Ingeniería de Floquet para el transporte de carga en sistemas bidimensionales / Floquet engineering for charge transport in two-dimensional systems

Huamán Gutiérrez, Angiolo M. (2022) Ingeniería de Floquet para el transporte de carga en sistemas bidimensionales / Floquet engineering for charge transport in two-dimensional systems. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual.

Español
21Mb

Resumen en español

En este trabajo se estudian algunos efectos producidos por la interacción entre ciertos materiales bidimensionales y la radiación electromagnética. Más precisamente, estudiaremos el disulfuro de tungsteno WS2 (como representante de la familia de dicalcogenuros de metales de transición) y el grafeno en el régimen Hall. El primero de estos materiales es un aislante ordinario, mientras que el segundo exhibe características de un aislante topológicamente no trivial. Observaremos que, sometidos a iluminación, el primero adquiere propiedades de no equilibrio equivalentes a las de un aislante topológico. En particular, en ambos casos se forman brechas de cuasienergía (una extensión del concepto de energía válida para este tipo de sistemas) que pueden albergar estados de borde conductores en su interior. Estos estados, como se puede mostrar en el caso del grafeno irradiado, son quirales y robustos: poseen un sentido de propagación bien definido y que no cambia si la muestra posee imperfecciones, es decir, son robustos frente al desorden. La interacción entre el láser y estos materiales se introduce en los elementos de salto entre los sitios de la red. Esto puede hacerse tanto en un modelo continuo cuanto en la aproximación de enlace fuerte. De esta forma se introduce una dependencia temporal en el hamiltoniano de estos sistemas que podemos suponer periódica en el tiempo con el mismo período del láser. Con esta suposición el nuevo hamiltoniano puede tratarse usando el formalismo de Floquet. Los objetos de nuestros estudio serán dos: las bandas de cuasienergía o de Floquet, que son una extensión para sistemas dependientes del tiempo de las bandas de Bloch usuales, y la conductancia o transmitancia dc (en el formalismo que Landauer-Büttiker que usaremos ambas cantidades son equivalentes). Esta última será calculada en dispositivos de dos (grafeno y disulfuro de tungsteno) y seis (grafeno) terminales. Notaremos que, mientras que en sistemas estáticos la correlación entre bandas de energía y conductancia es bastante clara, este no es el caso en sistemas iluminados (o en general, forzados). El caso del grafeno iluminado en el régimen Hall es de especial interés ya que un campo magnético determina un régimen aislante particular o topológicamente distinto de un aislante ordinario, y que se modifica al someter la muestra a iluminación. Por otra parte, el hecho de que en el régimen Hall el transporte de carga se dé principalmente en los bordes, hace este problema cualitativamente distinto al del WS2, donde hay que separar las contribuciones de estados localizados en los bordes y lejos de estos. Además, la conductancia Hall muestra una dependencia con la helicidad del láser incidente, invirtiendo su signo cuando la helicidad del láser cambia. Esto permite la manipulación de la señal Hall simplemente modificando el sentido de polarización del láser. Además, discutiremos algunos resultados concernientes a sistemas con desorden en grafeno, con el objetivo de determinar en qué medida los resultados anteriores se mantienen o se modifican. Finalmente presentaremos las conclusiones a las que se ha arribado en esta tesis.

Resumen en inglés

In this work, we study some effects produced by the interaction between certain two-dimensional materials and electromagnetic radiation. More precisely, we will study tungsten disulfide WS2 (as a representative of the family of transition metal dicalcogenides) and graphene in the Hall regime. The first of these materials is an ordinary insulator, while the second exhibits characteristics of a topologically non-trivial insulator. We will observe that, when exposed to illumination, the first acquires non-equilibrium properties equivalent to those of a topological insulator. In particular, in both cases quasienergy (an extension of the concept of energy valid for this type of systems) gaps are formed that can harbor conducting edge states inside. These states, as can be shown in the case of irradiated graphene, are chiral and robust: they have a well-defined velocity that does not change if the sample has imperfections, that is, they are robust against disorder. The interaction mechanism between the laser and these materials is through the hopping elements between the lattice sites. This can be done either in a continuous model or in the tight binding approximation. In this way, a time dependence is introduced in the Hamiltonian of these systems, which we can assume to be periodic in time with the same period of the laser. With this assumption, the new Hamiltonian can be treated within the Floquet formalism. The objects of our study will be two: the quasienergy or Floquet bands, which are an extension for time-dependent systems of the usual Bloch bands, and the dc conductance or transmittance (in the Landauer-Büttiker formalism that we will use both quantities are equivalent). The latter will be calculated in devices with two (graphene and tungsten disulfide) and six (graphene) terminals. We will note that, while in static systems the correlation between energy bands and conductance is quite clear, this is not the case in illuminated systems (or in general, forced ones). The case of illuminated graphene in the Hall regime is of special interest since a magnetic field defines a particular insulating regime topologically different from an ordinary insulator, and that is modified when the sample is subjected to illumination. On the other hand, the fact that in the Hall regime charge transport occurs mainly at the edges makes this problem qualitatively different from that of theWS2, where it is necessary to separate the contributions of edge and bulk states. Furthermore, the Hall conductance shows a dependence on the helicity of the incident laser, changing its sign when the helicity of the laser changes. This allows manipulation of the Hall signal simply by changing the direction of the polarization of the laser. In addition, we will discuss some results concerning graphene systems with disorder, with the aim of determining to what extent the previous results hold or are modified. Finally, we will present the conclusions reached in this thesis.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Graphene; Grafeno; Transport; Transporte; [Floquet theory; Teoría de floquet; Edge states; Estado de borde; Quasienergy; Cuasienergía]
Referencias:[1] König, M., Wiedmann, S., Brüne, C., Roth, A., Buhmann, H., Molenkamp, L. W., et al. Quantum spin hall insulator state in hgte quantum wells. Science, 318, 766–770, November 2007. URL https://www.science.org/doi/abs/10.1126/science.1148047. [2] Klitzing, K. v., Dorda, G., Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett., 45, 494–497, Aug 1980. URL https://link.aps.org/doi/10.1103/PhysRevLett.45.494. [3] Hasan, M. Z., Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys., 82, 3045–3067, Nov 2010. URL https://link.aps.org/doi/10.1103/RevModPhys.82. 3045. [4] Kane, C. L., Mele, E. J. Quantum spin hall effect in graphene. Phys. Rev. Lett., 95, 226801, Nov 2005. URL https://link.aps.org/doi/10.1103/PhysRevLett.95. 226801. [5] Thouless, D. J., Kohmoto, M., Nightingale, M. P., den Nijs, M. Quantized hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett., 49, 405–408, Aug 1982. URL https://link.aps.org/doi/10.1103/PhysRevLett.49.405. [6] Laughlin, R. Quantized hall conductivity in two dimensions. Phys. Rev. B, 23 (10), 5632–5633, mayo 1981. [7] Murakami, S., Nagaosa, N., Zhang, S.-C. Spin-hall insulator. Phys. Rev. Lett., 93, 156804, Oct 2004. URL https://link.aps.org/doi/10.1103/PhysRevLett.93.156804. [8] Yao, Y., Ye, F., Qi, X.-L., Zhang, S.-C., Fang, Z. Spin-orbit gap of graphene: First-principles calculations. Phys. Rev. B, 75, 041401, Jan 2007. URL https://link.aps.org/doi/10.1103/PhysRevB.75.041401. [9] Bernevig, B. A., Hughes, T. L., Zhang, S.-C. Quantum spin hall effect and topological phase transition in hgte quantum wells. Science, 314 (5806), 1757–1761, dec 2006. URL https://www.science.org/doi/abs/10.1126/science.1133734. [10] Oka, T., Aoki, H. Photovoltaic hall effect in graphene. Phys. Rev. B, 79, 081406, Feb 2009. URL https://link.aps.org/doi/10.1103/PhysRevB.79.081406. [11] Wang, Y. H., Steinberg, H., Jarillo-Herrero, P., Gedik, N. Observation of Floquet-Bloch states on the surface of a topological insulator. Science, 342 (6157), 453–457, oct. 2013. URL https://www.science.org/doi/abs/10.1126/science.1239834. [12] Calvo, H. L., Pastawski, H. M., Roche, S., Foa Torres, L. E. F. Tuning laser-induced band gaps in graphene. Appl. Phys. Lett., 98 (23), 232103–3, jun. 2011. [13] Kitagawa, T., Berg, E., Rudner, M., Demler, E. Topological characterization of periodically driven quantum systems. Phys. Rev. B, 82 (23), 235114, dic. 2010. [14] Groth, C. W., Wimmer, M., Akhmerov, A. R., Waintal, X. Kwant: a software package for quantum transport. New Journal of Physics, 16 (6), 063065, jun. 2014. [15] Foa Torres, L. E. F., Perez-Piskunow, P. M., Balseiro, C. A., Usaj, G. Multiterminal conductance of a floquet topological insulator. Phys. Rev. Lett., 113, 266801, Dec 2014. URL https://link.aps.org/doi/10.1103/PhysRevLett.113.266801. [16] McIver, J. W., Schulte, B., Stein, F. U., Matsuyama, T., Jotzu, G., Meier, G., et al. Light-induced anomalous hall effect in graphene. Nature Physics, 16 (1), 38–41, Jan 2020. URL https://doi.org/10.1038/s41567-019-0698-y. [17] Sato, S. A., McIver, J. W., Nuske, M., Tang, P., Jotzu, G., Schulte, B., et al. Microscopic theory for the light-induced anomalous hall effect in graphene. Phys. Rev. B, 99, 214302, Jun 2019. URL https://link.aps.org/doi/10.1103/PhysRevB.99.214302. [18] Kogan, E., Nazarov, V. U., Silkin, V. M., Kaveh, M. Energy bands in graphene: Comparison between the tight-binding model and ab initio calculations. Phys. Rev. B, 89, 165430, Apr 2014. URL https://link.aps.org/doi/10.1103/PhysRevB.89.165430. [19] Liu, G.-B., Shan, W.-Y., Yao, W., Xiao, D. Three-band tight binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B, 88, 085433, 2013. URL https://journals.aps.org/prb/abstract/10.1103/PhysRevB.88.085433. [20] Cappelluti, E., Roldán, R., Silva-Guillén, J. A., Ordejón, P., Guinea, F. Tight-binding model and direct-gap/indirect-gap transition in single-layer and multilayer MoS2. Phys. Rev. B, 88, 075409, Aug 2013. URL https://link.aps.org/doi/10.1103/PhysRevB. 88.075409. [21] Xiao, D., Liu, G.-B., Feng, W., Xu, X., Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett., 108 (19), May 2012. [22] Sambe, H. Steady states and quasienergies of a quantum-mechanical system in an oscillating field. Phys. Rev. A, 7, 2203–2213, Jun 1973. URL https://link.aps.org/doi/10.1103/PhysRevA.7.2203. [23] Shirley, J. H. Solution of the schrödinger equation with a hamiltonian periodic in time. Phys. Rev., 138, B979–B987, May 1965. URL https://link.aps.org/doi/10.1103/PhysRev.138.B979. [24] T. Dittrich, B. K. G. S. G.-L. I. W. Z., P. Hänggi. Quantum Transport and Dissipation. Wiley, 1998. [25] Usaj, G., Perez-Piskunow, P. M., Foa Torres, L. E. F., Balseiro, C. A. Irradiated graphene as a tunable floquet topological insulator. Phys. Rev. B, 90 (11), 115423, sep. 2014. URL http://link.aps.org/doi/10.1103/PhysRevB.90.115423. [26] Perez-Piskunow, P. M., Usaj, G., Balseiro, C. A., Foa Torres, L. E. F. Floquet chiral edge states in graphene. Phys. Rev. B, 89, 121401(R), mar. 2014. [27] Xiao, J., Ye, Z., Wang, Y., Zhu, H., Wang, Y., Zhang, X. Nonlinear optical selection rule based on valley-exciton locking in monolayer ws2. Light: Science & Applications, 4 (12), e366–e366, Dec 2015. URL https://doi.org/10.1038/lsa.2015.139. [28] Bransden, B. H., Joachain, C. J. Physics of atoms and molecules. Longman Group Limited, 1990. [29] Claassen, M., Jia, C., Moritz, B., Devereaux, T. P. All-optical materials design of chiral edge modes in transition-metal dichalcogenides. Nature Communications, 7, 13074, Oct 2016. URL http://dx.doi.org/10.1038/ncomms13074. [30] Ihnatsenka, S., Kirczenow, G. Conductance quantization in strongly disordered graphene ribbons. Phys. Rev. B, 80, 201407, Nov 2009. URL https://link.aps.org/doi/10.1103/PhysRevB.80.201407. [31] Rudner, M. S., Lindner, N. H., Berg, E., Levin, M. Anomalous edge states and the bulk-edge correspondence for periodically-driven two dimensional systems. Phys. Rev. X, 3, 031005, 2013. URL https://journals.aps.org/prx/abstract/10.1103/PhysRevX.3.031005. [32] Perez-Piskunow, P. M., Foa Torres, L. E. F., Usaj, G. Hierarchy of Floquet gaps and edge states for driven honeycomb lattices. Phys. Rev. A, 91, 043625, abr. 2015. [33] Arrachea, L., Moskalets, M. Relation between scattering-matrix and keldysh formalisms for quantum transport driven by time-periodic fields. Phys. Rev. B, 74 (24), 245322, dic. 2006. [34] Landauer, R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM Journal of Research and Development, 1 (3), 223–231, 1957. [35] Landauer, R. Electrical resistance of disordered one-dimensional lattices. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 21 (172), 863–867, 1970. URL https://doi.org/10.1080/14786437008238472. [36] Datta, S. Quantum Transport: Atom to Transistor. Cambridge University Press, 2005. [37] Foa Torres, L. E. F., Roche, S., Charlier, J. C. Introduction to Graphene-Based Nanomaterials: From Electronic Structure to Quantum Transport. Cambridge University Press, 2020. [38] Datta, S. Electronic Transport in Mesoscopic Systems. Cambridge University Press, 1995. [39] Boumrar, H., Hamidi, M., Zenia, H., Lounis, S. Equivalence of wave function matching and green’s functions methods for quantum transport: generalized fisher–lee relation. 32 (35), 355302, jun 2020. URL https://doi.org/10.1088/1361-648x/ab88f5. [40] Datta, S., Das, B. Appl. Phys. Lett., 56, 665, 1990. [41] Kohler, S., Lehmann, J., Hänggi, P. Driven quantum transport on the nanoscale. Phys. Rep., 406 (6), 379–443, feb. 2005. URL http://www.sciencedirect.com/science/article/pii/S0370157304005071. [42] Farrell, A., Pereg-Barnea, T. Edge-state transport in floquet topological insulators. Phys. Rev. B, 93, 045121, Jan 2016. [43] Piskunow, P. M. P. Efectos de la radiación en las propiedades eléctricas del grafeno: Estados topológicos de Floquet inducidos por láser. Tesis Doctoral, Universidad Nacional de Córdoba, 2015. [44] Farrell, A., Pereg-Barnea, T. Photon-inhibited topological transport in quantum well heterostructures. Phys. Rev. Lett., 115, 106403, Sep 2015. [45] Foa Torres, L. E. F., Del Lago, V., Suárez Morell, E. Crafting zero-bias one-way transport of charge and spin. Phys. Rev. B, 93, 075438, 2016. [46] Dal Lago, V., Suárez Morell, E., Foa Torres, L. E. F. One-way transport in laser-illuminated bilayer graphene: A Floquet isolator. Phys. Rev. B, 96, 235409, Dec 2017. [47] Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys., 81, 109–162, ene. 2009. [48] Brey, L., Fertig, H. A. Edge states and the quantized hall effect in graphene. Phys. Rev. B, 73 (19), mayo 2006. [49] in optically induced gap states in photonic graphene, L. Scipost physics submission. 1806. [50] Roche, S., Leconte, N., Ortmann, F., Lherbier, A., Soriano, D., Charlier, J.-C. Quantum transport in disordered graphene: A theoretical perspective. Solid State Commun., 152 (15), 1404–1410, ago. 2012. [51] Radchenko, T. M., Shylau, A. A., Zozoulenko, I. V. Influence of correlated impurities on conductivity of graphene sheets: Time-dependent real-space kubo approach. Phys. Rev. B, 86, 035418, Jul 2012. URL https://link.aps.org/doi/10.1103/PhysRevB. 86.035418. [52] Li, Q., Hwang, E. H., Rossi, E., Das Sarma, S. Theory of 2d transport in graphene for correlated disorder. Phys. Rev. Lett., 107, 156601, Oct 2011. URL https://link.aps. org/doi/10.1103/PhysRevLett.107.156601. [53] Davies, J. H. The physics of low-dimensional semiconductors: an introduction. Cambridge University Press, 1998. URL libgen.li/file.php?md5=8d9c7cc6884508fbd5083db772c93a77. [54] Mucciolo, E. R., Castro Neto, A. H., Lewenkopf, C. H. Conductance quantization and transport gaps in disordered graphene nanoribbons. Phys. Rev. B, 79, 075407, Feb 2009. URL https://link.aps.org/doi/10.1103/PhysRevB.79.075407. [55] Foa Torres, L. E. F., Calvo, H. L., Rocha, C. G., Cuniberti, G. Enhancing single-parameter quantum charge pumping in carbon-based devices. Appl. Phys. Lett., 99 (9), 092102–3, ago. 2011. [56] San-Jose, P., Prada, E., Schomerus, H., Kohler, S. Laser-induced quantum pumping in graphene. Appl. Phys. Lett., 101 (15), 153506, 2012. [57] Foa Torres, L. E. F., Roche, S., Charlier, J. C. Introduction to Graphene-Based Nanomaterials: From Electronic Structure to Quantum Transport. Cambridge University Press, 2014. URL http://www.cambridge.org/9781107030831. [58] M., M., G., O. B., Vernek, P. E. Pedagogical introduction to equilibrium green’s functions: condensed-matter examples with numerical implementations. Rev. Bras. Ensino Fís., 39, Jun 2017. URL https://www.scielo.br/j/rbef/a/yvDhk5GVrC5fTtmT9JQMFWb/?lang=en. [59] Lewenkopf, C. H., Mucciolo, E. R. The recursive green’s function method for graphene. Journal of Computational Electronics, 12 (2), 203–231, Jun 2013. URL https://doi.org/10.1007/s10825-013-0458-7. [60] Pastawski, H. M., Medina, E. R. Tight binding methods in quantum transport through molecules and small devices: From the coherent to the decoherent description. Rev. Mex. Fis., 47 (cond-mat/0103219), 1–23, 2001.
Materias:Física > Sistema Nanoscópico
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Materia condensada > Teoría de sólidos
Código ID:1076
Depositado Por:Tamara Cárcamo
Depositado En:14 Jul 2022 11:31
Última Modificación:14 Jul 2022 11:31

Personal del repositorio solamente: página de control del documento