Diseño y control de un dispositivo activo para la reducción de vibraciones en el mecanizado de piezas / Desing and control of an active device for vibration attenuation on part machining

Pincin, Santiago J. (2022) Diseño y control de un dispositivo activo para la reducción de vibraciones en el mecanizado de piezas / Desing and control of an active device for vibration attenuation on part machining. Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
10Mb

Resumen en español

En esta tesis se estudia el fenómeno de vibraciones en el mecanizado y se proponen soluciones para reducirlas. Las vibraciones en el mecanizado causan una mala terminación superficial, desgaste prematuro de herramientas, peores y hasta inaceptables tolerancias de fabricación y todo lo cual repercute finalmente en una poco aceptable economía del mecanizado y una productividad ineficiente. Si bien hay diversas estrategias para mitigar el efecto de las vibraciones en el mecanizado, en el presente trabajo se aborda el problema en el contexto del control activo de las vibraciones, donde un actuador y un sensor se utilizan junto a un algoritmo de control para incrementar el amortiguamiento del sistema. Con el fin de estudiar el uso de técnicas de control activo de vibraciones, se propone y realiza una facilidad1 de pruebas junto con su electrónica. Posteriormente se diseñan e implementan dos tipos diferentes de actuadores electromagnéticos, uno inercial y uno no inercial, para ser utilizados sobre la facilidad. Partiendo de la formulación de barras finitas, se realizan dos modelos teóricos de la facilidad, y se validan mediante identificación con señales de excitación típicas chirp, pseudorandom y respuesta libre. Mediante el uso de control activo de vibraciones, se diseñan e implementan controladores de realimentación directa de velocidad (DVF) y un controlador basado en un filtro notch. Los resultados experimentales obtenidos muestran que los actuadores diseñados junto con los controladores propuestos tienen potencial para el control activo de vibraciones

Resumen en inglés

In this thesis the phenomenon of vibrations in machining is studied and solutions are proposed to reduce them. Vibrations in machining cause poor surface finish, premature tool wear, worse and even unacceptable manufacturing tolerances, all of which ultimately result in poor machining economy and inefficient productivity. Although there are several strategies to mitigate the effect of vibrations in machining, this work addresses the problem in the context of active vibration control, where an actuator and sensor are used in conjunction with a control algorithm to increase the damping of the system. In order to study the use of active vibration control techniques, a test installation together with its electronics is proposed and carried out. Subsequently, two different types of electromagnetic actuators, one inertial and the other non-inertial, are designed and implemented to be used in the installation. From the formation of finite rods, two theoretical models of the installation are developed, and they are validated by identification with typical chirp, pseudorandom and free response excitation signals. Using active vibration control, direct velocity feedback (DVF) controllers and a controller based on a notch filter are designed and implemented. The experimental results obtained show that the actuators designed together with the proposed controllers have potential for active vibration control.

Tipo de objeto:Tesis (Maestría en Ingeniería)
Palabras Clave:[Vibration control; Control de vibración; Active control; Control activo; Inertial actuator; Actuador inercial; Electromagnetic actuator; Actuador electromagnético; Chatter]
Referencias:[1] Hoja técnica de material DELRIN-POM, https: // www. aislantessh. com.ar/ delrin/ . Aislantes SH. Distribuidor, 11/10/2020. 63 [2] Altintas, Y. y Weck, M. Chatter stability of metal cutting and grinding. CIRP Annals - Manufacturing Technology, 53:619–642, 12 2004. doi: 10.1016/S0007-8506(07)60032-8. 2, 7, 13 [3] Aly, A. Hardware-in-the-loop of simulation for a hydraulic antilock brake system. International Journal of Intelligent Systems and Applications, 5:91–95, 01 2013. doi: 10.5815/ijisa.2013.02.11. 5 [4] Atmel. AVR223: Digital Filters with AVR. Atmel Application Note, rev. 2527bavr- 07 edition, 2008. 92 [5] Benassi, L. y Elliott, S. Active vibration isolation using an inertial actuator with local displacement feedback control. Journal of Sound and Vibration, 278(4):705 – 724, 2004. 4, 37 [6] Dal Borgo, M., Ghandchi-Tehrani, M., y Elliott, S. Active nonlinear control of a stroke limited inertial actuator: Theory and experiment. Journal of Sound and Vibration, 465:115009, 10 2019. doi: 10.1016/j.jsv.2019.115009. 4 [7] Ferrari, C. y Alonso, M. Introducción al método de los elementos finitos en mecánica del sólidos I: apunte de clase. Instituto Balseiro, preliminar edition, 2018.71, 75 [8] Foudhaili, H. y Reithmeier, E. Concepts of active noise aircraft cockpits reduction employed in high noise level. In Proc. de Variational Analysis and Aerospace Engineering, pages 229–241, New York, EEUU, 2009. Springer New York. 1 [9] Fu, T. A novel kind of proportional electromagnetic dynamic vibration absorber. In Proc. de la Noise and Vibration Conference and Exhibition. SAE International, jun 2019. doi: 10.4271/2019-01-1586. 54 [10] Ganguli, A. Chatter reduction trough active vibration damping. PhD thesis, Univ. de Bruxelles, Active Structures Laboratory, 2005. 37 [11] Ganguli, A., Deraemaeker, A., y Preumont, A. Regenerative chatter reduction by active damping control. Journal of Sound and Vibration, 300:847–862, 03 2007. doi: 10.1016/j.jsv.2006.09.005. 1, 3, 5, 7, 19 [12] GmbH, P. H. Installation and setup manual, electrohydraulic control for pv series. Technical report, Parker Technical Manual, Bulletin Hy11 PVI017GB, 2000. 36 [13] Hassan, Ali, Torres, Angel, Stefan, Kaczmarczyk, Picton, y Phil. Vibration control of a stirling engine with an electromagnetic active tuned mass damper. Control Engineering Practice, 51:108–120, 06 2016. doi: 10.1016/j.conengprac.2016.03.014. 1, 37 [14] Hermanrud, O. Active and passive damping systems for vibration control of metal machining equipment. Master’s thesis, Norweian University of Science and Technology, 2017. 36 [15] Howes, P. The reduction of chatter and vibration in metal cutting machine tools. Production Engineer, 47, 01 1968. doi: 10.1049/tpe.1968.0092. viii, 2 [16] Iglesias, A., Munoa, J., Ciurana, J., y Z. Dombovari, G. S. Analytical expressions for chatter analysis in milling operations with one dominant mode. Journal of Sound and Vibration, 375, 05 2016. doi: 10.1016/j.jsv.2016.04.015. 2 [17] MPU-6000 and MPU-6050 Product Specification Revision 3.4. Invensense, 2013. 39 [18] MPU-6000 and MPU-6050 Register Map and Descriptions Revision 4.2. Invensense, 2013. 89 [19] Irvine, T. Shock and vibration signal analysis. Technical report, 2005. 92 [20] Jin, G., Zhang, Q., Hao, S., y Xie, Q. Stability prediction of milling process with variable pitch cutter. Mathematical Problems in Engineering, 2013, 01 2013. doi: 10.1155/2013/932013. 18 [21] Kassem, M., Yang, Z., Gu, Y., Wang, W., y Safwat, W. Active dynamic vibration absorber for flutter suppression. Journal of Sound and Vibration, page 115110, 12 2019. doi: 10.1016/j.jsv.2019.115110. viii, 1, 2, 36 [22] Knospe, C. R. Active magnetic bearings for machining applications. In Proc. del 3rd IFAC Symposium on Mechatronic Systems, volume 37, pages 7 – 12, Sydney, Australia, 2004. 1 [23] Kras, A. y Gardonio, P. Active vibration control unit with a flywheel inertial actuator. Journal of Sound and Vibration, 464:114987, 09 2019. doi: 10.1016/j. jsv.2019.114987. 37 [24] Lee, B. y Lee, C. Model based feed-forward control of electromagnetic type activecontrol engine-mount system. Journal of Sound and Vibration, 323:574–593, 2009. 37 [25] Lee, K.-C., Jeon, J.-W., Hwang, Don-Ha, L., Se-Han, K., y Yong, J. Development of antilock braking controller using hardware in-the-loop simulation and field test. IECON 2004, pages 2137 – 2141 Vol. 3, 12 2004. doi: 10.1109/IECON. 2004.1432127. 5 [26] Lemon, J. R. y Ackermann, P. C. Application of self-excited machine-tool chatter theory: Contribution to machine-tool chatter research. Journal of Engineering for Industry, 87(4):471–479, 1965. doi: 10.1115/1.3670864. ix, 2, 7, 8, 11, 12 [27] Li, Yan, He, Lin, Shuai, Chang-geng, Wang, y Chun-yu. Improved hybrid isolator with maglev actuator integrated in air spring for active-passive isolation of ship machinery vibration. Journal of Sound and Vibration, 407:226–239, 10 2017. doi:10.1016/j.jsv.2017.07.007. 1 [28] Loussert, G. An efficient and optimal moving magnet actuator for active vibration control. In Proc. de la Actuator Conference, 2016. 37 [29] Lv, S. y Zhao, Y. Stability of milling process with variable spindle speed using runge?kutta-based complete method. Mathematical Problems in Engineering, 2021:1–10, 02 2021. doi: 10.1155/2021/6672513. 18 [30] Mancisidor, I., Beudaert, X., Etxebarria, A., Bárcena, R., Munoa, J., y Jugo, J. Hardware-in-the-loop simulator for stability study in orthogonal cutting. Control Engineering Practice, 44:31–44, 11 2015. doi: 10.1016/j.conengprac.2015.07.006. 3, 5, 19, 37 [31] Marneffe, B. D. y Preumont, A. Active and passive vibration isolation and damping via shunted transducers. 2007. 23 [32] Monnin, J., Kuster, F., y Wegener, K. Optimal contro for chatter mitigation in milling- part1: Modeling and control design. Control Engineering Practice, 24: 150–166, 2014. viii, 3, 4, 19, 37 [33] Monnin, J., Kuster, F., y Wegener, K. Optimal control for chatter mitigation in milling- part2: Experimental validation. Control Engineering Practice, 24:167–175, 2014. 3, 19 [34] Oh, J.-S., Han, Y.-M., Choi, S.-B., Nguyen, V.-Q., y Moon, S.-J. Design of a onechip board microcontrol unit for active vibration control of a naval ship mounting system. Smart Materials and Structures, 21(8), 2012. 36 [35] Parus, A., Powalka, B., Marchelek, K., Domek, S., y Hoffmann, M. Active vibration control in milling flexible workpieces. Journal of Vibration and Control, 19 (7):1103–1120, 2013. viii, 3, 4, 19, 36 [36] Preumont, A. Vibration Control of Active Structures: An Introduction. Springer, 4 edition, 2018. 21 [37] Qt documentation, https://doc.qt.io/. Qt, 2020. 41 [38] Rao, S. S. Mechanical Vibrations. Pearson, 5ta edition, 2018. 1 [39] Schimpf, P. A detailed explanation of solenoid force. International Journal on Recent Trends in Engineering & Technology (IJRTET), 8:7–14, 2013. 53 [40] Seguy, S., Dessein, G., Arnaud, L., y Insperger, T. Chatter control by spindle speed variation in high-speed milling. volume 112, pages 179–186, 09 2009. 18 [41] Shamoto, E., Fujimaki, S., Sencer, B., Suzuki, N., Kato, T., y Hino, R. A novel tool path/posture optimization concept to avoid chatter vibration in machining: Proposed concept and its verification in turning. CIRP Annals, 61(1):331–334, 2012. ISSN 0007-8506. doi: https://doi.org/10.1016/j.cirp.2012.03.133. URL https: //www.sciencedirect.com/science/article/pii/S0007850612001357. 18 [42] Song, C.-W. y Lee, S.-Y. Design of a solenoid actuator with a magnetic plunger for miniaturized segment robots. Applied Sciences, 5:595–607, 09 2015. doi: 10.3390/app5030595. 53, 54 [43] L298 Dual Full-Bridge Driver Datasheet. ST, 2000. 41 [44] STM32F446xC/E datasheet. ST, 2016. 40 [45] STM32 IDE, https: // www. st. com/ en/ development-tools/ software-development-tools. html . ST, 2020. 40 [46] Tlusty, J. Manufacturing Processes and Equipment. Prentice Hall, New York, EEUU, 1999. 13, 14 [47] Tobias, S. y Fishwick, W. Theory of regenerative machine tool chatter. The Engineer, 205:199–203, 01 1958. 2, 7 [48] Wang, C., Zhang, X., Yan, R., Chen, X., y Cao, H. Multi harmonic spindle speed variation for milling chatter suppression and parameters optimization. Precision Engineering, 55:268–274, 2019. ISSN 0141-6359. doi: https://doi.org/10.1016/j.precisioneng.2018.09.017. URL https://www.sciencedirect.com/science/article/pii/S0141635918302721. 18 [49] Wickert, M. Chapter 8: IIR filters. Technical report, 2020. 89 [50] Zaeh, M., Kleinwort, R., Fagerer, P., y Altintas, Y. Automatic tuning of active vibration control systems using inertial actuators. CIRP Annals - Manufacturing Technology, 66, 05 2017. doi: 10.1016/j.cirp.2017.04.051. 3, 19, 37
Materias:Ingeniería mecánica > Vibraciones
Divisiones:Energía nuclear > Ingeniería nuclear > Termohidráulica
Código ID:1082
Depositado Por:Tamara Cárcamo
Depositado En:14 Jul 2022 13:39
Última Modificación:14 Jul 2022 13:39

Personal del repositorio solamente: página de control del documento