Caracterización estructural y electrónica de titanatos de lantano estroncio dopados con cobalto para su uso como electrodo de celdas de combustible simétricas / Structural and electronic characterization of lanthanum strontium titanares doped with cobalt for symmetrical fuel cells electrodes

Napolitano, Federico R. (2014) Caracterización estructural y electrónica de titanatos de lantano estroncio dopados con cobalto para su uso como electrodo de celdas de combustible simétricas / Structural and electronic characterization of lanthanum strontium titanares doped with cobalt for symmetrical fuel cells electrodes. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
78Mb

Resumen en español

La estructura básica ABX_3 de las perovskitas forma la familia base de un amplio rango de estructuras relacionadas por la combinación entre distorsiones topológicas, y sustituciones en los sitios A, B y X. Estos compuestos exhiben una gran diversidad de propiedades magnéticas, eléctricas, ópticas y catalíticas de potencial aplicación en física de estado solido, química y ciencia de materiales. Los óxidos tipo perovskitas ABO_3 son candidatos ideales para ser utilizados en aplicaciones de alta temperatura, en particular si presentan buenas propiedades de transporte eléctrico, iónico y actividad catalítica con respecto a ciertas reacciones químicas. Un ejemplo de aplicación se encuentra en las celdas de combustible de oxido solido (SOFC), cuyo estado del arte involucra la utilización de este tipo de compuestos. Las celdas de combustible, en general, son dispositivos electroquímicos capaces de convertir energía química en energía eléctrica con gran eficiencia. Debido a la simplicidad en el concepto de funcionamiento y a su versatilidad poseen un gran potencial para desempeñar un papel importante en una futura matriz de generación de energía eléctrica. Las SOFC, en particular, combinan los beneficios de ser una tecnología compatible con el cuidado del medio ambiente y la posibilidad de un amplio rango de generación de potencia y flexibilidad en el combustible utilizado (Ej.: hidrogeno con bajos requerimientos de pureza e hidrocarburos como gas natural). Una nueva propuesta de materiales a ser utilizados surgió recientemente como un nuevo concepto de SOFC, la celda de combustible de oxido solido simétrica (S-SOFC) que utilizan el mismo material para cátodo y ánodo simultáneamente. Este nuevo concepto podrá resolver dos de los principales problemas asociados al envejecimiento de las SOFC: el envenenamiento por azufre y el deposito de carbón, posibilitando la extensión de la vida útil del dispositivo. El objetivo general del presente trabajo es la síntesis, desarrollo y evaluación de nuevos materiales cerámicos con conductividad mixta para su potencial uso en dispositivos de alta temperatura, analizando su posible uso simultaneo como cátodo y ánodo de SOFC. Para ello se planteo la solución solida entre (La,Sr)CoO_3 y (La,Sr)TiO_3, compuestos que han sido ampliamente reportados para aplicaciones como cátodo y ánodo de SOFC, respectivamente. Especialmente se estudio la familia de compuestos La_0.4Sr_0.6Ti_1-yCo_yO_3±δ con 0 ≤ y ≤ 1 (LSTC). Al ser un compuesto novedoso, el primer paso consistió en identificar y optimizar la ruta de síntesis mas conveniente para obtener la estructura perovskita (La,Sr)(Ti,Co)O_3 con el objetivo de obtener compuestos nanoestructurados, estableciendo una ruta química de baja temperatura basada en una solución de etilenoglicol y acido cítrico como la mas conveniente en función de la aplicación. Dado que los parámetros estructurales ejercen fuerte influencia en las propiedades electroquímicas y ante la notable falta de información cristalográfica, se procedió a realizar una completa caracterización estructural de la sistemática sustitucional con datos de calidad obtenidos mediante técnicas de difracción de rayos X de polvos con luz sincrotrón y neutrones. A temperatura ambiente se encontró que la muestra sin cobalto adopta una estructura tipo perovskita cubica de grupo espacial Pm3m con deficiencia catiónica en el sitio A, en acuerdo con lo reportado para este compuesto al ser sintetizado por una ruta de baja temperatura en aire. Al realizar la sustitución de Ti por Co la simetría de la estructura disminuye a una romboédrica (grupo espacial R3c) debido a la rotación rígida de los octaedros de oxígeno en la dirección a¯a¯a¯ , distorsión que alcanza su máximo para la muestra con 30% de cobalto. Estos resultados fueron complementados con la caracterización del orden local del Ti y del Co a través de espectroscopia de absorción de rayos X extendida en energía (EXAFS). Se determino que, si bien los entornos de ambos metales de transición no son equivalentes, en general mantienen el modelo de entorno octaédrico regular (no distorsionado) del grupo R3c. La caracterización de la estructura electrónica de la serie LSTC se realizo a través de espectroscopía de absorción de rayos X cerca del borde de absorción (XANES). Del análisis de estas mediciones se obtuvo que el estado de oxidación del titanio permanece estable en +4 en toda la serie, mientras que el Co se encuentra mayoritariamente en estado +3. De esta forma, se obtuvo información de cuales son los mecanismos de compensación de carga en la serie LSTC. En las muestras con bajo contenido de Co la electroneutralidad de la estructura es lograda por medio de la expulsión de estroncio de la estructura (formando clústers amorfos de SrO). La sustitución de Ti"4+ por Co"3+ permite compensar estos defectos hasta llegar a la ocupación total del sitio A en la muestra con 30% de cobalto. Al aumentar el contenido de cobalto se encontraron indicios de que es factible un aumento en la no-estequiometria de oxígeno. Teniendo en cuenta la aplicación potencial en dispositivos de alta temperatura, se realizo la caracterización de la estructura cristalina y electrónica en función de la temperatura (20 - 750 C) y atmosfera oxidante y reductora. Se observo que en ambiente oxidante, la serie La_0.4Sr_0.6Ti_1-yCo-yO_3±δ es estable en todo el rango de temperatura ensayado, mientras que en atmosfera reductora los son para y 0:6. En todos los casos se observo que los LSTC tienen una transición de fase reversible desde la romboédrica R3c (a temperatura ambiente) a la cubica Pm3m (a alta temperatura), estando la temperatura de transición relacionada directamente con el grado de distorsión romboédrica de la estructura a temperatura ambiente. Esta transformación es de segundo orden y se debe a la rotación rígida del octaedro de oxígenos. La evolución del estado de oxidación de los metales de transición fue caracterizada a través de XANES in-situ y reducción programada en temperatura y correlacionada con cambios estructurales observados por difracción de rayos X in-situ. En atmosfera reductora, en la muestra sin dopar solo el 7% del titanio se reduce a Ti"3+ al alcanzar los 750 C, este mecanismo es activado a temperaturas superiores a los 500 C, mientras que en las muestras dopadas con 30 y 50% de cobalto se encontró que este elemento se reduce totalmente a Co"2+ entre los 200 y 450 C. Por el contrario, en atmosfera oxidante no se encontraron indicios de reducción en ambos metales de transición. Se estudiaron las propiedades de transporte eléctrico de los LSTC con y = 0.0; 0.3; 0.5 en función de la temperatura y de la presión parcial de oxígeno (pO_2). Se encontró un incremento en la conductividad total, en aire, de entre 7 y 9 ordenes de magnitud entre la muestra sin dopar (10"-7 S/cm) y las correspondientes a y = 0.3 (0.2 S/cm) e y = 0.5 (20 S/cm) a 600 C, respectivamente. Se determino que en la muestra sin dopar, los portadores son mayoritariamente electrones provistos por la reducción de una pequeña fracción de Ti. Por su parte, la adición de cobalto introduce portadores tipo hueco-electrón que incrementan la densidad de portadores disponibles y explica, en parte, el incremento de la conductividad de los LSTC al aumentar el contenido de cobalto. El estudio de las propiedades estructurales y electrónicas, y su relación con los mecanismos de compensación de carga en la serie La_0.4Sr_0.6Ti_1-yCo_yO_3±δ realizados en este trabajo permiten establecer una base para el estudio y comprensión de las propiedades que presentan esta familia de compuestos, sean magnéticas, eléctricas, catalíticas, etc. Como resultado de este trabajo, fueron reportadas al International Centre for Diraction Data 11 nuevas estructuras cristalinas correspondientes a la familia La_0.4Sr_0.6Ti_1-yCo_yO_3±δ y aceptadas para su inclusión en la base de datos de compuestos inorgánicos.

Resumen en inglés

The basic ABX3 perovskite structure turns out to be the prototype of a large range of related structures due to the combination of topological distortions and substitutions in the A, B or X sites. These compounds exhibit a broad variety of magnetic, electric, optic and catalytic properties, potentially useful in solid state physics, chemistry and materials science topics. The ABO_3 perovskite oxides are ideal candidates for high temperature applications, particularly if they present good electric or ionic transport properties and proper catalytic activities for certain chemical reactions. Solid Oxide Fuel Cells (SOFC) are one of the most interesting examples, and the use of perovskite compounds are considered the state of the art for SOFC development. Fuel cells are the most efficient electrochemical devices able to convert chemical to electrical energy. They have a great potential within the future electrical energy generation matrix due to their working principle simplicity and versatility. Within all the fuel cells types, SOFC combine the advantages of being environmental friendly and a wide range of power generation together with the fuel exibility (i.e. SOFC can use flow purity hydrogen or hydrocarbon fuels such as natural gas). A new materials search branch has emerged recently called the Symmetrical Solid Oxide Fuel Cells (S-SOFC) concept, where the same material is used as anode and cathode simultaneously. This new approach could solve two of the main aging SOFCs problems, sulfur poisoning and carbon deposits when the cell is using hydrocarbon as fuel, by simply inverting the gas flux, extending the useful life span. The general objective of this thesis is the synthesis, development, characterization and evaluation of new ceramic compounds with mixed conductivity for the simultaneous use as SOFC and/or IT-SOFC cathode and anode materials. For this end we proposed a solid solution between (La,Sr)CoO_3 and (La,Sr)TiO_3, which have been reported as good cathode and anode materials, respectively. The systematic substitution of Ti by Co, in order to obtain La_0.4Sr_0.6Ti_1-yCo_yO_3±δ (0 ≤ y≤ 1) series has been especially studied. Since this is a novel compound, the rst step was the optimization of the synthesis method to obtain (La,Sr)(Ti,Co)O3 nanostructured perovskite material which was achieved through a low temperature chemical route based in citric acid and ethylene glycol. A complete structural characterization of SOFC electrodes is required for a comprehensive understanding of their electrochemical properties and there was a notable lack of crystallographic information about LSTC compounds at the beginning of this study. Therefore, a complete structural characterization of the systematic substitution of Ti by Co was performed using diraction techniques with high quality synchrotron radiation and neutron data. At room temperature the Co free sample adopts a cubic perovskite Pm3m structure with cationic deciency in the A-site, according to previously reported data for this compound. The as-synthesized LSTC powders show a rhombohedral R3c structure for all Co substitution studied range due to the rigid rotation of oxygen octahedral in the a¯a¯a¯ direction which angle reach a maximum value for the sample with 30% of cobalt content. It was also observed that the A-site vacancy concentration decreases with Co content increase, becoming negligible for samples with Co content larger than 30%. These results were complemented with the local structure characterization of the transition metals (Ti and Co) that occupy the perovskite B site. This characterization was performed using X-ray absorption techniques (EXAFS and XANES) which allow to detect possible local distortions and the electronic state of the transition metals. From EXAFS data analysis, the crystallographic model given by the R3c space group showing undistorted regular octahedron around each transition metal was conrmed, although the local environment around Ti and Co are not equivalent. From XANES data analysis, the Ti oxidation state was found to be stable at +4 in the whole LSTC series while Co was found to be mostly in +3 state. In this way, the information about which are the active charge compensation mechanisms and their dependency with the Co doping level was obtained. For the low doped samples, the electroneutrality is achieved by the generation of strontium vacancies (generating amorphous SrO clusters). As Ti"4+ is substituted by Co"3+ up to a 30%, this point defects are gradually compensated by the decrease of the average B-site valence. For higher Co doped samples, evidences of an increase of the sample oxygen non-stoichiometry was found. Due to the potential application of this compounds in high temperature electrochemical devices, the characterization of crystalline and electronic structure at high temperature (20 - 750 C) and dierent atmospheres were performed. While, the LSTC series was found to be stable in oxidative environmet in the whole studied temperature range, in reductive atmospheres a limit in the Co content of y ≤ 0.6 was found in order to retain the perovskite phase up to 750 C. A reversible second order phase transition was found in the whole LSTC series from rombohedral R3c (at room temperature) to cubic Pm3m (at high temperature) in both atmospheres, related with the rigid rotation of the oxygen octahedra. The phase transition temperature was found to be directly related to the room temperature rombohedral distortion level. The evolution of the transition metals oxidation state was characterized through XANES in-situ and programmed temperature reduction (TPR) and correlated with the structural changes observed by XRD in-situ. At reductive atmospheres, in the Co free sample only 7% of the titanium is reduced to Ti"3+ at 750 C, mechanism that is activated at T > 500 C, in the 30% and 50% Co doped samples it was found that Co is reduced entirely to Co"2+ between 200 and 450 C. Meanwhile, no evidences of Ti or Co reduction was found in oxidative atmosphere up to 750 C. The electric transport properties of the LSTC with y = 0.0; 0.3; 0.5 and its dependence with temperature and oxygen partial pressure (pO2) was studied. An increment of 7 and 9 orders of magnitude in the conductivity was observed between the undoped sample and y = 0.3 and y = 0.5 samples, at 600 C, respectively. Charge carriers at the undoped sample was found to be dominated by electrons due to the Ti reduction in a small proportion. Meanwhile, in the doped samples, the hugh increase in the conductivity is explained in part by the holes charge carriers introduced by the addition of cobalt into the sample. The study of the structural and electronic properties, and their relationship with the charge compensation mechanism in the La_0.4Sr_0.6Ti_1-yCo_yO_3 series performed in this thesis provides the base knowledge to understand the properties presented by this family of compounds such as their magnetic, electric or catalytic characteristics. As a consequence from this work, 11 of the new crystalline structures here presented were reported to the International Centre for Data Diraction and accepted for its inclusion to their inorganic compounds data base.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Electrodes; Electrodos; Crystal structure; Estructura cristalina; Electronic structure; Estructura electrónica; Synchrotrons; Sincrotones
Referencias:[1] H. A. Jahn, E. Teller, Stability of polyatomic molecules in degenerate electronic states. i. orbital degeneracy, Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences 161 (905) (1937) 220-235. [2] H. J. Snaith, Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells, The Journal of Physical Chemistry Letters 4 (21) (2013) 3623-3630. [3] C. A-Paz De Araujo, J. D. Cuchlaro, L. D. McMillan, M. C. Scott, J. F. Scott, Fatigue-free ferroelectric capacitors with platinum electrodes, Nature 374 (6523) (1995) 627-629. [4] A. P. Ramirez, Colossal magnetoresistance, Journal of Physics: Condensed Matter 9 (39) (1997) 8171. [5] D. W. Murphy, S. Sunshine, R. B. van Dover, R. J. Cava, B. Batlogg, S. M. Zahurak, L. F. Schneemeyer, New superconducting cuprate perovskites, Physical Review Letters 58 (18) (1987) 1888-1890. [6] F. Prado, N. Grunbaum, A. Caneiro, A. Manthiram, Effect of la3+ doping on the perovskite-to-brownmillerite transformation in sr1xlaxco0:8fe0:2o3-δ (0 ≤ x ≤ 0:4), Solid State Ionics 167 (12) (2004) 147-154. [7] N. G. Eror, U. Balachandran, Self-compensation in lanthanum-doped strontium titanate, Journal of Solid State Chemistry 40 (1) (1981) 85-91. [8] P. D. Battle, J. E. Bennett, J. Sloan, R. J. D. Tilley, J. F. Vente, A-site cationvacancy ordering in sr1-3x/2laxtio3: A study by hrtem, Journal of Solid State Chemistry 149 (2) (2000) 360-369. [9] A. B. Muñoz García, D. E. Bugaris, M. Pavone, J. P. Hodges, A. Huq, F. Chen, H.-C. zur Loye, E. A. Carter, Unveiling structureproperty relationships in sr2fe1.5mo0.5o6, an electrode material for symmetric solid oxide fuel cells, Journal of the American Chemical Society 134 (15) (2012) 6826-6833. [10] X. Li, H. Zhao, X. Zhou, N. Xu, Z. Xie, N. Chen, Electrical conductivity and structural stability of la-doped srtio 3 with a-site deficiency as anode materials for solid oxide fuel cells, International Journal of Hydrogen Energy 35 (15) (2010) 7913-7918. [11] D. P. Fagg, V. V. Kharton, J. R. Frade, A. A. L. Ferreira, Stability and mixed ionic-electronic conductivity of (sr,la)(ti,fe)o3- perovskites, Solid State Ionics 156 (1-2) (2003) 45-57. [12] M. Soaard, P. V. Hendriksen, F. W. Poulsen, M. Mogensen, A/b-ratio and transport properties of (la0.85sr 0.15)scoo3- perovskites, Journal of Electroceramics 13 (1-3) (2004) 811-816. [13] J. Zaanen, G. A. Sawatzky, J. W. Allen, Band gaps and electronic structure of transition-metal compounds, Physical Review Letters 55 (4) (1985) 418-421. [14] A. Fujimori, Electronic structure of metallic oxides: Band-gap closure and valence control, Journal of Physics and Chemistry of Solids 53 (12) (1992) 1595-1602. [15] M. Imada, A. Fujimori, Y. Tokura, Metal-insulator transitions, Reviews of Modern Physics 70 (4) (1998) 1039-1263. [16] H. W. Eng, P. W. Barnes, B. M. Auer, P. M. Woodward, Investigations of the electronic structure of d0 transition metal oxides belonging to the perovskite family, Journal of Solid State Chemistry 175 (1) (2003) 94-109. [17] M. Mogensen, D. Lybye, N. Bonanos, P. V. Hendriksen, F. W. Poulsen, Factors controlling the oxide ion conductivity of fluorite and perovskite structured oxides, Solid State Ionics 174 (14) (2004) 279-286. [18] G. Khaliullin, S. Maekawa, Orbital liquid in three-dimensional mott insulator: Latio3, Physical Review Letters 85 (18) (2000) 3950-3953. [19] J. E. Sunstrom, S. M. Kauzlarich, P. Klavins, Synthesis, structure, and properties of lanthanum strontium titanate (la1-xsrxtio3) (0 < x < 1), Chemistry of Materials 4 (2) (1992) 346-353. [20] Y. Okimoto, T. Katsufuji, Y. Okada, T. Arima, Y. Tokura, Optical spectra in (la,y)tio3: Variation of mott-hubbard gap features with change of electron correlation and band filling, Physical Review B 51 (15) (1995) 9581-9588. [21] M. Marezio, J. P. Remeika, P. D. Dernier, The crystal chemistry of the rare earth orthoferrites, Acta Crystallographica Section B 26 (12) (1970) 2008-2022. [22] Y. Tokura, Y. Taguchi, Y. Okada, Y. Fujishima, T. Arima, K. Kumagai, Y. Iye, Filling dependence of electronic properties on the verge of metal -mott-insulator transitions in sr1 - xlaxtio3, Physical Review Letters 70 (14) (1993) 2126-2129. [23] Y. Tokura, Metal-insulator phenomena in 3d transition metal oxides, Physica C: Superconductivity 235240, Part 1 (0) (1994) 138-141. [24] S. N. Ruddlesden, P. Popper, New compounds of the k2nif4 type, Acta Crystallographica 10 (8) (1957) 538-539. [25] B. Srensen, Fuel cells: Optimism gone hard work still there, International Journal of Hydrogen Energy 38 (18) (2013) 7578-7582. [26] F. C. Today, The industry review 2013 (2013). [27] H2Stations, Hydrogen lling stations worldwide (2014). [28] F. Energy, 11.2 mw fuel cell park case study (2012). [29] B. C. Transit, Hydrogen fuel cell buses (2012). [30] J. Larminie, Fuel Cell Systems Explained, John Wiley and Sons, New York, 2003. [31] B. C. H. Steele, A. Heinzel, Materials for fuel-cell technologies, Nature 414 (6861) (2001) 345-352. [32] S. B. Adler, Factors governing oxygen reduction in solid oxide fuel cell cathodes, Chemical Reviews 104 (10) (2004) 4791-4843. [33] E. Ivers-Tie, A. Weber, D. Herbstritt, Materials and technologies for sofccomponents, Journal of the European Ceramic Society 21 (1011) (2001) 1805-1811. [34] Y. Teraoka, H. M. Zhang, K. Okamoto, N. Yamazoe, Mixed ionic-electronic conductivity of la1-xsrxco1-yfeyo3- perovskite-type oxides, Materials Research Bulletin 23 (1) (1988) 51-58. [35] Y. Teraoka, H.-M. Zhang, S. Furukawa, N. Yamazoe, Oxygen permeation through perovskite-type oxides, Chemistry Letters 14 (11) (1985) 1743-1746. [36] Y. Xia, T. Armstrong, F. Prado, A. Manthiram, Sol-gel synthesis, phase relationships, and oxygen permeation properties of sr4fe6-xcoxo13+ (0x3), Solid State Ionics 130 (1) (2000) 81-90. [37] Z. Shao, S. M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells, Nature 431 (7005) (2004) 170-173. [38] J. Yoon, R. Araujo, N. Grunbaum, L. Baqu, A. Serquis, A. Caneiro, X. Zhang, H. Wang, Nanostructured cathode thin films with vertically-aligned nanopores for thin film sofc and their characteristics, Applied Surface Science 254 (1 SPEC.ISS.) (2007) 266-269. [39] M. Sase, J. Suzuki, K. Yashiro, T. Otake, A. Kaimai, T. Kawada, J. Mizusaki, H. Yugami, Electrode reaction and microstructure of la0.6sr0.4coo3- thin lms, Solid State Ionics 177 (19-25 SPEC. ISS.) (2006) 1961-1964. [40] M. J. Jrgensen, S. Primdahl, C. Bagger, M. Mogensen, Effect of sintering temperature on microstructure and performance of filsm-ysz composite cathodes, Solid State Ionics 139 (1-2) (2001) 1-11. [41] K. Sasaki, J. P. Wurth, R. Gschwend, M. Gdickemeier, L. J. Gauckler, Microstructure-property relations of solid oxide fuel cell cathodes and current collectors cathodic polarization and ohmic resistance, Journal of the Electrochemical Society 143 (2) (1996) 530-543. [42] L. Baque, A. Caneiro, M. S. Moreno, A. Serquis, High performance nanostructured it-sofc cathodes prepared by novel chemical method, Electrochemistry Communications 10 (12) (2008) 1905-1908. [43] W. Z. Zhu, S. C. Deevi, A review on the status of anode materials for solid oxide fuel cells, Materials Science and Engineering A 362 (1-2) (2003) 228-239. [44] K. Girona, J. Laurencin, J. Fouletier, F. Lefebvre-Joud, Carbon deposition in ch4/co2 operated sofc: Simulation and experimentation studies, Journal of Power Sources 210 (0) (2012) 381-391. [45] H. S. Spacil, Electrical device including nickel-containing stabilized zirconia electrode (1970). [46] Y. Matsuzaki, I. Yasuda, The poisoning effect of sulfur-containing impurity gas on a sofc anode: Part i. dependence on temperature, time, and impurity concentration, Solid State Ionics 132 (2000) 261-269. [47] B. C. H. Steele, I. Kelly, H. Middleton, R. Rudkin, Oxidation of methane in solid state electrochemical reactors, Solid State Ionics 28-30 (PART 2) (1988) 1547-1552. [48] O. A. Marina, N. L. Canfield, J. W. Stevenson, Thermal, electrical, and electrocatalytical properties of lanthanum doped strontium titanate, Solid State Ionics 149 (1-2) (2002) 21-28. [49] S. Tao, J. T. S. Irvine, A redox-stable efficient anode for solid-oxide fuel cells, Nature Materials 2 (5) (2003) 320-323. [50] T. Nakamura, T. Kobayashi, K. Yashiro, A. Kaimai, T. Otake, K. Sato, J. Mizusaki, T. Kawada, Electrochemical behaviors of mixed conducting oxide anodes for solid oxide fuel cell, Journal of the Electrochemical Society 155 (6) (2008) B563-B569-B563-B569. [51] P. I. Cowin, C. T. G. Petit, R. Lan, J. T. S. Irvine, S. Tao, Recent progress in the development of anode materials for solid oxide fuel cells, Advanced Energy Materials 1 (3) (2011) 314-332. [52] X. Zhou, N. Yan, K. T. Chuang, J. Luo, Progress in la-doped srtio3 (lst)-based anode materials for solid oxide fuel cells, RSC Advances 4 (1) (2014) 118-131. [53] C. D. Savaniu, J. T. S. Irvine, La-doped srtio3 as anode material for it-sofc, Solid State Ionics 192 (1) (2011) 491-493. [54] C. Savaniu, J. T. S. Irvine, Reduction studies and evaluation of surface modified a-site deficient la-doped srtio3 as anode material for it-sofcs, Journal of Materials Chemistry 19 (43) (2009) 8119-8128. [55] P. R. Slater, D. P. Fagg, J. T. S. Irvine, Synthesis and electrical characterisation of doped perovskite titanates as potential anode materials for solid oxide fuel cells, Journal of Materials Chemistry 7 (12) (1997) 2495-2498. [56] R. Mukundan, E. L. Brosha, F. H. Garzon, Sulfur tolerant anodes for sofcs, Electrochemical and Solid State Letters 7 (1) (2003) A5-A7-A5-A7. [57] U. Balachandran, N. G. Eror, Electrical conductivity in strontium titanate, Journal of Solid State Chemistry 39 (3) (1981) 351-359. [58] X. Li, H. Zhao, W. Shen, F. Gao, X. Huang, Y. Li, Z. Zhu, Synthesis and properties of y-doped srtio3 as an anode material for sofcs, Journal of Power Sources 166 (1) (2007) 47-52. [59] J. C. Ruiz-Morales, J. Canales-Vázquez, C. Savaniu, D. Marrero-Lopez, W. Zhou, J. T. S. Irvine, Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation, Nature 439 (2006) 568-571. [60] H. Yokokawa, H. Tu, B. Iwanschitz, A. Mai, Fundamental mechanisms limiting solid oxide fuel cell durability, Journal of Power Sources 182 (2) (2008) 400-412. [61] J. C. Ruiz-Morales, D. Marrero-López, J. Canales-Vázquez, J. T. S. Irvine, Symmetric and reversible solid oxide fuel cells, RSC Advances 1 (8) (2011) 1403-1414. [62] S. Tao, J. T. S. Irvine, Synthesis and characterization of (la0.75sr-0.25)cr0.5mn0.5o3 , a redox stable, efficient perovskite anode for sofcs, Journal of the Electrochemical Society 151 (2) (2004) A252-A259-A252-A259. [63] D. M. Bastidas, S. Tao, J. T. S. Irvine, A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes, Journal of Materials Chemistry 16 (17) (2006) 1603-1605. [64] J. C. Ruiz-Morales, J. Canales-Vazquez, J. Pea-Martinez, D. M. Lopez, P. Nez, On the simultaneous use of la0.75sr0.25cr0.5mn0.5o3 as both anode and cathode material with improved microstructure in solid oxide fuel cells, Electrochimica Acta 52 (1) (2006) 278-284. [65] B.-K. Lai, K. Kerman, S. Ramanathan, Nanostructured la0.6sr0.4co0.8fe0.2o3/y0.08zr0.92o1.96/la0.6sr0.4co0.8fe0.2o3 (lscf/ysz/lscf)symmetric thin lm solid oxide fuel cells, Journal of Power Sources 196 (4) (2011) 1826-1832. [66] J. Canales-Vazquez, J. C. Ruiz-Morales, D. Marrero-Lopez, J. Pea-Martinez, P. Nez, P. Gomez-Romero, Fe-substituted (la,sr)tio3 as potential electrodes for symmetrical fuel cells (sfcs), Journal of Power Sources 171 (2) (2007) 552-557. [67] Q. Liu, X. Dong, G. Xiao, F. Zhao, F. Chen, A novel electrode material for symmetrical sofcs, Advanced Materials 22 (48) (2010) 5478-5482. [68] J. C. Ruiz-Morales, J. Canales-Vázquez, D. Marrero-López, D. Prez-Coll, J. Pea- Martínez, P. Nez, An all-in-one ourite-based symmetrical solid oxide fuel cell, Journal of Power Sources 177 (1) (2008) 154-160. [69] A. Atkinson, S. Barnett, R. J. Gorte, J. T. S. Irvine, A. J. McEvoy, M. Mogensen, S. C. Singhal, J. Vohs, Advanced anodes for high-temperature fuel cells, Nature Materials 3 (2004) 17-27. [70] M. D. Gross, J. M. Vohs, R. J. Gorte, A strategy for achieving high performance with sofc ceramic anodes, Electrochemical and Solid State Letters 10 (4) (2007) B65-B69-B65-B69. [71] X. Li, H. Zhao, F. Gao, N. Chen, N. Xu, La and sc co-doped fisrtio 3 as novel anode materials for solid oxide fuel cells, Electrochemistry Communications 10 (10) (2008) 1567-1570. [72] K. S. Takahashi, M. Gabay, D. Jaccard, K. Shibuya, T. Ohnishi, M. Lippmaa, J. M. Triscone, Local switching of two-dimensional superconductivity using the ferroelectric eld effect, Nature 441 (7090) (2006) 195-198. [73] D. Kan, T. Terashima, R. Kanda, A. Masuno, K. Tanaka, S. Chu, H. Kan, A. Ishizumi, Y. Kanemitsu, Y. Shimakawa, M. Takano, Blue-light emission at room temperature from ar+-irradiated srtio3, Nat Mater 4 (11) (2005) 816-819. [74] J. H. Park, K. Y. Kim, S. D. Park, Oxygen permeation and stability of la0.6sr0.4tixfe1xo3 (x = 0.2 and 0.3) membrane, Desalination 245 (13) (2009) 559-569. [75] A. Petric, P. Huang, F. Tietz, Evaluation of lasrcofeo perovskites for solid oxide fuel cells and gas separation membranes, Solid State Ionics 135 (14) (2000) 719-725. [76] G. Tsekouras, J. T. S. Irvine, The role of defect chemistry in strontium titanates utilised for high temperature steam electrolysis, Journal of Materials Chemistry 21 (25) (2011) 9367-9376. [77] J. B. Goodenough, An interpretation of the magnetic properties of the perovskitetype mixed crystals la1-xsrxcoo3-d, Journal of Physics and Chemistry of Solids 6 (2-3) (1958) 287-297. [78] H. Nakao, T. Murata, D. Bizen, Y. Murakami, K. Ohoyama, K. Yamada, S. Ishiwata, W. Kobayashi, I. Terasaki, Orbital ordering of intermediate-spin state of co3+ in sr3yco4o10.5, Journal of the Physical Society of Japan 80 (2) (2011) 023711. [79] A. Maignan, T. Motohashi, S. Hbert, D. Pelloquin, B. Raveau, Cobaltites: New materials with magnetoresistance properties, Materials Science and Engineering: B 126 (23) (2006) 296-299. [80] I. O. Troyanchuk, M. V. Bushinskii, D. V. Karpinsky, V. M. Dobryanskii, V. V. Sikolenko, A. M. Balagurov, Positive magnetoresistance effect in rare earth cobaltites, JETP Letters 89 (7) (2009) 319-323. [81] T. Fix, M. Liberati, H. Aubriet, S. L. Sahonta, R. Bali, C. Becker, D. Ruch, J. L. MacManus-Driscoll, E. Arenholz, M. G. Blamire, Ferromagnetism in co-doped (la, sr)tio3, New Journal of Physics 11. [82] J. Yang, Y. P. Lee, B. W. Lee, Structural and magnetic properties of spin- and charge-doped sr 0.8la0.2ti0.9co0.1o3, Applied Physics Letters 91 (5). [83] R. K. Dwivedi, O. Parkash, C. C. Christopher, D. Kumar, L. Pandey, Effect of processing route and parameters on the dielectric properties of the valence compensated composition sr0.65la0.35ti0.65co0.35o 3, Journal of Materials Science Letters 15 (21) (1996) 1865-1867. [84] F. R. Napolitano, Síntesis de nanotubos de la0:4sr0:6co0:8fe0:2o3-ẟ para catodos de celdas de combustible, Ph.D. thesis (2008). [85] F. Napolitano, L. Baque, H. Troiani, M. Granada, A. Serquis, Synthesis and characterization of cobaltite nanotubes for solid-oxide fuel cell cathodes, Vol. 167, Institute of Physics Publishing, p. 012042. [86] C. Deportes, M. Duclot, P. Fabry, J. Fouletier, A. Hammou, M. Kleitz, E. Siebert, J. Souquet, Electrochimie des solides, Grenoble Sciences, Grenoble, 1994. [87] S. Hashimoto, F. W. Poulsen, M. Mogensen, Conductivity of srtio3 based oxides in the reducing atmosphere at high temperature, Journal of Alloys and Compounds 439 (12) (2007) 232-236. [88] C. Mao, X. Dong, T. Zeng, Synthesis and characterization of nanocrystalline barium strontium titanate powders prepared by citrate precursor method, Materials Letters 61 (8-9) (2007) 1633-1636. [89] S. A. Howard, J. K. Yau, H. U. Anderson, Structural characteristics of sr1 -xlaxti3 + delta as a function of oxygen partial pressure at 1400 c, Journal of Applied Physics 65 (4) (1989) 1492-1498. [90] S. Hashimoto, L. Kindermann, F. W. Poulsen, M. Mogensen, A study on the structural and electrical properties of lanthanum doped strontium titanate prepared in air, Journal of Alloys and Compounds 397 (1-2) (2005) 245-249. [91] S. Brunauer, P. H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, Journal of the American Chemical Society 60 (2) (1938) 309-319. [92] S. Lee, G. Kim, J. M. Vohs, R. J. Gorte, Sofc anodes based on inltration of a0.3sr0.7tio3, Journal of the Electrochemical Society 155 (11) (2008) B1179-B1183-B1179-B1183. [93] M. Higuchi, K. Aizawa, K. Yamaya, K. Kodaira, Electrical properties of sr1-xlaxtio3(0 [less, double equals] x [less, double equals] 0.10) single crystals grown by the oating zone method, Journal of Solid State Chemistry 92 (2) (1991) 573-577. [94] S. N. Ruddlesden, P. Popper, The compound sr3ti2o7 and its structure, Acta Crystallographica 11 (1) (1958) 54-55. [95] F. A. Kroger, H. J. Vink, F. Seitz, T. David, Relations between the Concentrations of Imperfections in Crystalline Solids, Vol. 3, Academic Press, 1956, pp. 307-435. [96] J. Canales-Vazquez, M. J. Smith, J. T. S. Irvine, W. Zhou, Studies on the reorganization of extended defects with increasing n in the perovskite-based la4srn-4tino3n+2 series, Advanced Functional Materials 15 (6) (2005) 1000-1008. [97] A. Glazer, The classication of tilted octahedra in perovskites, Acta Crystallographica Section B 28 (11) (1972) 3384-3392. [98] C. J. Howard, H. T. Stokes, Group-theoretical analysis of octahedral tilting in perovskites, Acta Crystallographica Section B: Structural Science 54 (6) (1998) 782-789. [99] L. Landau, E. Lifshitz, Statistical Physics, 3rd Edition, Pergamon Press, New York, 1980. [100] I. Aroyo Mois, M. Perez-Mato Juan, C. Capillas, E. Kroumova, S. Ivantchev, G. Madariaga, A. Kirov, H. Wondratschek, Bilbao crystallographic server: I. databases and crystallographic computing programs (2006). [101] M. I. Aroyo, A. Kirov, C. Capillas, J. M. Perez-Mato, H. Wondratschek, Bilbao crystallographic server. ii. representations of crystallographic point groups and space groups, Acta Crystallographica Section A 62 (2) (2006) 115-128. [102] D. Orobengoa, C. Capillas, M. I. Aroyo, J. M. Perez-Mato, Amplimodes: symmetry-mode analysis on the bilbao crystallographic server, Journal of Applied Crystallography 42 (5) (2009) 820-833. [103] H. Rietveld, Line proles of neutron powder-diffraction peaks for structure renement, Acta Crystallographica 22 (1) (1967) 151-152. [104] C. Hermann, Zur systematischen strukturtheorie. iv. untergruppen, Z. Kristallogr. 69 (1929) 533-555. [105] M. Senechal, A simple characterization of the subgroups of space groups, Acta Crystallographica Section A 36 (6) (1980) 845-850. [106] D. Lour, A. Boultif, Powder pattern indexing and the dichotomy algorithm, Zeitschrift fur Kristallographie, Supplement 1 (26) (2007) 191-196. [107] A. Le Bail, H. Duroy, J. L. Fourquet, Ab-initio structure determination of lisbwo6 by x-ray powder diffraction, Materials Research Bulletin 23 (3) (1988) 447-452. [108] T. Roisnel, J. Rodriguez-Carvajal, Winplotr: A windows tool for powder diffraction pattern analysis, Vol. 378-381, 2001, pp. 118-123. [109] L. Landau, Theory of phase transformations. ii, Physikalische Zeitschrift der Sowjetunion 11 (1937) 545-555. [110] J. M. Perez-Mato, D. Orobengoa, M. I. Aroyo, Mode crystallography of distorted structures, Acta Crystallographica Section A: Foundations of Crystallography 66 (5) (2010) 558-590. [111] F. F. Ferreira, E. Granado, W. Carvalho Jr, S. W. Kycia, D. Bruno, R. Droppa Jr, X-ray powder diffraction beamline at d10b of lnls: Application to the ba2fereo6 double perovskite, Journal of Synchrotron Radiation 13 (1) (2006) 46-53. [112] J. Rodriguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction, Physica B: Condensed Matter 192 (1-2) (1993) 55-69. [113] L. W. Finger, D. E. Cox, A. P. Jephcoat, A correction for powder diffraction peak asymmetry due to axial divergence, Journal of Applied Crystallography 27 (6) (1994) 892-900. [114] V. F. Sears, Neutron scattering lengths and cross sections, Neutron News 3 (3) (1992) 26-37. [115] B. H. Toby, Expgui, a graphical user interface for gsas, Journal of Applied Crystallography 34 (2) (2001) 210-213. [116] A. C. Larson, R. B. Von Dreele, General structure analysis system (gsas), Tech. rep., Los Alamos National Laboratory (2000). [117] B. Ravel, M. Newville, Athena, artemis, hephaestus: data analysis for x-ray absorption spectroscopy using ifet, Journal of Synchrotron Radiation 12 (4) (2005) 537-541. [118] T. Ressler, Winxas: a program for x-ray absorption spectroscopy data analysis under ms-windows, Journal of Synchrotron Radiation 5 (2) (1998) 118-122. [119] G. Meyer, R. Nelmes, J. Hutton, High-resolution (direct space) studies of anharmonic motion associated with the structural phase transition in sr ti o3, Ferroelectrics 21 (1978) 461-462. [120] A. Wold, R. Ward, Perowskite-type oxides of cobalt, chromium and vanadium with some rare earth elements, Journal of the American Chemical Society 76 (1954) 1029-1030. [121] A. L. Ankudinov, C. E. Bouldin, J. J. Rehr, J. Sims, H. Hung, Parallel calculation of electron multiple scattering using lanczos algorithms, Physical Review B 65 (10) (2002) 104107. [122] D. Koningsberger, R. Prins, X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, Vol. 92 of Chemical Analysis: A series of monographs on analytical chemistry and its applications, John Wiley and Sons, New York, 1988. [123] A. Soldati, L. Baque, F. Napolitano, A. Serquis, Cobalt-iron red-ox behavior in nano-structured la0.4sr0.6co0.8fe0.2o3-d cathodes, Journal of Solid State Chemistry 189 (2013) 253-261. [124] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Techn. Universitat Wien,, Austria, 2001. [125] J. M. Ramallo-Lopez, E. J. Lede, F. G. Requejo, J. A. Rodriguez, J.-Y. Kim, R. Rosas-Salas, J. M. Dominguez, Xanes characterization of extremely nanosized metal-carbonyl subspecies (me = cr,mn, fe, and co) confined into the mesopores of mcm-41 materials, Journal of Physical Chemistry B 108 (2005) 20005-20010. [126] T. W. Capehart, J. F. Herbst, R. K. Mishra, F. E. Pinkerton, X-ray-absorption edge shifts in rare-earth transition-metal compounds, Physical Review B 52 (11) (1995) 7907. [127] F. J. Berry, J. R. Gancedo, J. F. Marco, X. Ren, Synthesis and characterization of the reduction properties of cobalt-substituted lanthanum orthoferrites, Journal of Solid State Chemistry 177 (6) (2004) 2101-2114. [128] V. Vashook, D. Franke, J. Zosel, L. Vasylechko, M. Schmidt, U. Guth, Electrical conductivity and oxygen nonstoichiometry in the double b mixed la0.6ca0.4mn1-xcoxo3-[delta] perovskite system, Journal of Alloys and Compounds 487 (1-2) (2009) 577-584. [129] T. Itoh, M. Nakayama, Using in situ x-ray absorption spectroscopy to study the local structure and oxygen ion conduction mechanism in (la0.6sr0.4)(co0.2fe0.8)o3-d, Journal of Solid State Chemistry 192 (0) (2012) 38-46. [130] H. C. N. Tolentino, A. Y. Ramos, M. C. M. Alves, R. A. Barrea, E. Tamura, J. C. Cezar, N. Watanabe, A 2.3 to 25 kev xas beamline at lnls, Journal of Synchrotron Radiation 8 (3) (2001) 1040-1046. [131] O. Haas, R. P. W. J. Struis, J. M. McBreen, Synchrotron x-ray absorption of lacoo3 perovskite, Journal of Solid State Chemistry 177 (3) (2004) 1000-1010. [132] F. J. Berry, J. F. Marco, X. Ren, Reduction properties of phases in the system la0.5sr0.5mo3 (m=fe, co), Journal of Solid State Chemistry 178 (4) (2005) 961- 969. [133] A. Piovano, G. Agostini, A. I. Frenkel, T. Bertier, C. Prestipino, M. Ceretti, W. Paulus, C. Lamberti, Time resolved in situ xafs study of the electrochemical oxygen intercalation in srfeo2.5 brownmillerite structure: Comparison with the homologous srcoo2.5 system, Journal of Physical Chemistry 115 (2011) 1311-1322. [134] R. V. Vedrinskii, V. L. Kraizman, A. A. Novakovich, P. V. Demekhin, S. V. Urazhdin, Pre-edge ne structure of the 3d atom k x-ray absorption spectra and quantitative atomic structure determinations for ferroelectric perovskite structure crystals, Journal of Physics Condensed Matter 10 (42) (1998) 9561-9580. [135] M. G. Kim, Y. S. Im, E. J. Oh, K. H. Kim, C. H. Yo, The substitution effect of ca2+ ion on the physical properties in nonstoichiometric dy1xcaxcoo3y system, Physica B: Condensed Matter 229 (34) (1997) 338-346. [136] A. Chainani, M. Mathew, D. D. Sarma, Electron-spectroscopy study of the semiconductor-metal transition in la1-xsrxcoo3, Physical Review B 46 (16) (1992) 9976-9983. [137] O. Haas, C. Ludwig, U. Bergmann, R. N. Singh, A. Braun, T. Graule, X-ray absorption investigation of the valence state and electronic structure of la1xcaxcoo3 in comparison with la1xsrxcoo3 and la1xsrxfeo3, Journal of Solid State Chemistry 184 (12) (2011) 3163-3171. [138] C. Zobel, M. Kriener, D. Bruns, J. Baier, M. Grninger, T. Lorenz, P. Reutler, A. Revcolevschi, Evidence for a low-spin to intermediate-spin state transition in lacoo3, Physical Review B 66 (2) (2002) 020402. [139] T. Saitoh, T. Mizokawa, A. Fujimori, M. Abbate, Y. Takeda, M. Takano, Electronic structure and temperature-induced paramagnetism in lacoo3, Physical Review B 55 (7) (1997) 4257-4266. [140] G. Thornton, B. C. Toeld, A. W. Hewat, A neutron diffraction study of lacoo3 in the temperature range 4.2 t 1248 k, Journal of Solid State Chemistry 61 (3) (1986) 301-307. [141] P. Ravindran, H. Fjellvg, A. Kjekshus, P. Blaha, K. Schwarz, J. Luitz, Itinerant metamagnetism and possible spin transition in lacoo3 by temperature/holedoping, Journal of Applied Physics 91 (1) (2002) 291-303. [142] K. Swierczek, Thermoanalysis, nonstoichiometry and thermal expansion of la0.4sr0.6co0.2fe0.8o3-, la0.2sr0.8co0.2fe0.8o3-, la0.9sr0.1co1/3fe1/3ni1/3o3- and la0.6sr0.4co0.2fe0.6ni0.2o3- perovskites, Solid State Ionics 179 (16) (2008) 126-130. [143] L. W. Tai, M. M. Nasrallah, H. U. Anderson, D. M. Sparlin, S. R. Sehlin, Structure and electrical properties of la1 - xsrxco1 - yfeyo3. part 2. the system la1 -xsrxco0.2fe0.8o3, Solid State Ionics 76 (3-4) (1995) 273-283. [144] Y. Chian, D. Birnie, W. Kingery, Physical Ceramics, John Wiley and Sons, New York, 1997. [145] U. Balachandran, N. G. Eror, Electrical conductivity in lanthanumdoped strontium titanate, Journal of The Electrochemical Society 129 (5) (1982) 1021-1026. [146] R. Moos, K. H. Hardtl, Electronic transport properties of sr1-xlaxtio3 ceramics, Journal of Applied Physics 80 (1) (1996) 393-400. [147] J. Maier, Defect chemistry and ion transport in nanostructured materials: Part ii. aspects of nanoionics, Solid State Ionics 157 (14) (2003) 327-334. [148] H. L. Tuller, S. R. Bishop, Point defects in oxides: Tailoring materials through defect engineering, Annual Review of Materials Research 41 (1) (2011) 369-398. [149] R. Shannon, Revised eective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica Section A 32 (5) (1976) 751-767. [150] P. G. Radaelli, S. W. Cheong, Structural phenomena associated with the spinstate transition in lacoo3, Physical Review B 66 (9) (2002) 094408. [151] B. Raveau, M. Seikh, Electronic and Magnetic Properties of Stoichiometric Perovskite Colbaltites, Wiley-VCH Verlag and Co, Weinheim, Alemania, 2012, p. 344. [152] S. Deonarine, J. L. Birman, Group-subgroup phase transitions, hermann's spacegroup decomposition theorem, and chain subduction criterion in crystals, Physical Review B 27 (7) (1983) 4261-4273. [153] E. Kroumova, J. M. Perez-Mato, M. I. Aroyo, Wycksplit: a computer program for determination of the relations of wycko positions for a group-subgroup pair, Journal of Applied Crystallography 31 (4) (1998) 646. [154] LNLS, Lnls home page (2014).
Materias:Ingeniería > Ciencia de los materiales
Divisiones:Gcia. de área de Aplicaciones de la tecnología nuclear > Gcia. de Investigación aplicada > Caracterización de materiales
Código ID:1090
Depositado Por:Tamara Cárcamo
Depositado En:21 Jul 2022 16:04
Última Modificación:21 Jul 2022 16:04

Personal del repositorio solamente: página de control del documento