Estudio de óxidos cerámicos conductores protónicos / Study of proton conducting ceramic oxides

Basbus, Juan F. (2017) Estudio de óxidos cerámicos conductores protónicos / Study of proton conducting ceramic oxides. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
8Mb

Resumen en español

En esta tesis se obtuvieron y caracterizaron posibles materiales para Celdas Combustibles de óxido solido conductoras protónicas (Proton Conducting Solid Oxide Fuel Cell PC-SOFC). Principalmente, se estudiaron materiales de electrolito y en menor medida materiales de cátodo. Se espera que las PC-SOFC operen a menores temperaturas y posean mayores eficiencias con respecto a las SOFC e IT-SOFC. Los ceratos de bario presentan interesantes características como electrolitos conductores protónicos para PC-SOFC. Se reportó que la inclusión de Pr disminuye las temperaturas de sinterizado en los ceratos y zirconatos de bario, pero introduciría conductividad electrónica. Se evaluó el efecto de la sustitución parcial de Ce por Pr en la perovskita BaCe_1-xPr_xO_3-δ (x = 0, 0.2, 0.4, 0.6, 0.8), en sus propiedades cristalográficas, morfológicas, mecánicas y eléctricas. Se observó que el incremento de Pr en la estructura disminuye la distorsión ortorrómbica, mejora el sinterizado e incrementa la conductividad total en atmósfera oxidante húmeda. Sin embargo, el contenido de Pr disminuye la estabilidad en atmósfera reductora y reduce el rango de tolerancia al CO_2. El compuesto BaCe_0.8Pr_0.2O_3−δ (BCP) mostró las mejores características de la serie estudiada, es decir, baja porosidad, tamaño de grano micrométrico, mayor resistencia mecánica, buena tolerancia en atmósferas oxidantes y reductoras, y mayor resistencia al CO_2. Sin embargo, BCP indicó conductividad mixta dominada por huecos y vacancias de oxígeno en aire sintético entre 100 y 600 °C. Por otro lado, BCP mostró conductividad protónica en atmósfera reductora acompañada por un brusco cambio en el volumen de la celda unidad. Recientemente se propuso a la perovskita BaCe_0.4Zr_0.4Y_0.2O_3-δ (BCZY) como electrolito para PC-SOFC por su alta conductividad protónica de bulk y su excelente tolerancia el CO_2. Sin embargo, este compuesto presenta una baja conductividad de borde de grano y una alta temperatura de sinterizado (1500-1700 °C). La aplicación de BCZY en una PC-SOFC requiere del estudio sistemático en diferentes condiciones. Por lo tanto, se caracterizaron las propiedades de alta temperatura de BCZY, como la estructura cristalina, no estequiometria de oxígeno, la expansión lineal y resistencia eléctrica en atmósferas oxidantes y reductoras. BCZY mostró cambios de comportamiento en las propiedades eléctricas y en la expansión térmica lineal dependiendo de la naturaleza de la atmósfera y del vapor de agua. BCZY presentó una alta conductividad protónica de bulk y buena tolerancia al CO_2, pero la baja conductividad de borde de grano podría ser una limitante. Por lo tanto, este compuesto podría ser utilizado como electrolito para PC-SOFC y como membranas para separación isotópica siempre que se pueda procesar en forma de películas delgadas con una contribución limitada de los bordes de grano Con el objetivo de bloquear la conductividad electrónica y mejorar la resistencia al CO_2 de BCP, se depositó una película de BCZY sobre BCP (material bicapa). A partir de la caracterización electroquímica de BCP, BCZY y del material bicapa se determinó que BCP dominaría los mecanismos de transporte en el material bicapa en aire sintético e hidrogeno diluido y la película de BCZY bloquearía la conducción electrónica de BCP en aire húmedo. BCP y BCZY poseen TECs compatibles por debajo de 400 °C, por lo que el material bicapa podría operar alrededor de 400-600 °C. Las perovskitas Ba_0.5Sr_0.5Fe_0.8M_0.2O_3-δ (M = Co, Ni, Cu, Zn) fueron propuestas como cátodos para SOFC entre 600 y 800 °C (IT-SOFC). Se reportó que la sustitución de Co por metales de transición disminuye la expansión térmica lineal y la degradación química. No se encontró un estudio sistemático de estos compuestos, por lo que se caracterizaron las propiedades de alta temperatura de estos materiales. Las perovskitas Ba_0.5Sr_0.5Fe_0.8M_0.2O_3-δ (M = Co, Ni, Cu y Zn), mostraron que la conductividad eléctrica aumenta con el número atómico, (excepto para Zn), los valores de expansión térmica lineal son superiores a la mayoría de los electrolitos comunes, incluso a los estudiados en esta tesis (BCP y BCZY). Se determinó que el compuesto Ba_0.5Sr_0.5Fe_0.8Cu_0.2O_3-δ (BSFCu) posee las mejores características de la serie estudiada y se reportó que este compuesto podría ser utilizado como cátodo para PC-SOFC. A partir de los resultados obtenidos, se propone la construcción de una PC-SOFC con la siguiente estructura multicapa: Ni-BCZY/BCZY/BCP/BCP-BSFCu/BSFCu dentro del rango 400-600 °C. Los electrolitos BCZY y BCP podrían utilizarse en la industria nuclear y/o petroquímica como membranas para la producción de H_2, membranas para la separación isotópica de H/D/T en desechos nucleares, y PC-SOFC para la cogeneración de energía.

Resumen en inglés

In this thesis, possible materials for proton conducting solid oxide fuels cells (PC-SOFC) were obtained and characterized. In this thesis, was studied mainly electrolyte materials and to a lesser extent cathode materials. It is expected that PC-SOFCs operate at lower temperatures and has higher efficiencies than IT-SOFC and SOFC. The barium cerates have interesting features such as protonic conductor electrolytes for PC-SOFC. It was reported that Pr inclusion decreases sintering temperatures on barium cerates and barium zirconates, but introduces electronic conductivity. The effect of partial substitution of Ce by Pr on BaCe_1-xPr_xO_3-δ (x = 0, 0.2, 0.4, 0.6, 0.8) perovskite were evaluated into crystallographic, morphological, mechanical and electrical properties. It was observed that an increase of Pr content in the structure decreases the orthorhombic distortion, improves sintering and increases the total conductivity under wet oxidizing atmosphere. However, Pr content decreases stability under reducing atmosphere and reduces CO_2 tolerance temperature range. BaCe_0.8Pr_0.2O_3-δ (BCP) compound showed best features of the series, i.e., low porosity, micrometric grain size, higher mechanical resistance, good stability under oxidizing and reducing atmospheres, and greater resistance to CO2 atmosphere. However, BCP showed mixed conductivity dominated by oxygen vacancies and holes under wet synthetic air between 100 and 600 °C. Otherwise, BCP indicates proton conductivity under reducing atmosphere accompanied by an abrupt change in unit cell volume. Recently, BaCe_0.4Zr_0.4Y_0.2O_3-δ (BCZY) perovskite was proposed as PC-SOFC electrolyte by its high bulk proton conductivity and excellent CO_2 tolerance. However, this compound has low grain boundary conductivity and high sintering temperature (1500-1700 °C). The application of BCZY on PC-SOFC requires a systematic study under different conditions. Therefore, high temperature properties of BCZY, such as crystal structure, oxygen non-stoichiometry, linear expansion and electrical resistance under oxidizing and reducing atmospheres were characterized. BCZY showed behavior changes on electrical properties and linear thermal expansion depending on nature of atmosphere and water vapor. BCZY presented high bulk conductivity and good CO_2 tolerance, however low grain boundary conductivity could be a limiting factor. Therefore, this compound could be used as PC-SOFC electrolyte and isotopic separation membranes as long it can be processed as thin films with a limited contribution of grain boundaries. In order to block electronic conductivity and improve CO_2 resistance of BCP, a BCZY film was deposited on BCP (bilayer material). From the electrochemical characterization of BCP, BCZY and bilayer material it was determined that BCP dominates the transport mechanisms on bilayer material under synthetic air and diluted hydrogen, and BCZY film blocks electronic conduction of BCP under wet air. BCP and BCZY have similar TECs below 400 ° C, furthermore bilayer material could operate between 400-600 °C. Ba_0.5Sr_0.5Fe_0.8M_0.2O_3-δ (M = Co, Ni, Cu, Zn) perovskites were proposed such as SOFC cathodes between 600 and 800 °C (IT-SOFC). It was reported that the substitution of Co by transition metals decreases the linear thermal expansion and chemical degradation. No systematic study of these compounds was found, furthermore high temperature properties of these materials were characterized. Ba_0.5Sr_0.5Fe_0.8M_0.2O_3-δ (M = Co, Ni, Cu, Zn) perovskites showed that the electrical conductivity increases with atomic number, (except for Zn), linear thermal expansion values are higher than most common electrolytes, including those studied in this thesis (BCP and BCZY). Was determined that Ba_0.5Sr_0.5Fe_0.8Cu_0.2O_3-δ (BSFCu) compound has the best qualities of the series and it was reported that this compound could be used as PC-SOFC cathode. From the results obtained, it was proposed construction of a PC-SOFC with the following multilayer structure: Ni-BCZY/BCZY/BCP/BCP-BSFCu/BSFCu as PC-SOFC to operate between 400-600 °C. The BCP and BCZY electrolytes could be used in nuclear and petrochemical industries as membranes for H_2 purification, isotopic separation membranes of H/D/T in nuclear waste, and PC-SOFC for energy cogeneration.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Electrolytes; Electrolitos; Proton conductivity; Conductividad de protones; Barium; Bario; [Barium cerates; Cerato de bario; Proton Conducting Solid Oxide Fuel Cell; PC-SOFC]
Referencias:[1] http://www.worldenergyoutlook.org/ [2] P.J. Gellings, B. H.J.M., The CRC Handbook of Solid State Electrochemistry, CRC Press, Boca Raton, 1997, chapter 14, in: n.d. [3] Inc. Science Applications International Corporation EG&G Services Parsons, Fuel Cell Handbook 5th Edition, n.d. [4] J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd Edition, n.d. [5] E. Fabbri, D. Pergolesi, E. Traversa, Materials challenges toward proton-conducting oxide fuel cells: a critical review., 2010. doi:10.1039/b902343g. [6] A.B. Stambouli, E. Traversa, Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy, Renew. Sustain. Energy Rev. 6 (2002) 433–455. doi:10.1016/S1364-0321(02)00014-X. [7] E. Ivers-Tiffée, A. Weber, D. Herbstritt, Materials and technologies for SOFC-components, J. Eur. Ceram. Soc. 21 (2001) 1805–1811. doi:10.1016/S0955-2219(01)00120-0. [8] A. McDougall, Fuel Cells, Macmillan Education UK, London, 1976. doi:10.1007/978-1-349-15693-1. [9] http://www.nfcrc.uci.edu/3/FUEL_CELL_INFORMATION/FCexplained/FC_benefits.aspx [10] http://www.microchap.info/sofc.htm [11] https://www.mhi.co.jp/technology/review/pdf/e483/e483009.pdf [12] http://www.fuelcellenergy.com/products-services/products/ [13] C. Sun, U. Stimming, Recent anode advances in solid oxide fuel cells, J. Power Sources. 171 (2007) 247–260. doi:10.1016/j.jpowsour.2007.06.086. [14] J. FERGUS, Oxide anode materials for solid oxide fuel cells, Solid State Ionics. 177 (2006) 1529–1541. doi:10.1016/j.ssi.2006.07.012. [15] W.. Zhu, S.. Deevi, A review on the status of anode materials for solid oxide fuel cells, Mater. Sci. Eng. A. 362 (2003) 228–239. doi:10.1016/S0921-5093(03)00620-8. [16] B.H. Rainwater, M. Liu, M. Liu, A more efficient anode microstructure for SOFCs based on proton conductors, Int. J. Hydrogen Energy. 37 (2012) 18342–18348. doi:10.1016/j.ijhydene.2012.09.027. [17] L. Bi, E. Fabbri, E. Traversa, Electrochemistry Communications Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells ( SOFCs ), Electrochem. Commun. 16 (2012) 37–40. doi:10.1016/j.elecom.2011.12.023. [18] L. Yang, C. Zuo, S. Wang, Z. Cheng, M. Liu, A Novel Composite Cathode for Low-Temperature SOFCs Based on Oxide Proton Conductors, Adv. Mater. 20 (2008) 3280–3283. doi:10.1002/adma.200702762. [19] E. Perry Murray, Electrochemical performance of (La,Sr)(Co,Fe)O3–(Ce,Gd)O3 composite cathodes, Solid State Ionics. 148 (2002) 27–34. doi:10.1016/S0167-2738(02)00102-9. [20] N. Grunbaum, L. Dessemond, J. Fouletier, F. Prado, L. Mogni, A. Caneiro, Rate limiting steps of the porous La0.6Sr0.4Co0.8Fe0.2O3−δ electrode material, Solid State Ionics. 180 (2009) 1448–1452. doi:10.1016/j.ssi.2009.09.005. [21] N. GRUNBAUM, L. DESSEMOND, J. FOULETIER, F. PRADO, A. CANEIRO, Electrode reaction of Sr1−xLaxCo0.8Fe0.2O3−δ with x=0.1 and 0.6 on Ce0.9Gd0.1O1.95 at 600≤T≤800 °C, Solid State Ionics. 177 (2006) 907–913. doi:10.1016/j.ssi.2006.02.009. [22] L. Baqué, A. Caneiro, M.S. Moreno, A. Serquis, High performance nanostructured IT-SOFC cathodes prepared by novel chemical method, Electrochem. Commun. 10 (2008) 1905–1908. doi:10.1016/j.elecom.2008.10.010. [23] J.-H. Kim, L. Mogni, F. Prado, A. Caneiro, J.A. Alonso, A. Manthiram, High Temperature Crystal Chemistry and Oxygen Permeation Properties of the Mixed Ionic–Electronic Conductors LnBaCo[sub 2]O[sub 5+δ] (Ln=Lanthanide), J. Electrochem. Soc. 156 (2009) B1376. doi:10.1149/1.3231501. [24] N. Li, Z. Lü, B. Wei, X. Huang, K. Chen, Y. Zhang, et al., Characterization of GdBaCo2O5+δ cathode for IT-SOFCs, J. Alloys Compd. 454 (2008) 274–279. doi:10.1016/j.jallcom.2006.12.017. [25] J.-H. Kim, F. Prado, A. Manthiram, Characterization of GdBa[sub 1−x]Sr[sub x]Co[sub 2]O[sub 5+δ] (0≤x≤1.0) Double Perovskites as Cathodes for Solid Oxide Fuel Cells, J. Electrochem. Soc. 155 (2008) B1023. doi:10.1149/1.2965792. [26] J.-H. Kim, A. Manthiram, LnBaCo[sub 2]O[sub 5+δ] Oxides as Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells, J. Electrochem. Soc. 155 (2008) B385. doi:10.1149/1.2839028. [27] A. Tarancón, A. Morata, G. Dezanneau, S.J. Skinner, J.A. Kilner, S. Estradé, et al., GdBaCo2O5+x layered perovskite as an intermediate temperature solid oxide fuel cell cathode, J. Power Sources. 174 (2007) 255–263. doi:10.1016/j.jpowsour.2007.08.077. [28] Z. Shao, S.M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells, Nature. 431 (2004) 170–173. doi:10.1038/nature02863. [29] C. Niedrig, S. Taufall, M. Burriel, W. Menesklou, S.F. Wagner, S. Baumann, et al., Thermal stability of the cubic phase in Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF)1, Solid State Ionics. 197 (2011) 25–31. doi:10.1016/j.ssi.2011.06.010. [30] H.J.M. Bouwmeester, M.W. Den Otter, B.A. Boukamp, Oxygen transport in La0.6Sr0.4Co1−y Fe y O3−δ, J. Solid State Electrochem. 8 (2004) 599–605. doi:10.1007/s10008-003-0488-3. [31] J.F. Vente, S. McIntosh, W.G. Haije, H.J.M. Bouwmeester, Properties and performance of BaxSr1−xCo0.8Fe0.2O3−δ materials for oxygen transport membranes, J. Solid State Electrochem. 10 (2006) 581–588. doi:10.1007/s10008-006-0130-2. [32] B. Wei, Z. Lü, X. Huang, M. Liu, N. Li, W. Su, Synthesis, electrical and electrochemical properties of Ba0.5Sr0.5Zn0.2Fe0.8O3−δ perovskite oxide for IT-SOFC cathode, J. Power Sources. 176 (2008) 1–8. doi:10.1016/j.jpowsour.2007.09.120. [33] B. Wei, Z. Lü, X. Huang, Z. Liu, J. Miao, N. Li, et al., Ba 0.5 Sr 0.5 Zn 0.2 Fe 0.8 O 3?? Perovskite Oxide as a Novel Cathode for Intermediate-Temperature Solid-Oxide Fuel Cells, J. Am. Ceram. Soc. 90 (2007) 3364–3366. doi:10.1111/j.1551-2916.2007.01930.x. [34] J. Park, J. Zou, H. Yoon, G. Kim, J.S. Chung, Electrochemical behavior of Ba0.5Sr0.5Co0.2−xZnxFe0.8O3−δ (x = 0–0.2) perovskite oxides for the cathode of solid oxide fuel cells, Int. J. Hydrogen Energy. 36 (2011) 6184–6193. doi:10.1016/j.ijhydene.2011.01.142. [35] L. Zhao, B. He, Y. Ling, Z. Xun, R. Peng, G. Meng, et al., Cobalt-free oxide Ba0.5Sr0.5Fe0.8Cu0.2O3-?? for proton-conducting solid oxide fuel cell cathode, Int. J. Hydrogen Energy. 35 (2010) 3769–3774. doi:10.1016/j.ijhydene.2010.01.039. [36] L. Zhao, B. He, X. Zhang, R. Peng, G. Meng, X. Liu, Electrochemical performance of novel cobalt-free oxide Ba0.5Sr0.5Fe0.8Cu0.2O3−δ for solid oxide fuel cell cathode, J. Power Sources. 195 (2010) 1859–1861. doi:10.1016/j.jpowsour.2009.09.078. [37] http://www.lme.com [38] V. V Kharton, F.M.B. Marques, A. Atkinson, Transport properties of solid oxide electrolyte ceramics : a brief review, 174 (2004) 135–149. doi:10.1016/j.ssi.2004.06.015. [39] L. Malavasi, C. a J. Fisher, M.S. Islam, Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features., Chem. Soc. Rev. 39 (2010) 4370–4387. doi:10.1039/b915141a. [40] H. Iwahara, Proton Conduction in Sintered Oxides Based on BaCeO[sub 3], J. Electrochem. Soc. 135 (1988) 529. doi:10.1149/1.2095649. [41] D. Medvedev, a. Murashkina, E. Pikalova, a. Demin, a. Podias, P. Tsiakaras, BaCeO3: Materials development, properties and application, Prog. Mater. Sci. 60 (2014) 72–129. doi:10.1016/j.pmatsci.2013.08.001. [42] J. Liu, a Nowick, The incorporation and migration of protons in Nd-doped BaCeO3, Solid State Ionics. 50 (1992) 131–138. doi:10.1016/0167-2738(92)90045-Q. [43] L. Pelletier, A. McFarlan, N. Maffei, Ammonia fuel cell using doped barium cerate proton conducting solid electrolytes, J. Power Sources. 145 (2005) 262–265. doi:10.1016/j.jpowsour.2005.02.040. [44] L. Bi, S. Zhang, L. Zhang, Z. Tao, H. Wang, W. Liu, Indium as an ideal functional dopant for a proton-conducting solid oxide fuel cell, Int. J. Hydrogen Energy. 34 (2009) 2421–2425. doi:10.1016/j.ijhydene.2008.12.087. [45] K.D. Kreuer, P Roton -C Onducting O Xides, Annu. Rev. Mater. Res. 33 (2003) 333–359. doi:10.1146/annurev.matsci.33.022802.091825. [46] M. Amsif, D. Marrero-Lopez, J.C. Ruiz-Morales, S.N. Savvin, M. Gabás, P. Nunez, Influence of rare-earth doping on the microstructure and conductivity of BaCe0.9Ln0.1O3−δ proton conductors, J. Power Sources. 196 (2011) 3461–3469. doi:10.1016/j.jpowsour.2010.11.120. [47] K.. Kreuer, On the development of proton conducting materials for technological applications, Solid State Ionics. 97 (1997) 1–15. doi:10.1016/S0167-2738(97)00082-9. [48] N. Bonanos, Oxide-based protonic conductors: point defects and transport properties, Solid State Ionics. 145 (2001) 265–274. doi:10.1016/S0167-2738(01)00951-1. [49] R. Glöckner, Protons and other defects in BaCeO3: a computational study, Solid State Ionics. 122 (1999) 145–156. doi:10.1016/S0167-2738(99)00070-3. [50] K.. Kreuer, Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides, Solid State Ionics. 125 (1999) 285–302. doi:10.1016/S0167-2738(99)00188-5. [51] R.C. Anthony Sammells James White, Jeremy Osborne, Robert MacDuff, Rational selection of advanced solid electrolytes for intermediate temperature fuel cells, Solid State Ionics. 52 (1992) 111–123. doi:10.1016/0167-2738(92)90097-9. [52] J.W.P.S.P.S. Badwal, Review of proton conductors for hydrogen separation, (2006) 103–115. doi:10.1007/s11581-006-0016-4. [53] R. Mukundan, Tritium Conductivity and Isotope Effect in Proton-Conducting Perovskites, J. Electrochem. Soc. 146 (1999) 2184. doi:10.1149/1.1391911. [54] D.A. Medvedev, J.G. Lyagaeva, E. V Gorbova, A.K. Demin, Progress in Materials Science Advanced materials for SOFC application : Strategies for the development of highly conductive and stable solid oxide proton electrolytes, J. Prog. Mater. Sci. 75 (2016) 38–79. doi:10.1016/j.pmatsci.2015.08.001. [55] A.K. Azad, J.T.S. Irvine, Location of Deuterium Positions in the Proton-Conducting Diffraction, (2009) 215–222. [56] D.B. Chrisey, K.G. Hubler, Pulsed Laser Deposition of Thin Films, n.d. [57] H.U. Habermeier, Thin films of perovskite-type complex oxides, Mater. Today. 10 (2007) 34–43. doi:10.1016/S1369-7021(07)70243-2. [58] D. Beckel, A. Harvey, A. Infortuna, U.P. Muecke, M. Prestat, J.L.M. Rupp, et al., Thin films for micro solid oxide fuel cells, 173 (2007) 325–345. doi:10.1016/j.jpowsour.2007.04.070. [59] B.D. Cullity, S.R. Stock, elements of x-ray diffraction 3nd edition, n.d. [60] H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures - for Polycrystalline and Amorphous Materials, John Wiley & Sons. New York, n.d. [61] http://www.ill.eu/sites/fullprof/ [62] P. Paufler, R. A. Young (ed.). The Rietveld Method. International Union of Crystallography. Oxford University Press 1993. 298 p. Price £ 45.00. ISBN 0–19–855577–6, Cryst. Res. Technol. 30 (1995) 494–494. doi:10.1002/crat.2170300412. [63] J. Goldstein, D.E. Newbury, D.C. Joy, C.E. Lyman, P. Echlin, E. Lifshin, et al., Scanning Electron Microscopy and X-ray Microanalysis Third Edition, n.d. [64] a. Caneiro, P. Bavdaz, J. Fouletier, J.P. Abriata, Adaptation of an Electrochemical System for Measurement and Regulation of Oxygen Partial Pressure To a Symmetrical Thermogravimetric Analysis System Developed Using a Cahn 1000 Electrobalance., Rev. Sci. Instrum. 53 (1982) 1072–1075. doi:10.1063/1.1137090. [65] N. Grunbaum, L. Mogni, F. Prado, A. Caneiro, Phase equilibrium and electrical conductivity of SrCo0.8Fe0.2O3−δ, J. Solid State Chem. 177 (2004) 2350–2357. doi:10.1016/j.jssc.2004.03.026. [66] A. Serquis, F. Prado, A. Caneiro, On the role of the reduction step in Nd1.85Ce0.15Cu1±δOy: a study of thermodynamic properties and electrical resistivity at high temperature, Phys. C Supercond. 313 (1999) 271–280. doi:10.1016/S0921-4534(99)00004-0. [67] L. Mogni, J. Fouletier, F. Prado, A. Caneiro, High-temperature thermodynamic and transport properties of the mixed conductor, J. Solid State Chem. 178 (2005) 2715–2723. doi:10.1016/j.jssc.2005.06.010. [68] L. Mogni, F. Prado, A. Caneiro, Defect Structure and Electrical Conductivity of the Ruddlesden−Popper Phases Sr 3 FeMO 6+ δ (M = Co, Ni), Chem. Mater. 18 (2006) 4163–4170. doi:10.1021/cm0604007. [69] K. Sato, H. Yugami, T. Hashida, Effect of rare-earth oxides on fracture properties of ceria ceramics, J. Mater. Sci. 39 (2004) 5765–5770. doi:10.1023/B:JMSC.0000040087.37727.cd. [70] Z. Xiong, W. Jiang, Y. Shi, A. Kawasaki, R. Watanabe, Evaluation of High-Temperature Strength of Mo/PSZ Composites by Modified Small Punch Tests, Mater. Trans. 46 (2005) 631–636. [71] C. Kittel, Introduction to Solid State Physics, 8th Edition, n.d. [72] W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics, 2nd Edition, n.d. [73] Zview version 2.9b. Copyright 1990-2005 [74] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A. 32 (1976) 751–767. doi:10.1107/S0567739476001551. [75] A.K. Azad, C. Savaniu, S. Tao, S. Duval, P. Holtappels, R.M. Ibberson, et al., Structural origins of the differing grain conductivity values in BaZr0.9Y0.1O2.95 and indication of novel approach to counter defect association, J. Mater. Chem. 18 (2008) 3414. doi:10.1039/b806190d. [76] F. Giannici, M. Shirpour, A. Longo, A. Martorana, R. Merkle, J. Maier, Long-range and short-range structure of proton-conducting Y:BaZrO 3, Chem. Mater. 23 (2011) 2994–3002. doi:10.1021/cm200682d. [77] http://lnls.cnpem.br/beamlines/xrd/ [78] http://www.lightsources.org/ [79] http://skuld.bmsc.washington.edu/scatter/ [80] J.-L. Hodeau, V. Favre-Nicolin, S. Bos, H. Renevier, E. Lorenzo, J.-F. Berar, Resonant Diffraction, Chem. Rev. 101 (2001) 1843–1868. doi:10.1021/cr0000269. [81] S. Caticha-Ellis, Anomalous dispersion of X-rays in crystallography, International Union of Crystallography, University College Cardiff, 1981, n.d. [82] S. Welzmiller, P. Urban, F. Fahrnbauer, L. Erra, O. Oeckler, Determination of the distribution of elements with similar electron counts: a practical guide for resonant X-ray scattering, J. Appl. Crystallogr. 46 (2013) 769–778. doi:10.1107/S0021889813008923. [83] S.T. Connor, B.D. Weil, S. Misra, Y. Cui, M.F. Toney, Behaviors of Fe , Zn , and Ga Substitution in CuInS 2 Nanoparticles Probed with Anomalous X - ray Di ff raction, (2013). [84] R. Yang, J. Leisch, P. Strasser, M.F. Toney, Structure of Dealloyed PtCu 3 Thin Films and Catalytic Activity for Oxygen Reduction, Chem. Mater. 22 (2010) 4712–4720. doi:10.1021/cm101090p. [85] R. Yang, W. Bian, P. Strasser, M.F. Toney, Dealloyed PdCu3 thin film electrocatalysts for oxygen reduction reaction, J. Power Sources. 222 (2013) 169–176. doi:10.1016/jjpowsour.2012.08.064. [86] J.D. Perkins, T.R. Paudel, A. Zakutayev, P.F. Ndione, P.A. Parilla, D.L. Young, et al., Inverse design approach to hole doping in ternary oxides : Enhancing p -type conductivity in cobalt oxide spinels, 205207 (2011) 1–8. doi:10.1103/PhysRevB.84.205207. [87] T.R. Paudel, S. Lany, M. D’Avezac, A. Zunger, N.H. Perry, A.R. Nagaraja, et al., Asymmetric cation nonstoichiometry in spinels: Site occupancy in Co <math display=“inline”> <msub> <mrow/> <mn>2</mn> </msub> </math> ZnO <math display=“inline”> <msub> <mrow/> <mn>4</mn></msub> </math> and Rh <math display=“inline”> <msub> <mrow/> <mn>2, Phys. Rev. B. 84 (2011) 64109. doi:10.1103/PhysRevB.84.064109. [88] S. Vázquez, S. Davyt, J.F. Basbus, A.L. Soldati, A. Amaya, A. Serquis, et al., Synthesis and characterization of La0.6Sr0.4Fe0.8Cu0.2O3−δ oxide as cathode for Intermediate Temperature Solid Oxide Fuel Cells, J. Solid State Chem. 228 (2015) 208–213. doi:10.1016/j.jssc.2015.04.044. [89] H. Palancher, S. Bos, J.F. Bérar, I. Margiolaki, J.L. Hodeau, X-ray resonant powder diffraction, Eur. Phys. J. Spec. Top. 208 (2012) 275–289. doi:10.1140/epjst/e2012-01624-1. [90] K.S. Knight, I.S. Division, O.X. Oqx, R. December, A.X. West, THE CRYSTAL STRUCTURES OF SOME DOPED AND UNDOPED, 30 (1995) 347–356. [91] K.S. Knight, Structural phase transitions , oxygen vacancy ordering and protonation in doped BaCeO 3 : results from time-of-flight neutron powder diffraction investigations, (2001) 275–294. [92] F.F. Ferreira, E. Granado, C. Jr, research papers X-ray powder diffraction beamline at D10B of LNLS : application to the Ba 2 FeReO 6 double perovskite research papers, (2006) 46–53. doi:10.1107/S0909049505039208. [93] L.W. Finger, D.E. Cox, A.P. Jephcoat, A correction for powder diffraction peak asymmetry due to axial divergence, J. Appl. Crystallogr. 27 (1994) 892–900. doi:10.1107/S0021889894004218. [94] J. Wu, S.M. Webb, S. Brennan, S.M. Haile, Dopant site selectivity in BaCe[sub 0.85]M[sub 0.15]O[sub 3-δ] by extended x-ray absorption fine structure, J. Appl. Phys. 97 (2005) 54101. doi:10.1063/1.1846946. [95] J. Wu, Defect Chemistry and Proton Conductivity in Ba-based Perovskites, 2005 (2005). [96] J. Hermet, M. Torrent, F. Bottin, G. Dezanneau, G. Geneste, Hydrogen diffusion in the protonic conductor BaCe <math display=“inline”> <msub> <mrow/> <mrow> <mn>1</mn> <mo>−</mo> <mi>x</mi> </mrow> </msub> </math> Gd <math display=“inline”> <msub> <mrow/> <mi>x</mi> </msub> </math> O <math display=“inline”> <msub>, Phys. Rev. B. 87 (2013) 104303. doi:10.1103/PhysRevB.87.104303. [97] M. Wang, L. Qiu, Mixed Conduction in BaCe 0.8 Pr 0.2 O 3-α Ceramic, Chinese J. Chem. Phys. 21 (2008) 286–290. doi:10.1088/1674-0068/21/03/286-290. [98] N. V Sharova, V.P. Gorelov, V.B. Balakireva, in Oxidizing and Reducing Environment, 41 (2005) 665–670. [99] J. Kikuchi, S. Koga, K. Kishi, M. Saito, J. Kuwano, Ionic conductivity in lanthanoid ion-doped BaCeLnO3 electrolytes, Solid State Ionics. 179 (2008) 1413–1416. doi:10.1016/j.ssi.2007.12.048. [100] X. Su, Q. Yan, X. Ma, W. Zhang, C. Ge, Effect of co-dopant addition on the properties of yttrium and neodymium doped barium cerate electrolyte, Solid State Ionics. 177 (2006) 1041–1045. doi:10.1016/j.ssi.2006.02.047. [101] C. Zhang, H. Zhao, Influence of in content on the electrical conduction behavior of Sm- and in-co-doped proton conductor BaCe 0.80-xSm 0.20In xO 3-??, Solid State Ionics. 206 (2012) 17–21. doi:10.1016/j.ssi.2011.10.026. [102] F. Giannici, A. Longo, K.-D. Kreuer, A. Balerna, A. Martorana, Dopants and defects: Local structure and dynamics in barium cerates and zirconates, Solid State Ionics. 181 (2010) 122–125. doi:10.1016/j.ssi.2009.01.021. [103] Y.-J. Gu, Z.-G. Liu, J.-H. Ouyang, F.-Y. Yan, Y. Zhou, Structure and electrical conductivity of BaCe0.85Ln0.15O3−δ (Ln=Gd, Y, Yb) ceramics, Electrochim. Acta. 105 (2013) 547–553. doi:10.1016/j.electacta.2013.05.034. [104] D. Medvedev, V. Maragou, T. Zhuravleva, a. Demin, E. Gorbova, P. Tsiakaras, Investigation of the structural and electrical properties of Co-doped BaCe0.9Gd0.1O3 - ??, Solid State Ionics. 182 (2011) 41–46. doi:10.1016/j.ssi.2010.11.008. [105] N. Nasani, P. a. N. Dias, J. a. Saraiva, D.P. Fagg, Synthesis and conductivity of Ba(Ce,Zr,Y)O3−δ electrolytes for PCFCs by new nitrate-free combustion method, Int. J. Hydrogen Energy. 38 (2013) 8461–8470. doi:10.1016/j.ijhydene.2013.04.078. [106] M. Amsif, D. Marrero-López, J.C. Ruiz-Morales, S.N. Savvin, P. Núñez, The effect of Zn addition on the structure and transport properties of BaCe0.9−xZrxY0.1O3−δ, J. Eur. Ceram. Soc. 34 (2014) 1553–1562. doi:10.1016/j.jeurceramsoc.2013.12.008. [107] G. Chiodelli, L. Malavasi, C. Tealdi, S. Barison, M. Battagliarin, L. Doubova, et al., Role of synthetic route on the transport properties of BaCe1−xYxO3 proton conductor, J. Alloys Compd. 470 (2009) 477–485. doi:10.1016/j.jallcom.2008.03.011. [108] A.P. Roberts, E. Garboczi, Elastic Properties of Model Porous Ceramics, J. Am. Ceram. Soc. 83 (2000) 3041–3048. [109] D. Shima, S.M. Haile, The influence of cation non-stoichiometry on the properties of undoped and gadolinia-doped barium cerate, Solid State Ionics. 97 (1997) 443–455. doi:10.1016/S0167-2738(97)00029-5. [110] S. Megel, K. Eichler, N. Trofimenko, S. Hoehn, Electrical resistivity of low temperature sintered perovskites, Solid State Ionics. 177 (2006) 2099–2102. doi:10.1016/j.ssi.2006.06.032. [111] http://compdent.uthscsa.edu/dig/itdesc.html [112] A. Le Bail, Whole powder pattern decomposition methods and applications: A retrospection, Powder Diffr. 20 (2005) 316–326. doi:10.1154/1.2135315. [113] J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction, Phys. B Condens. Matter. 192 (1993) 55–69. doi:10.1016/0921-4526(93)90108-I. [114] A. Le Bail, H. Duroy, J.L. Fourquet, Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction, Mater. Res. Bull. 23 (1988) 447–452. doi:10.1016/0025-5408(88)90019-0. [115] A. Magrasó, C. Frontera, A.E. Gunnæs, A. Tarancón, D. Marrero-López, T. Norby, et al., Structure, chemical stability and mixed proton-electron conductivity in BaZr0.9-xPrxGd0.1O3-δ, J. Power Sources. 196 (2011) 9141–9147. doi:10.1016/j.jpowsour.2011.06.076. [116] P. Sawant, S. Varma, B.N. Wani, S.R. Bharadwaj, Synthesis, stability and conductivity of BaCe0.8−xZrxY0.2O3−δ as electrolyte for proton conducting SOFC, Int. J. Hydrogen Energy. 37 (2012) 3848–3856. doi:10.1016/j.ijhydene.2011.04.106. [117] S. Ricote, N. Bonanos, G. Caboche, Water vapour solubility and conductivity study of the proton conductor BaCe(0.9−x)ZrxY0.1O(3−δ), Solid State Ionics. 180 (2009) 990–997. doi:10.1016/j.ssi.2009.03.016. [118] R.W. Rice, Microstructure Dependence of Mechanical Behavior of Ceramics. Treatise Mat. Sci.Tech., Properties and Microstructure 11, 1997. [119] K. Gdula-Kasica, a. Mielewczyk-Gryn, S. Molin, P. Jasinski, a. Krupa, B. Kusz, et al., Optimization of microstructure and properties of acceptor-doped barium cerate, Solid State Ionics. 225 (2012) 245–249. doi:10.1016/j.ssi.2012.04.022. [120] S. Gill, R. Kannan, N. Maffei, V. Thangadurai, Effect of Zr substitution for Ce in BaCe0.8Gd0.15Pr0.05O3−δ on the chemical stability in CO2 and water, and electrical conductivity, RSC Adv. 3 (2013) 3599. doi:10.1039/c2ra22097k. [121] A. Magrasó, C. Kjølseth, R. Haugsrud, T. Norby, Influence of Pr substitution on defects, transport, and grain boundary properties of acceptor-doped BaZrO 3, Int. J. Hydrogen Energy. 37 (2012) 7962–7969. doi:10.1016/j.ijhydene.2011.10.067. [122] E. Gorbova, V. Maragou, D. Medvedev, a. Demin, P. Tsiakaras, Investigation of the protonic conduction in Sm doped BaCeO3, J. Power Sources. 181 (2008) 207–213. doi:10.1016/j.jpowsour.2008.01.036. [123] R. Mukundan, P.K. Davies, W.L. Worrell, Electrochemical Characterization of Mixed Conducting Ba(Ce[sub 0.8−y]Pr[sub y]Gd[sub 0.2])O[sub 2.9] Cathodes, J. Electrochem. Soc. 148 (2001) A82. doi:10.1149/1.1344520. [124] J.F. Basbus, M. Moreno, a. Caneiro, L. V. Mogni, Effect of Pr-Doping on Structural, Electrical, Thermodynamic, and Mechanical Properties of BaCeO3- as Proton Conductor, J. Electrochem. Soc. 161 (2014) F969–F976. doi:10.1149/2.0181410jes. [125] J.F. Basbus, A. Caneiro, L. Suescun, D.G. Lamas, L. V. Mogni, Anomalous X-ray diffraction study of Pr-substituted BaCeO 3 − δ, Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 71 (2015) 455–462. doi:10.1107/S2052520615010203. [126] C.T.G. Petit, S. Tao, Structure and conductivity of praseodymium and yttrium co-doped barium cerates, Solid State Sci. 17 (2013) 115–121. doi:10.1016/j.solidstatesciences.2012.12.004. [127] a Kruth, Water incorporation studies on doped barium cerate perovskites, Solid State Ionics. 162–163 (2003) 83–91. doi:10.1016/S0167-2738(03)00252-2. [128] T. Ohzeki, S. Hasegawa, M. Shimizu, T. Hashimoto, Analysis of phase transition behavior of BaCeO3 with thermal analyses and high temperature X-ray diffraction, Solid State Ionics. 180 (2009) 1034–1039. doi:10.1016/j.ssi.2009.05.019. [129] M. Amsif, D. Marrero-López, J.C. Ruiz-Morales, S.N. Savvin, P. Núñez, Effect of sintering aids on the conductivity of BaCe0.9Ln0.1O3−δ, J. Power Sources. 196 (2011) 9154–9163. doi:10.1016/j.jpowsour.2011.06.086. [130] L. Zhao, W. Tan, Q. Zhong, The chemical stability and conductivity improvement of protonic conductor BaCe0.8 - xZrxY0.2O3 - ??, Ionics (Kiel). 19 (2013) 1745–1750. doi:10.1007/s11581-013-0928-8. [131] Y. Guo, Y. Lin, R. Ran, Z. Shao, Zirconium doping effect on the performance of proton-conducting, 193 (2009) 400–407. doi:10.1016/j.jpowsour.2009.03.044. [132] S. Barison, M. Battagliarin, T. Cavallin, L. Doubova, M. Fabrizio, C. Mortalò, et al., High conductivity and chemical stability of BaCe1−x−yZrxYyO3−δ proton conductors prepared by a sol–gel method, J. Mater. Chem. 18 (2008) 5120. doi:10.1039/b808344d. [133] N. Nasani, D. Ramasamy, S. Mikhalev, A. V Kovalevsky, D.P. Fagg, Fabrication and electrochemical performance of a stable , anode Cell, J. Power Sources. 278 (2015) 582–589. doi:10.1016/j.jpowsour.2014.12.124. [134] J. Lagaeva, D. Medvedev, A. Demin, P. Tsiakaras, Insights on thermal and transport features of BaCe 0 . 8 À x Zr x Y 0 . 2 O 3 À d proton-conducting materials, 278 (2015) 436–444. doi:10.1016/j.jpowsour.2014.12.024. [135] C. Tu, R.R. Chien, V.H. Schmidt, S. Lee, C. Huang, C. Tsai, et al., Thermal stability of Ba ( Zr 0 . 8 − x Ce x Y 0 . 2 ) O 2 . 9 ceramics in carbon dioxide, 103504 (2014) 1–8. doi:10.1063/1.3117835. [136] Y.G. Lyagaeva, D. a. Medvedev, a. K. Demin, P. Tsiakaras, O.G. Reznitskikh, Thermal expansion of materials in the barium cerate-zirconate system, Phys. Solid State. 57 (2015) 285–289. doi:10.1134/S1063783415020250. [137] S. Yamaguchi, N. Yamada, Thermal lattice expansion behavior of Yb-doped BaCeO3, Solid State Ionics. 162–163 (2003) 23–29. doi:10.1016/S0167-2738(03)00249-2. [138] X. Zhou, L. Liu, J. Zhen, S. Zhu, B. Li, K. Sun, et al., Ionic conductivity, sintering and thermal expansion behaviors of mixed ion conductor BaZr0.1Ce0.7Y0.1Yb 0.1O3-?? prepared by ethylene diamine tetraacetic acid assisted glycine nitrate process, J. Power Sources. 196 (2011) 5000–5006. doi:10.1016/j.jpowsour.2011.01.092. [139] A. Atkinson, S. Barnett, R.J. Gorte, J.T.S. Irvine, A.J. McEvoy, M. Mogensen, et al., Advanced anodes for high-temperature fuel cells, Nat. Mater. 3 (2004) 17–27. doi:10.1038/nmat1040. [140] D.A.G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen, Ann. Phys. 416 (1935) 636–664. doi:10.1002/andp.19354160705. [141] Z. Wang, J. Yang, Z. Li, Y. Xiang, Syngas composition study, Front. Energy Power Eng. China. 3 (2009) 369–372. doi:10.1007/s11708-009-0044-7. [142] W. Zając, E. Hanc, A. Gorzkowska-Sobas, K. Świerczek, J. Molenda, Nd-doped Ba(Ce,Zr)O3−δ proton conductors for application in conversion of CO2 into liquid fuels, Solid State Ionics. 225 (2012) 297–303. doi:10.1016/j.ssi.2012.05.024. [143] K.H. Ryu, S.M. Haile, Chemical stability and proton conductivity of doped BaCeO 3 –BaZrO 3 solid solutions, 125 (1999) 355–367. [144] C. Zuo, S. Zha, M. Liu, M. Hatano, M. Uchiyama, Ba(Zr0.1Ce0.7Y0.2)O3–δ as an Electrolyte for Low-Temperature Solid-Oxide Fuel Cells, Adv. Mater. 18 (2006) 3318–3320. doi:10.1002/adma.200601366. [145] J.F. Basbus, M.D. Arce, F. Prado, L. Suescun, A. Caneiro, L. V. Mogni, A High Temperature Study on the Structure, Linear Expansion, Thermodynamic Stability and Electrical Properties of the BaCe 0.8 Pr 0.2 O 3−δ Perovskite, J. Electrochem. Soc. 163 (2016) F516–F522. doi:10.1149/2.0911606jes. [146] J.F. Basbus, M.D. Arce, F.D. Prado, A. Caneiro, L.V. Mogni, A high temperature study on thermodynamic, thermal expansion and electrical properties of BaCe0.4Zr0.4Y0.2O3−δ proton conductor, J. Power Sources. 329 (2016) 262–267. doi:10.1016/j.jpowsour.2016.08.083. [147] N. Zakowsky, S. Williamson, J. Irvine, Elaboration of CO2 tolerance limits of BaCe0.9Y0.1O3–δ electrolytes for fuel cells and other applications, Solid State Ionics. 176 (2005) 3019–3026. doi:10.1016/j.ssi.2005.09.040. [148] I. Chang, P. Heo, S.W. Cha, Thin film solid oxide fuel cell using a pinhole-free and dense Y-doped BaZrO3, Thin Solid Films. 534 (2013) 286–290. doi:10.1016/j.tsf.2013.03.024. [149] Y. Guo, R. Ran, Z. Shao, Fabrication and performance of a carbon dioxide-tolerant proton-conducting solid oxide fuel cells with a dual-layer electrolyte, Int. J. Hydrogen Energy. 35 (2010) 10513–10521. doi:10.1016/j.ijhydene.2010.07.179. [150] G.S. Godoi, D.P.F. de Souza, Electrical and microstructural characterization of La0.7Sr0.3MnO3 (LSM), Ce0.8Y0.2O2 (CY) and LSM–CY composites, Mater. Sci. Eng. B. 140 (2007) 90–97. doi:10.1016/j.mseb.2007.04.006. [151] L. HE, D. LEE, H. YOO, M. MARTIN, Ionic conductivity of undoped BaTiO with electron transfer suppressed, Solid State Ionics. 176 (2005) 929–935. doi:10.1016/j.ssi.2004.11.014. [152] S.J. Litzelman, H.L. Tuller, Measurement of mixed conductivity in thin films with microstructured Hebb–Wagner blocking electrodes, Solid State Ionics. 180 (2009) 1190–1197. doi:10.1016/j.ssi.2009.05.013. [153] M. Bouroushian, T. Kosanovic, Characterization of Thin Films by Low Incidence X-Ray Diffraction, 2012 (2012) 35–39. [154] B.K. Tanner, T.P.A. Hase, T.A. Lafford, M.S. Goorsky, GRAZING INCIDENCE IN-PLANE X-RAY DIFFRACTION IN THE LABORATORY, 47 (2004) 309–314. [155] K. Salamon, O. Milat, N. Radić, P. Dubček, M. Jerčinović, S. Bernstorff, Structure and morphology of magnetron sputtered W films studied by x-ray methods, J. Phys. D. Appl. Phys. 46 (2013) 95304. doi:10.1088/0022-3727/46/9/095304. [156] Xpert Highscore 2.1b 2005 PANalytical [157] V.M. Goldschmidt, Die Gesetze der Krystallochemie, Naturwissenschaften. 14 (1926) 477–485. doi:10.1007/BF01507527. [158] http://www.ccp14.ac.uk/ccp/web-mirrors/pki/uni/pki/members/schinzer/stru_chem/perov/di_gold.html [159] Y. Ding, Y. Chen, X. Lu, B. Lin, Preparation and characterization of Ba0.5Sr0.5Fe0.9Ni0.1O3−δ–Sm0.2Ce0.8O1.9 compose cathode for proton-conducting solid oxide fuel cells, Int. J. Hydrogen Energy. 37 (2012) 9830–9835. doi:10.1016/j.ijhydene.2012.03.077. [160] K. Efimov, T. Halfer, A. Kuhn, P. Heitjans, J. Caro, A. Feldhoff, Novel Cobalt-Free Oxygen-Permeable Perovskite-Type Membrane, Chem. Mater. 22 (2010) 1540–1544. doi:10.1021/cm902882s. [161] C.Y. Park, T.H. Lee, S.E. Dorris, J.-H. Park, U. Balachandran, Ethanol reforming using Ba0.5Sr0.5Cu0.2Fe0.8O3−δ/Ag composites as oxygen transport membranes, J. Power Sources. 214 (2012) 337–343. doi:10.1016/j.jpowsour.2012.04.052. [162] H.X. Luo, L.H. Yu, X.Z. Chen, H.H. Wang, J. Caro, Novel Ba0.5Sr0.5Fe0.8Zn0.2O3−δ membranes for POM, Chinese Chem. Lett. 20 (2009) 250–252. doi:10.1016/j.cclet.2008.10.011. [163] B. Wei, Z. Lü, X. Huang, J. Miao, X. Sha, X. Xin, et al., Crystal structure, thermal expansion and electrical conductivity of perovskite oxides BaxSr1−xCo0.8Fe0.2O3−δ (0.3≤x≤0.7), J. Eur. Ceram. Soc. 26 (2006) 2827–2832. doi:10.1016/j.jeurceramsoc.2005.06.047. [164] E. Bucher, A. Egger, G.B. Caraman, W. Sitte, Stability of the SOFC Cathode Material (Ba,Sr)(Co,Fe)O[sub 3−δ] in CO[sub 2]-Containing Atmospheres, J. Electrochem. Soc. 155 (2008) B1218. doi:10.1149/1.2981024. [165] S. Vázquez, J. Basbus, A.L. Soldati, F. Napolitano, A. Serquis, L. Suescun, Effect of the symmetric cell preparation temperature on the activity of Ba0.5Sr0.5Fe0.8Cu0.2O3-δ as cathode for intermediate temperature Solid Oxide Fuel Cells, J. Power Sources. 274 (2015) 318–323. doi:10.1016/j.jpowsour.2014.10.064. [166] Y. Zhu, W. Zhou, R. Ran, Y. Chen, Z. Shao, M. Liu, Promotion of Oxygen Reduction by Exsolved Silver Nanoparticles on a Perovskite Scaffold for Low-Temperature Solid Oxide Fuel Cells, Nano Lett. 16 (2016) 512–518. doi:10.1021/acs.nanolett.5b04160. [167] J.M. Vohs, R.J. Gorte, High-Performance SOFC Cathodes Prepared by Infiltration, Adv. Mater. 21 (2009) 943–956. doi:10.1002/adma.200802428. [168] J.F. Basbus, F.D. Prado, a. Caneiro, L. V. Mogni, A comparative study of high temperature properties of cobalt-free perovskites, J. Electroceramics. (2014). doi:10.1007/s10832-014-9901-9. [169] Y. Guo, R. Ran, Z. Shao, Optimizing the modification method of zinc-enhanced for application in an anode-supported protonic solid oxide fuel cell, Int. J. Hydrogen Energy. 35 (2010) 5611–5620. doi:10.1016/j.ijhydene.2010.03.039. [170] N. Nasani, D. Ramasamy, I. Antunes, J. Perez, D.P. Fagg, Electrochemical behaviour of Ni-BZO and Ni-BZY cermet anodes for Protonic Ceramic Fuel Cells (PCFCs) – A comparative study, Electrochim. Acta. 154 (2015) 387–396. doi:10.1016/j.electacta.2014.12.094. [171] N. Nasani, D. Ramasamy, A.D. Brandão, A.A. Yaremchenko, D.P. Fagg, The impact of porosity, pH2 and pH2O on the polarisation resistance of Ni–BaZr0.85Y0.15O3−δ cermet anodes for Protonic Ceramic Fuel Cells (PCFCs), Int. J. Hydrogen Energy. 39 (2014) 21231–21241. doi:10.1016/j.ijhydene.2014.10.093. [172] N. Nasani, Z.-J. Wang, M.G. Willinger, A.A. Yaremchenko, D.P. Fagg, In-situ redox cycling behaviour of Ni–BaZr0.85Y0.15O3−δ cermet anodes for Protonic Ceramic Fuel Cells, Int. J. Hydrogen Energy. 39 (2014) 19780–19788. doi:10.1016/j.ijhydene.2014.09.136. [173] http://www-pub.iaea.org/MTCD/Publications/PDF/TRS431_web.pdf [174] http://www-pub.iaea.org/MTCD/publications/PDF/te_1085_prn.pdf
Materias:Química > Materiales
Divisiones:Aplicaciones de la energía nuclear > Tecnología de materiales y dispositivos > Caracterización de materiales
Código ID:1087
Depositado Por:Tamara Cárcamo
Depositado En:19 Jul 2022 13:39
Última Modificación:19 Jul 2022 13:39

Personal del repositorio solamente: página de control del documento