An investigation of the gravity effects on pool boiling heat transfer via high-delity simulations. International Journal of Heat and Mass Transfer, 180, 121826, 2021. 1, 2 [5] Lin, Y., Li, J., Luo, Y., Li, W., Luo, X., Kabelac, S., et al. Conjugate heat transfer analysis of bubble growth during flow boiling in a rectangular microchannel. International Journal of Heat and Mass Transfer, 181, 121828, 2021. 1 [6] Zhang, L., Gong, S., Lu, Z., Cheng, P., Wang, E. N. Boiling crisis due to bubble interactions. International Journal of Heat and Mass Transfer, 182, 121904, 2022. 1 [7] Swartz, B., Wu, L., Zhou, Q., Hao, Q. Machine learning predictions of critical heat fluxes for pillar-modied surfaces. International Journal of Heat and Mass Transfer, 180, 121744, 2021. 1 [8] Liang, G., Mudawar, I. Review of nanoscale boiling enhancement techniques and proposed systematic testing strategy to ensure cooling reliability and repeatability. Applied Thermal Engineering, 184, 115982, 2021. 1 [9] Li, W., Dai, R., Zeng, M., Wang, Q. Review of two types of surface modification on pool boiling enhancement: Passive and active. Renewable and Sustainable Energy Reviews, 130, 109926, 2020. 1 [10] Liang, G., Mudawar, I. Review of pool boiling enhancement by surface modification. International Journal of Heat and Mass Transfer, 128, 892-933, ene. 2019. 1, 138 [11] Yazdani, M., Radcliff, T., Soteriou, M., Alahyari, A. A. A high-delity approach towards simulation of pool boiling. Physics of Fluids, 28 (1), 012111, ene. 2016. 1, 2 [12] Lay, J. H., Dhir, V. K. Shape of a Vapor Stem During Nucleate Boiling of Saturated Liquids. Journal of Heat Transfer, 117 (2), 394-401, 1995. 2 [13] Son, G., Dhir, V. K. Numerical simulation of saturated film boiling on a horizontal surface. Journal of heat transfer, 119 (3), 525-33, 1997. 2 [14] Son, G., Dhir, V. K. Numerical simulation of film boiling near critical pressures with a level set method. TRANSACTIONS-AMERICAN SOCIETY OF ME- CHANICAL ENGINEERS JOURNAL OF HEAT TRANSFER, 120, 183-192, 1998. 2 [15] Dhir, V. K. Mechanistic Prediction of Nucleate Boiling Heat Transfer-Achievable or a Hopeless Task? Journal of Heat Transfer, 128 (1), 1, 2006. 2 [16] Aidun, C. K., Clausen, J. R. Lattice-Boltzmann Method for Complex Flows. Annual Review of Fluid Mechanics, 42 (1), 439-472, ene. 2010. 2 [17] Luo, L.-S. Unied Theory of Lattice Boltzmann Models for Nonideal Gases. Physical Review Letters, 81 (8), 1618-1621, ago. 1998. 5 [18] Lallemand, P., Luo, L.-S. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. Physical Review E, 61 (6), 6546, 2000. 5, 19 [19] Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., Viggen, E. M. The Lattice Boltzmann Method - Principles and Practice. Graduate Texts in Physics. Springer International Publishing Switzerland, 2017. 5, 22, 23, 70, 84, 96 [20] Succi, S. The lattice Boltzmann equation: for complex states of flowing matter. First edition edón. Oxford: Oxford University Press, 2018. OCLC: 1022116988. 5, 23, 69 [21] Chapman, S., Cowling, T. G. The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases. Cambridge university press, 1970. 7, 22 [22] He, X., Luo, L.-S. Lattice Boltzmann model for the incompressible Navier-Stokes equation. Journal of statistical Physics, 88 (3-4), 927-944, 1997. 10 [23] Shan, X., Yuan, X.-F., Chen, H. Kinetic theory representation of hydrodynamics: a way beyond the Navier-Stokes equation. Journal of Fluid Mechanics, 550, 413, 2006. 10, 12 [24] Grad, H. On the kinetic theory of rareffed gases. Communications on Pure and Applied Mathematics, 2 (4), 331-407, 1949. 12 [25] Wiener, N. The Fourier integral and certain of its applications. Cambridge University Press, 1989. 12 [26] d'Humieres, D., Ginzburg, I., Krafczyk, M., Lallemand, P., Luo, L.-S. Multiplerelaxation- time lattice Boltzmann models in three dimensions. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 360 (1792), 437-451, mar. 2002. 13 [27] Qian, Y. H., d'Humières, D., Lallemand, P. Lattice BGK models for Navier- Stokes equation. EPL (Europhysics Letters), 17 (6), 479, 1992. 16 [28] Guo, Z., Shu, C. Lattice Boltzmann method and its applications in engineering. Advances in computational fuid dynamics. New Jersey: World Scientific, 2013. 16, 23, 29, 31 [29] Frisch, U., d'Humières, D., Hasslacher, B., Lallemand, P., Pomeau, I., Rivet, J.-P. Lattice gas hydrodynamics in two and three dimensions. Complex Systems, 1, 649-707, 1987. 16 [30] He, X., Shan, X., Doolen, G. D. Discrete Boltzmann equation model for nonideal gases. Physical Review E, 57 (1), R13, 1998. 18 [31] Holdych, D. J., Noble, D. R., Georgiadis, J. G., Buckius, R. O. Truncation error analysis of lattice Boltzmann methods. Journal of Computational Physics, 193 (2), 595-619, 2004. 19 [32] Silva, G., Semiao, V. Truncation errors and the rotational invariance of threedimensional lattice models in the lattice Boltzmann method. Journal of Computational Physics, 269, 259-279, 2014. 19 [33] Succi, S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Numerical Mathematics and Scientific Computation. Oxford: Oxford University Press, 2001. 23 [34] Fogliatto, E. O., Clausse, A., Teruel, F. E. Simulation of phase separation in a Van der Waals fluid under gravitational force with Lattice Boltzmann method. International Journal of Numerical Methods for Heat & Fluid Flow, pág. 16, 2019. 29, 53, 72, 85 [35] Scardovelli, R., Zaleski, S. Direct numerical simulation of free surface and interfacial flow. Annual Review of Fluid Mechanics, 31 (1), 567-603, ene. 1999. 30 [36] Liu, H., Valocchi, A. J., Kang, Q. Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations. Physical Review E, 85 (4), 046309, abr. 2012. 30 [37] Gunstensen, A. K., Rothman, D. H., Zaleski, S., Zanetti, G. Lattice Boltzmann model of immiscible fluids. Physical Review A, 43 (8), 4320, 1991. 30, 31 [38] Shan, X., Chen, H. Lattice Boltzmann model for simulating flows with multiple phases and components. Physical Review E, 47 (3), 1815-1819, 1993. 30, 33 [39] Shan, X., Chen, H. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Physical Review E, 49 (4), 2941, 1994. 30, 33, 35, 43 [40] Chen, L., Kang, Q., Mu, Y., He, Y.-L., Tao, W.-Q. A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications. International Journal of Heat and Mass Transfer, 76, 210-236, sep. 2014. 30, 141, 144 [41] Swift, M. R., Orlandini, E., Osborn, W. R., Yeomans, J. M. Lattice Boltzmann simulations of liquid-gas and binary fluid systems. Physical Review E, 54 (5), 5041, 1996. 30, 31 [42] Inamuro, T., Konishi, N., Ogino, F. A Galilean invariant model of the lattice Boltzmann method for multiphase fluid flows using free-energy approach. Computer Physics Communications, 129 (1-3), 32-45, 2000. 30 [43] He, X., Chen, S., Zhang, R. A Lattice Boltzmann Scheme for Incompressible Multiphase Flow and Its Application in Simulation of Rayleigh-Taylor Instability. Journal of Computational Physics, 152, 642-663, 1999. 30, 32 [44] Liang, H., Shi, B. C., Guo, Z. L., Chai, Z. H. Phase-field-based multiplerelaxation- time lattice Boltzmann model for incompressible multiphase ows. Physical Review E, 89 (5), mayo 2014. 30 [45] Rothman, D. H., Keller, J. M. Immiscible cellular-automaton fluids. Journal of Statistical Physics, 52 (3-4), 1119-1127, 1988. 31 [46] Kuzmin, A., Mohamad, A. A., Succi, S. Multi-relaxation time lattice boltzmann model for multiphase flows. International Journal of Modern Physics C, 19 (06), 875-902, 2008. 32 [47] Jacqmin, D. Calculation of Two-Phase Navier-Stokes Flows Using Phase-Field Modeling. Journal of Computational Physics, 155 (1), 96-127, oct. 1999. 32 [48] Ding, H., Spelt, P. D., Shu, C. Diffuse interface model for incompressible twophase flows with large density ratios. Journal of Computational Physics, 226 (2), 2078-2095, oct. 2007. 32, 96 [49] Huang, H., Sukop, M. C., Lu, X.-Y. Multiphase lattice Boltzmann methods: theory and application. Chichester, West Sussex: John Wiley and Sons, Inc, 2015. 33, 70 [50] Li, Q., Luo, K., Kang, Q., He, Y., Chen, Q., Liu, Q. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Progress in Energy and Combustion Science, 52, 62-105, 2016. 34, 144 [51] Leclaire, S., Pellerin, N., Reggio, M., Trépanier, J.-Y. Unsteady immiscible multiphase flow validation of a multiple-relaxation-time lattice Boltzmann method. Journal of Physics A: Mathematical and Theoretical, 47 (10), 105501, 2014. 34 [52] Leclaire, S., Pellerin, N., Reggio, M., Trépanier, J.-Y. Enhanced equilibrium distribution functions for simulating immiscible multiphase flows with variable density ratios in a class of lattice Boltzmann models. International Journal of Multiphase Flow, 57, 159-168, 2013. 34 [53] Huang, H., Huang, J.-J., Lu, X.-Y., Sukop, M. C. On simulations of high-density ratio flows using color-gradient multiphase lattice Boltzmann models. International Journal of Modern Physics C, 24 (04), 1350021, 2013. 34 [54] Li, Q., Luo, K. H., Li, X. J. Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model. Physical Review E, 87 (5), 2013. 35, 45, 51, 109, 180, 183 [55] Lee, T., Lin, C.-L. A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio. Journal of Computational Physics, 206 (1), 16-47, jun. 2005. 35, 83 [56] Safari, H., Rahimian, M. H., Krafczyk, M. Consistent simulation of droplet evaporation based on the phase-field multiphase lattice Boltzmann method. Physical Review E, 90 (3), sep. 2014. 35, 133 [57] Márkus, A., Házi, G. On pool boiling at microscale level: The effect of a cavity and heat conduction in the heated wall. Nuclear Engineering and Design, 248, 238-247, jul. 2012. 35 [58] Gong, S., Cheng, P. Lattice Boltzmann simulations for surface wettability effects in saturated pool boiling heat transfer. International Journal of Heat and Mass Transfer, 85, 635-646, jun. 2015. 35 [59] Safari, H., Rahimian, M. H., Krafczyk, M. Extended lattice Boltzmann method for numerical simulation of thermal phase change in two-phase fluid flow. Physical Review E, 88 (1), 2013. 35, 91 [60] Shan, X. Pressure tensor calculation in a class of nonideal gas lattice Boltzmann models. Physical Review E, 77 (6), jun. 2008. 36, 41, 42, 47, 113 [61] Blundell, S., Blundell, K. Concepts in Thermal Physics. Oxford University Press, 2006. 37 [62] McQuarrie, D. A., Simon, J. D. Molecular Thermodynamics. University Science Books, 1999. 40 [63] Yuan, P., Schaefer, L. Equations of state in a lattice Boltzmann model. Physics of Fluids, 18 (4), 042101, 2006. 40, 150 [64] He, X., Doolen, G. D. Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows. Journal of Statistical Physics, 107 (1-2), 309-328, 2002. 41 [65] Sbragaglia, M., Benzi, R., Biferale, L., Succi, S., Sugiyama, K., Toschi, F. Generalized lattice Boltzmann method with multirange pseudopotential. Physical Review E, 75 (2), feb. 2007. 43, 45 [66] Hu, A., Li, L., Uddin, R., Liu, D. Contact angle adjustment in equation-ofstate-based pseudopotential model. Physical Review E, 93 (5), 053307, 2016. 43, 144 [67] Li, Q., Luo, K. H. Achieving tunable surface tension in the pseudopotential lattice Boltzmann modeling of multiphase flows. Physical Review E, 88 (5), nov. 2013. 43 [68] Shan, X. Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models. Physical Review E, 73 (4), 047701, 2006. 44 [69] Li, Q., Luo, K. H., Li, X. J. Forcing scheme in pseudopotential lattice Boltzmann model for multiphase ows. Physical Review E, 86 (1), 2012. 46, 128 [70] Zou, Q., He, X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Physics of Fluids, 9 (6), 1591, 1997. 47, 56, 113 [71] Guo, Z., Zheng, C., Shi, B. Discrete lattice effects on the forcing term in the lattice Boltzmann method. Physical Review E, 65 (4), abr. 2002. 46, 52 [72] McCracken, M. E., Abraham, J. Multiple-relaxation-time lattice-Boltzmann model for multiphase flow. Physical Review E, 71 (3), mar. 2005. 52 [73] Li, Q., Luo, K. H., Gao, Y. J., He, Y. L. Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows. Physical Review E, 85 (2), 2012. 52 [74] Berberan-Santos, M. N., Bodunov, E. N., Pogliani, L. Liquid-vapor equilibrium in a gravitational field. American Journal of Physics, 70 (4), 438, 2002. 52, 85 [75] Fogliatto, E. O., Clausse, A., Teruel, F. E. Assessment of a double-MRT pseudopotential lattice Boltzmann model for multiphase flow and heat transfer simulations. International Journal of Thermal Sciences, 159, 2021. 69, 81, 85, 91, 94 [76] Alexander, F. J., Chen, S., Sterling, J. D. Lattice Boltzmann thermohydrodynamics. Physical Review E, 47 (4), R2249-R2252, 1993. 69 [77] Dong, Z., Xu, J., Jiang, F., Liu, P. Numerical study of vapor bubble effect on flow and heat transfer in microchannel. International Journal of Thermal Sciences, 54, 22-32, abr. 2012. 70 [78] Li, Q., Kang, Q., Francois, M., He, Y., Luo, K. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability. Inter- national Journal of Heat and Mass Transfer, 85, 787-796, 2015. 70, 99, 103, 138 [79] Márkus, A., Házi, G. Simulation of evaporation by an extension of the pseudopotential lattice Boltzmann method: A quantitative analysis. Physical Review E, 83 (4), 2011. 70, 72, 92, 185 [80] Huang, R., Wu, H. A modified multiple-relaxation-time lattice Boltzmann model for convection-diffusion equation. Journal of Computational Physics, 274 (Supplement C), 50-63, oct. 2014. 70, 72, 77 [81] Li, Q., Zhou, P., Yan, H. J. Improved thermal lattice Boltzmann model for simulation of liquid-vapor phase change. Physical Review E, 96 (6), dic. 2017. 70, 180 [82] Huang, H.-B., Lu, X.-Y., Sukop, M. C. Numerical study of lattice Boltzmann methods for a convection-diffusion equation coupled with Navier-Stokes equations. Journal of Physics A: Mathematical and Theoretical, 44 (5), 055001, feb. 2011. 70, 72, 77 [83] Li, Q., Luo, K. H. Effect of the forcing term in the pseudopotential lattice Boltzmann modeling of thermal flows. Physical Review E, 89 (5), 2014. 70, 71 [84] Huang, R., Wu, H. Lattice Boltzmann model for the correct convection-diffusion equation with divergence-free velocity field. Physical Review E, 91 (3), 2015. 72, 77 [85] Cheng, Y., Li, J. Introducing unsteady non-uniform source terms into the lattice Boltzmann model. International Journal for Numerical Methods in Fluids, 56 (6), 629-641, 2008. 73 [86] Guo, Z., Zheng, C., Shi, B. An extrapolation method for boundary conditions in lattice Boltzmann method. Physics of Fluids, 14 (6), 2007, 2002. 84 [87] Inamuro, T., Yoshino, M., Inoue, H., Mizuno, R., Ogino, F. A Lattice Boltzmann Method for a Binary Miscible Fluid Mixture and Its Application to a Heat- Transfer Problem. Journal of Computational Physics, 179, 201-215, 2002. 84 [88] Patankar, S. V. Numerical Heat Transfer and Fluid Flow. Series in computational and physical processes in mechanics and thermal sciences. Hemisphere Publishing Corporation, 1980. 85 [89] Alexiades, V., Solomon, A. D. Mathematical modeling of melting and freezing processes. Hemisphere Publishing Corporation, 1993. 90 [90] Lou, Q., Guo, Z., Shi, B. Evaluation of outow boundary conditions for twophase lattice Boltzmann equation. Physical Review E, 87 (6), 063301, jun. 2013. 91, 133 [91] Ajaev, V. S., Homsy, G. M. Modeling shapes and dynamics of conffined bubbles. Annu. Rev. Fluid Mech., 38, 277-307, 2006. 96 [92] Hua, J., Lou, J. Numerical simulation of bubble rising in viscous liquid. Journal of Computational Physics, 222 (2), 769-795, mar. 2007. 96 [93] Freitas, C. J., Ghia, U., Celik, I., Roache, P., Raad, P. ASME's quest to quantify numerical uncertainty. AIAA Paper, 627, 2003, 2003. 98 [94] Fritz, W. Berechnung des Maximalvolumens von Dampfblasen. Physik. Zeitsch, 36, 379, 1935. 102 [95] Phan, H. T., Caney, N., Marty, P., Colasson, S., Gavillet, J. A model to predict the effect of contact angle on the bubble departure diameter during heterogeneous boiling. International Communications in Heat and Mass Transfer, 37 (8), 964-969, oct. 2010. URL http://linkinghub.elsevier.com/retrieve/pii/ S0735193310001478. 102 [96] Fei, L., Yang, J., Chen, Y., Mo, H., Luo, K. H. Mesoscopic simulation of threedimensional pool boiling based on a phase-change cascaded lattice Boltzmann method. Physics of Fluids, 32 (10), 103312, 2020. 103, 138 [97] Xu, A., Zhao, T., An, L., Shi, L. A three-dimensional pseudo-potential-based lattice Boltzmann model for multiphase flows with large density ratio and variable surface tension. International Journal of Heat and Fluid Flow, 56, 261-271, dic. 2015. 109, 144, 180 [98] Zhang, L., Wang, T., Kim, S., Jiang, Y. The effects of wall superheat and surface wettability on nucleation site interactions during boiling. International Journal of Heat and Mass Transfer, 146, 118820, ene. 2020. URL https://linkinghub.elsevier.com/retrieve/pii/S0017931019329941. 138 [99] Gregor£i£, P., Zupan£i£, M., Golobi£, I. Scalable Surface Microstructuring by a Fiber Laser for Controlled Nucleate Boiling Performance of High- and Low- Surface-Tension Fluids. Scientific Reports, 8 (1), 7461, dic. 2018. 138 [100] Liu, B., Liu, J., Zhang, Y., Wei, J., Wang, W. Experimental and theoretical study of pool boiling heat transfer and its CHF mechanism on femtosecond laser processed surfaces. International Journal of Heat and Mass Transfer, 132, 259-270, abr. 2019. 138 [101] Hutter, C. Experimental Pool Boiling Investigation of FC-72 on Silicon with Artificial Cavities, Integrated Temperature Micro-Sensors and Heater. Tesis Doctoral, The University of Edinburgh, 2009. 138, 158, 161 [102] Hutter, C., Kenning, D. B. R., Seane, K., Karayiannis, T. G., Lin, H., Cummins, G., et al. Experimental pool boiling investigations of FC-72 on silicon with artificial cavities and integrated temperature microsensors. Experimental Thermal and Fluid Science, 34 (4), 422-433, 2010. xvi, xvi, xvi, 138, 139, 140, 141, 158, 161 [103] Kupershtokh, A., Medvedev, D., Karpov, D. On equations of state in a lattice Boltzmann method. Computers & Mathematics with Applications, 58 (5), 965-974, sep. 2009. 142 [104] Gong, S., Cheng, P. Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows. Computers & Fluids, 53, 93-104, ene. 2012. 142 [105] Li, Q., Luo, K. H., Kang, Q. J., Chen, Q. Contact angles in the pseudopotential lattice Boltzmann modeling of wetting. Physical Review E, 90 (5), nov. 2014. 144, 179 [106] Sbragaglia, M., Benzi, R., Biferale, L., Succi, S., Toschi, F. Surface Roughness- Hydrophobicity Coupling in Microchannel and Nanochannel Flows. Physical Review Letters, 97 (20), 2006. 144 [107] Ma, X., Cheng, P. Numerical Simulation of Complete Pool Boiling Curves: From Nucleation to Critical Heat Flux Through Transition Boiling to Film Boiling. Nuclear Science and Engineering, 193 (1-2), 1-13, feb. 2019. 144 [108] Guo, Q., Cheng, P. 3D lattice Boltzmann investigation of nucleation sites and dropwise-to-filmwise transition in the presence of a non-condensable gas on a biomimetic surface. International Journal of Heat and Mass Transfer, 128, 185- 198, 2019. 144 [109] Wang, L., Huang, H.-b., Lu, X.-Y. Scheme for contact angle and its hysteresis in a multiphase lattice Boltzmann method. Physical Review E, 87 (1), 2013. 144 [110] Ding, H., Spelt, P. D. M. Wetting condition in diffuse interface simulations of contact line motion. Physical Review E, 75 (4), 2007. 144 [111] Larson Geisler, K. J. Buoyancy-driven two phase flow and boiling heat transfer in narrow vertical channels. PhD Thesis, University of Minnesota, 2007. 148 [112] Cao, Z., Zhou, J., Wei, J., Sun, D., Yu, B. Experimental and numerical study on bubble dynamics and heat transfer during nucleate boiling of FC-72. International Journal of Heat and Mass Transfer, 139, 822-831, ago. 2019. 148 [113] Fang, W.-Z., Chen, L., Kang, Q.-J., Tao, W.-Q. Lattice Boltzmann modeling of pool boiling with large liquid-gas density ratio. International Journal of Thermal Sciences, 114, 172-183, abr. 2017. 152 [114] Zhang, C., Hong, F., Cheng, P. Simulation of liquid thin film evaporation and boiling on a heated hydrophilic microstructured surface by Lattice Boltzmann method. International Journal of Heat and Mass Transfer, 86, 629-638, jul. 2015. 152 [115] Peng, D.-Y., Robinson, D. B. A New Two-Constant Equation of State. Industrial & Engineering Chemistry Fundamentals, 15 (1), 59-64, feb. 1976. 152 [116] Xu, X., Qian, T. Single-bubble dynamics in pool boiling of one-component fluids. Physical Review E, 89 (6), jun. 2014. 158 [117] PowerFlow. URL https://www.3ds.com/products-services/simulia/products/powerflow/. 167 [118] waLBerla. URL https://www.walberla.net/. 167 [119] Latt, J., Malaspinas, O., Kontaxakis, D., Parmigiani, A., Lagrava, D. Palabos: Parallel Lattice Boltzmann Solver. Computers & Mathematics with Applications, 2020. 167 [120] OpenLB. URL https://www.openlb.net/. 167 [121] CMake. URL http://cmake.org. 168 [122] SALOME. URL www.salome-platform.org. 171 [123] CGAL. URL https://www.cgal.org/. 172 [124] Coronel, T. Implementación de modelos lattice boltzmann para flujo multifásico con transferencia de calor en unidades de procesamiento gráfico. Proyecto Integrador, Instituto Balseiro, Universidad Nacional de Cuyo, 2020. 176, 177 [125] Gong, S., Cheng, P. A lattice Boltzmann method for simulation of liquid-vapor phase-change heat transfer. International Journal of Heat and Mass Transfer, 55 (17-18), 4923-4927, 2012. 180 |
Materias: | Ingeniería nuclear > Mecánica de fluidos |
Divisiones: | Aplicaciones de la energía nuclear > Tecnología de materiales y dispositivos > Mecánica computacional |
Código ID: | 1071 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 12 Jul 2022 15:40 |
Última Modificación: | 12 Jul 2022 15:40 |
Personal del repositorio solamente: página de control del documento