Stella, Valentina M. (2022) Estudio y modelado de los procesos de difusión del H en aleaciones base Circonio utilizando imágenes con neutrones / Study and modeling of hydrogen diffusion process in zirconium alloys using neutron images. Proyecto Integrador Ingeniería Nuclear, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 7Mb |
Resumen en español
En la actualidad, la mayoría de los reactores nucleares en operación utilizan aleaciones base Zr en vainas de elementos combustibles, tubos de presión y tubos de calandria debido a la excelente combinación de propiedades neutrónicas y mecánicas que poseen. Durante la operación normal de un reactor de potencia, los componentes internos están sometidos a altas presiones y temperaturas por lo que en las zonas en contacto con el refrigerante, que puede ser agua liviana o agua pesada, se producen procesos de oxidación, originando el ingreso de hidrógeno (H) dentro del material lo que puede llevar a un proceso de fragilización por H. En particular, las aleaciones de Zr se ven afectadas por la fractura diferida por hidruros o DHC (Delayed Hydride Cracking). Por lo tanto, un aspecto importante a conocer en estos materiales es la velocidad de migración del H a las temperaturas de servicio, lo que está directamente relacionado con su coeficiente de difusión. Debido a que el H presenta una atenuación varias veces mayor que el Zr frente a los neutrones fríos, los cambios en la transmisión de neutrones en una muestra de espesor constante pueden utilizarse para determinar la concentración de H en el material. Por ello la técnica de imágenes con neutrones o neurografía se presenta como una técnica adecuada para estudiar los procesos de redistribución de H dentro de estos materiales. En este trabajo se estudió la difusión de H en aleaciones de Zr de uso nuclear utilizando la técnica de imágenes con neutrones con la realización de tratamientos térmicos in − situ dentro del haz de neutrones. Se estudiaron muestras de Zr-2,5%Nb (% en peso), con diferentes microestructuras y tratamientos termomecánicos, y Zircaloy-2. Los experimentos se realizaron en la instalación de ANTARES del reactor FRM II, en Garching, Alemania, en los que se obtuvo una resolución espacial lineal de 35 μm y una sensibilidad de 10 ppm de H. Estos permitieron determinar la evolución temporal de los perfiles de contenido de H dentro de la muestra a las temperaturas del tratamiento térmico y los parámetros para cuantificarlos. Mediante dichos perfiles se obtuvieron también los coeficientes de difusión, cuya evolución temporal y dependencia con la temperatura del ensayo se analizó. Estos estudios permitieron analizar los procesos dinámicos relacionados con la redistribución de H en el material dada por un gradiente de concentración en este durante el tratamiento térmico, eventos que no pueden analizarse mediante estudios off −situ. Se estudió también el efecto de un gradiente de temperatura en la difusión del H en muestras de Zircaloy-2 con contenido inicial de H constante y se simuló el fenómeno de redistribución de H debido a dicho gradiente utilizando un modelo de solución de la ecuación de difusión con condiciones variables de T y solubilidad en cada punto. Se obtuvieron los perfiles de H correspondientes para las concentraciones iniciales y tiempo de evolución de los experimentos realizados.
Resumen en inglés
Currently, most of the nuclear reactors in operation use Zr-based alloys in fuel element cladding, pressure tubes and calandria tubes due to the excellent combination of neutron and mechanical properties that they possess. During the normal operation of a power reactor, the internal components are subjected to high pressures and temperatures, so that in the areas in contact with the coolant, which can be light water or heavy water, oxidation processes occur, causing the entry of hydrogen within the material which can lead to a hydrogen (H) embrittlement process. In particular, Zr alloys are affected by delayed hydride fracture (DHC). Therefore, an important aspect to know in these materials is the H migration speed at service temperatures, which is directly related to its diffusion coefficient. Because H exhibits several times greater attenuation than Zr against cold neutrons, changes in neutron transmission in a sample of constant thickness can be used to determine the concentration of H in the material. For this reason, the neutron imaging technique or neutrography is presented as an adequate technique to study the redistribution processes of H within these materials. In this work, the diffusion of H in Zr alloys for nuclear use was studied using the neutron imaging technique with in-situ heat treatments within the neutron beam. Samples of Zr-2.5%Nb (% by weight), with different microstructures and thermomechanical treatments, and Zircaloy-2 were studied. The experiments were carried out at the ANTARES facility of the FRM II reactor, in Garching, Germany, in which a linear spatial resolution of 35 μm and a sensitivity of 10 ppm H were obtained. These allowed determining the temporal evolution of the profiles of H content within the sample at the heat treatment temperatures and the parameters to quantify them. Using these profiles, the diffusion coefficients were also obtained, whose temporal evolution and dependence on the test temperature were analyzed. These studies allowed to analyze the dynamic processes related to the redistribution of H in the material given by a concentration gradient in it during the heat treatment, events that cannot be analyzed by off-situ studies. The effect of a temperature gradient on H diffusion in Zircaloy-2 samples with constant initial H content was also studied and the H redistribution phenomenon due to said gradient was simulated using a solution model of the diffusion equation with variable conditions of T and solubility at each point. The corresponding H profiles were obtained for the initial concentrations and time of evolution of the experiments carried out.
Tipo de objeto: | Tesis (Proyecto Integrador Ingeniería Nuclear) |
---|---|
Palabras Clave: | Hydrogen; Hidrógeno; Pressure tubes; Tubos de presión; Zrconium; Circonio; Alloys; Aleaciones; [Zr alloys; Aleaciones de Zr; Neutron imaging; Imágenes con neutrones; Solid state diffusion; Difusión en estado sólido; Soret effect, Efecto Soret ] |
Referencias: | [1] Srivastava, D., Dey, G., Banerjee, S. Evolution of microstructure during fabrication of zr-2.5 wt% nb alloy pressure tubes. Metallurgical and materials transactions A, 26 (10), 2707–2718, 1995. xi, 9 [2] Lustman, B., Kerze, F. The metallurgy of zirconium. McGraw-Hill, 1995. xi, 9 [3] Skinner, B., Dutton, R. Hydrogen diffusivity in α-β zirconium alloys and its role in delayed hydride cracking. En: Hydrogen effects on material behavior. 1990. xi, 10, 60 [4] Buitrago, N. L. Radiografia neutronica avanzada de componentes nucleares base circonio. Tesis Doctoral, Instituto Balseiro, UNCuyo, 2019. xi, xii, xiii, xv, xv, 12, 38, 39, 48, 49 [5] Buitrago Monta˜nez, N. L., Santisteban, J. R., Tartaglione, A., Mar´ın, J., Barrow, L., Daymond, M., et al. Determination of very low concentrations of hydrogen in zirconium alloys by neutron imaging, 2018. xi, xii, 16, 40, 49 [6] A. Sawatzky, R. L. T. C. D. C., G. A. Ledoux. Hydrogen diffusion in zirconiumniobium alloys. Academic press, Canada, 1982. xi, 18, 20, 21 [7] Sawatzky, A., Vogt, E. Mathematics of the thermal diffusion of hydrogen in zircaloy-2. Inf. tec., Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada), 1961. xi, 23, 82, 83 [8] Kim, Y. S., Ahn, S. B., Cheong, Y. M. Precipitation of crack tip hydrides in zirconium alloys. Journal of alloys and compounds, 429 (1-2), 221–226, 2007. xii, 25 [9] Santisteban, B. N. L. M. A. S. S. S. M. G. M. L. V. H. M. B. L. D. M., J. Diffusion of h in zircaloy-2 and zr2.5nb rolled plates between 250°c and 350°c by off-situ neutron imaging experiments. Journal Nuclear Materials, 2021. xii, 37, 42 [10] Santisteban, J., Vicente-Alvarez, M., Vizcaino, P., Banchik, A., Vogel, S., Tremsin, A., et al. Texture imaging of zirconium based components by total neutron crosssection experiments. Journal of Nuclear Materials, 425 (1-3), 218–227, 2012. xii, 36, 37 [11] Griffiths, M., Winegar, J., Buyers, A. The transformation behaviour of the β- phase in zr-2.5 nb pressure tubes. Journal of Nuclear Materials, 383 (1-2), 28–33, 2008. xiii, 7, 65, 66 [12] Sugisaki, M., Hashizume, K., Hatano, Y. Estimation of hydrogen redistribution in zircaloy cladding of spent fuel under thermal conditions of dry storage and evaluation of its influence on mechanical properties of the cladding. IAEATECDOC- 1316, 63, 2002. xiv, 83 [13] Bertolino, G. Deterioro de las propiedades mecanicas de aleaciones base circonio por interaccion con hidrogeno. Tesis Doctoral, Instituto Balseiro, UNCuyo, 2001. xv, xv, 2, 12 [14] Krishnan, A. M., R. Zirconium alloys in nuclear technology. Proceeding of the Indian Academy of Sciences Section C: Engineering Sciences, p´ags. 41–56, 1981. 2 [15] Cox, R. P., B. Hydriding mechanisms and impact on fuel performance. Advanced Nuclear Technology for ZIRAT52000, 2000. 3 [16] M. T. Jovanovic, R. L. E., Y. Ma. An sem study of -phase decomposition during annealing of zr-2.5%nb alloy. Journal Nuclear Materials, pags. 141–146, 1997. 10 [17] Aldridge, S., Cheadle, B. Age hardening of zr-2.5 wt% nb slowly cooled from the (α+ β) phase field. Journal of Nuclear Materials, 42 (1), 32–42, 1972. 10 [18] Dutton, R., Nuttall, K., Puls, M., Simpson, L. Mechanisms of hydrogen induced delayed cracking in hydride forming materials. Metallurgical Transactions A, 8 (10), 1553–1562, 1977. 12 [19] Crank, J. The mathematics of diffusion. Oxford university press, 1979. 13 [20] Kearns, J. Terminal solubility and partitioning of hydrogen in the alpha phase of zirconium, zircaloy-2 and zircaloy-4. Journal Nuclear Materials, pags. 292–303, 1967. 17 [21] A. Sawatzky, B. W. Hydrogen solubility in zirconium alloys determined by thermal diffusion. Journal Nuclear Materials, p´ags. 304–310, 1967. 18, 60, 74 [22] Byrne, T., Gadala, M., Leger, M. Hydrogen redistribution due to temperature gradients in zirconium alloys-a finite element approach, 1985. 18 [23] G. Domizzi, J. O.-G. G. B., R. Enrique. Blister growth in zirconium alloys: experimentation and modeling. Journal Nuclear Materials, 1995. 18 [24] Ritchie, I., Coleman, C., Roth, M., Grigoriev, V. Delayed hydride cracking in zirconium alloys in pressure tube nuclear reactors. International Atomic Energy Agency, Vienna, Austria, 2004. 23 [25] Markgraf, J., Domanus, J. Collimators for thermal neutron radiography an overview, 1987. 29 [26] Iwase, K., Sakuma, K., Kamiyama, T., Kiyanagi, Y., Piegsa, F., van den Brandt, B., et al. Nuclear instruments and methods in physics research a. 30 [27] Calzada, E., Gruenauer, F., M¨uhlbauer, M., Schillinger, B., Schulz, M. New design for the antares-ii facility for neutron imaging at frm ii. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 605 (1-2), 50–53, 2009. 31 [28] Schulz, M., Schillinger, B. Antares: Cold neutron radiography and tomography facility. Journal of large-scale research facilities JLSRF, 1, 17, 2015. 32 [29] Solorzano, E., Pardo-Alonso, S., Kardijlov, N., Manke, I., Wieder, F., Garcıa- Moreno, F., et al. Comparison between neutron tomography and x-ray tomography: A study on polymer foams. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 324, 29–34, 2014. 32 [30] Hungler, P., Bennett, L., Lewis, W., Brenizer, J., Heller, A. The use of neutron imaging for the study of honeycomb structures in aircraft. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 605 (1-2), 134–137, 2009. 34 [31] Michaloudaki, M., Lehmann, E., Kosteas, D. Neutron imaging as a tool for the non-destructive evaluation of adhesive joints in aluminium. International journal of adhesion and adhesives, 25 (3), 257–267, 2005. 34 [32] Mannes, D., Sonderegger, W., Hering, S., Lehmann, E., Niemz, P. Non-destructive determination and quantification of diffusion processes in wood by means of neutron imaging, 2009. 34 [33] Ludlow, D., Calebrese, C., Yu, S., Dannehy, C., Jacobson, D., Hussey, D., et al. Pem fuel cell membrane hydration measurement by neutron imaging. Journal of Power Sources, 162 (1), 271–278, 2006. 34 [34] Heubner, F., Hilger, A., Kardjilov, N., Manke, I., Kieback, B., Gondek, L., et al. In-operando stress measurement and neutron imaging of metal hydride composites for solid-state hydrogen storage. Journal of Power Sources, 397, 262–270, 2018. 34 [35] Zhang, P., Wittmann, F. H., Lura, P., M¨uller, H. S., Han, S., Zhao, T. Application of neutron imaging to investigate fundamental aspects of durability of cementbased materials: A review. Cement and Concrete Research, 108, 152–166, 2018. 34 [36] Roshankhah, S., Marshall, J., Tengattini, A., Ando, E., Rubino, V., Rosakis, A., et al. Neutron imaging: a new possibility for laboratory observation of hydraulic fractures in shale? G´eotechnique Letters, 8 (4), 316–323, 2018. 34 [37] Brooks, A. J., Ge, J., Kirka, M. M., Dehoff, R. R., Bilheux, H. Z., Kardjilov, N., et al. Porosity detection in electron beam-melted ti-6al-4v using high-resolution neutron imaging and grating-based interferometry. Progress in Additive Manufacturing, 2 (3), 125–132, 2017. 34 [38] Tremsin, A., Gao, Y., Makinde, A., Bilheux, H., Bilheux, J., An, K., et al. Monitoring residual strain relaxation and preferred grain orientation of additively manufactured inconel 625 by in-situ neutron imaging. Additive Manufacturing, 46, 102130, 2021. 34 [39] Realini, M., Colombo, C., Conti, C., Grazzi, F., Perelli Cippo, E., Hovind, J. Development of neutron imaging quantitative data treatment to assess conservation products in cultural heritage. Analytical and bioanalytical chemistry, 409 (26), 6133–6139, 2017. 34 [40] Odin, G. P., Rouchon, V., Ott, F., Malikova, N., Levitz, P., Michot, L. J. Neutron imaging investigation of fossil woods: non-destructive characterization of microstructure and detection of in situ changes as occurring in museum cabinets. Fossil Record, 20 (1), 95–103, 2017. 34 [41] Carricondo, J., Soria, S. R., Santisteban, J. R., Kardjilov, N., Iribarren, M., Corvalan-Moya, C. Analysis of erbium diffusion in zirconium-niobium alloys using neutron imaging and laser-induced breakdown spectroscopy. Journal of Nuclear Materials, 549, 152869, 2021. 34, 35 [42] Steinbrueck, M., da Silva, F. O., Grosse, M. Oxidation of zircaloy-4 in steamnitrogen mixtures at 600–1200 c. Journal of Nuclear Materials, 490, 226–237, 2017. 34, 35 [43] Gong, W., Trtik, P., Colldeweih, A., Duarte, L., Grosse, M., Lehmann, E., et al. Hydrogen diffusion and precipitation in duplex zirconium nuclear fuel cladding quantified by high-resolution neutron imaging. Journal of Nuclear Materials, 526, 151757, 2019. 34 [44] Griesche, A., Dabah, E., Kannengießer, T. Neutron imaging of hydrogen in iron and steel. Canadian metallurgical quarterly, 54 (1), 38–42, 2015. 34 [45] Santisteban, J. R. Desarrollo de nuevas t´ecnicas neutronicas para el estudio experimental del sistema metal-hidrogeno. Tesis Doctoral, Instituto Balseiro, UNCuyo, 1998. 36 [46] Grosse, M., Steinbrueck, M., Kaestner, A. Wavelength dependent neutron transmission and radiography investigations of the high temperature behaviour of materials applied in nuclear fuel and control rod claddings. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 651 (1), 315–319, 2011. 36 [47] Grosse, M., Van den Berg, M., Goulet, C., Lehmann, E., Schillinger, B. In-situ neutron radiography investigations of hydrogen diffusion and absorption in zirconium alloys. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 651 (1), 253– 257, 2011. 39, 48 [48] Hu, X., Terrani, K. A., Wirth, B. D. Hydrogen desorption kinetics from zirconium hydride and zirconium metal in vacuum. Journal of nuclear materials, 448 (1-3), 87–95, 2014. 39, 53 [49] Cai, S., Daymond, M., Holt, R., Gharghouri, M., Oliver, E. Evolution of interphase and intergranular stresses in zr–2.5 nb during room temperature deformation. Materials Science and Engineering: A, 501 (1-2), 166–181, 2009. 41 [50] Schindelin, A.-C. I. F.-E. K. V. L. M. P. T. . A., J. Fiji: an open-source platform for biological-image analysis. Nature Methods, pag. 676–682, 2012. URL doi:10.1038/nmeth.2019. 46 [51] S.R. Soria, M. D.-M. G. M. S. J. R. S., L. Barrow. Time evolution of hydrogen diffusion in zirconium alloys at 300°c-400°c by in-situ neutron imaging experiments. En: Journal of Nuclear Materials:. 2022. 53, 54, 57 [52] Kearns, J. Diffusion coefficient of hydrogen in alpha zirconium, zircaloy-2 and zircaloy-4. Journal of Nuclear Materials, 43 (3), 330–338, 1972. 56 [53] Sawatzky, A. Hydrogen in zircaloy-2: Its distribution and heat of transport. Journal of Nuclear Materials, 2 (4), 321–328, 1960. 81, 82, 83 [54] Domizzi, G., Enrique, R. A., Ovejero-Garcıa, J., Buscaglia, G. C. Blister growth in zirconium alloys: experimentation and modeling. Journal of Nuclear Materials, 229, 36–47, 1996. 83 |
Materias: | Ingeniería nuclear > Técnicas neutrónicas Ingeniería nuclear > Materiales nucleares |
Divisiones: | Gcia. de área de Energía Nuclear > Gcia. de Ingeniería Nuclear > LAHN |
Código ID: | 1074 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 18 Jul 2022 13:08 |
Última Modificación: | 18 Jul 2022 13:08 |
Personal del repositorio solamente: página de control del documento