Dinámica de partículas alfa en plasma magnetizados y el efecto de las colisiones en la interacción partícula-plasma / Dynamics of alpha particles in magnetized plasma and the effect of collisions on the particle-plasma interaction

Clauser, César F. (2018) Dinámica de partículas alfa en plasma magnetizados y el efecto de las colisiones en la interacción partícula-plasma / Dynamics of alpha particles in magnetized plasma and the effect of collisions on the particle-plasma interaction. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis )
Español
9Mb

Resumen en español

Estudiamos la dinámica de partículas alfa en plasmas y el efecto de las colisiones atómicas en la interacción partícula-plasma. En una primera parte, nos hemos enfocado en la dinámica de partículas alfa en dispositivos de fusión por confinamiento magnético, con particular atención en el rol de las colisiones elásticas y los procesos atómicos sobre esta dinámica. En una segunda parte, nos hemos enfocado en cómo se ven modificadas las interacciones atómicas (colisiones elásticas e inelásticas) por las propiedades del plasma, al aumentar su grado de degeneración. Esta segunda parte tiene importancia en los estudios de fusión por confinamiento inercial. Para la parte primera hemos desarrollado un código, FOCUS, que se ejecuta en procesadores gráficos (GPUs). El código sigue orbitas completas de las partículas cargadas, resolviendo la ecuación de Newton con la fuerza de Lorentz. Para ello, puede usar campos calculados de forma analítica o numérica, y también es posible usar la información provista por códigos de reconstrucción de equilibrios o de transporte. FOCUS tiene un módulo de colisiones elásticas que ha sido desarrollado para cubrir todos los rangos de energías de las partículas (no relativistas) involucrados en dispositivos de fusión por confinamiento magnético. Más aún, se ha desarrollado un módulo de colisiones inelásticas para incluir la interacción de las partículas simuladas con el plasma, especies neutras y/o parcialmente ionizadas. Respecto al desempeño computacional del código, la característica principal es que el código se ejecuta en GPUs, lo cual permite simular un gran número de partículas con un costo computacional y económico modesto. Con el código desarrollado, estudiamos el efecto producido por los cambios de carga sobre la dinámica de partículas alfa en un plasma magnetizado, al considerar procesos atómicos con especies del plasma y neutros. Para ello hemos hecho una búsqueda de los procesos relevantes que pueden intervenir en las condiciones de un plasma de fusión por confinamiento magnético. Empleamos cálculos analíticos y numéricos para mostrar que este mecanismo produce un transporte que puede ser importante en las regiones del borde del plasma. A este mecanismo lo denominamos transporte inelástico. Este ha sido el primer estudio que presenta una evidencia clara de la importancia de procesos atómicos en la dinámica de partículas alfa. Para realizar estos estudios hemos utilizado, en una primera instancia, aproximaciones sencillas para mostrar la física básica involucrada. Presentamos el proceso difusivo que se origina debido a cambios de carga. Además, hemos mostrado que se produce un flujo neto cuando hay gradientes de densidades y temperatura en las especies con las que se interactúa. Posteriormente, hemos extendido estos estudios a una configuración magnética tipo Tokamak, con los parámetros previstos para el futuro reactor ITER. Para esta configuración hemos obtenido, con FOCUS, una distribución estacionaria de partículas alfa. Hemos mostrado que, para densidades de neutros suficientemente altas, se produce una modificación del perl de densidad de las partículas alfa debido al transporte inelástico. Finalmente hemos estudiado la redistribución de las partículas alfa sobre la pared y el divertor de ITER, debida a estos procesos atómicos, utilizando datos de códigos ampliamente conocidos por la comunidad de fusión. En la segunda parte hemos estudiado la pérdida de energía, debida a colisiones elásticas y las resonancias de energía cero que se producen en las secciones ecaces de procesos atómicos. Por un lado, para la pérdida de energía hemos empleado un método colisional semiclásico basado en ondas parciales, y que lo denominamos SPWS. Este método reproduce los resultados cuánticos de una manera satisfactoria aún en condiciones muy exigentes de densidades y temperaturas de plasmas. Hemos comparado este método con el método o formalismo dieléctrico usando una extensión de la función dieléctrica de Linhard para plasmas. A través de esta comparación hemos mostrado las limitaciones que presenta el formalismo dieléctrico y el origen de estas. En todos los casos el método SPWS mostró un comportamiento correcto para diferentes tipos de proyectiles y distintos regímenes de velocidades. Por otro lado, hemos investigado la aparición de efectos de resonancia de energía cero para procesos atómicos que ocurren dentro de un plasma. Para ello, hemos aplicado la teoría de interacción en el estado final para cubrir la presencia de estos efectos en condiciones particulares de densidad y temperatura. Con esta formulación, estudiamos la distorsión que estas resonancias pueden producir en la correspondiente sección ecaz cuando el momento relativo del par de partículas intervinientes en el proceso atómico se anula. Ejemplificamos este desarrollo general para el caso de la fotoionización. Finalmente mostramos que, para con densidades suficientemente bajas y/o temperaturas suficientemente altas (por ejemplo, en plasmas de fusión por confinamiento magnético), estas resonancias pueden suprimirse por los efectos de inhomogeneidades del plasma. Por el contrario, en otras condiciones (por ejemplo, en plasmas de fusión por confinamiento inercial), se puede presentar una situación propicia para la aparición de estas resonancias, produciendo secciones ecaces varias veces superior que las estimadas de manera usual, en el umbral de energía.

Resumen en inglés

We studied alpha particle dynamics in plasmas and the effect of atomic collisions on the plasma{particle interaction. In the rst part of this thesis, we focus on alpha particle dynamics in magnetic fusion devices and the role of elastic and inelastic collisions on their dynamics. In the second part, we focus on how atomic collisions are modied by plasma properties when the plasma degeneracy increases. This second part is relevant for inertial connement fusion research. For the rst part, we have developed a particle code, named FOCUS (An acronym for Full-Orbit CUda Solver) which runs on GPUs. FOCUS calculates charged particle trajectories in magnetized plasmas by solving Newton's equation with the Lorentz force. The code can use elds calculated analytically or numerically and it is also possible to use the information provided by equilibrium reconstruction and transport codes. FOCUS has an elastic collisions module which covers the whole (non-relativistic) particle energy range in magnetic fusion devices. Moreover, an atomic collision module was also included to simulate the interaction of the test particles with the plasma and neutral or partially ionized species. Regarding performance, the main feature is that the code runs on GPUs, allowing the simulation of a large number of particles using moderate computational resources. With the FOCUS code, we studied the effect of charge changes, due to atomic processes, on the alpha particle dynamics in magnetized plasmas. We employed analytical calculations and numerical simulations to show that this process can be very important in the pedestal-edge-SOL regions. We named this mechanism inelastic transport. This was the rst study to present clear evidence of the importance of atomic processes on alpha particle diffusion and transport. At rst, we used simple approximations to show the basic physics involved. Then, we presented the diffusive processes due to charge changes. In addition, we showed the existence of an inward flux when there are gradients in plasma density and temperature as well as in neutral densities. We extended the previous studies to a Tokamak conguration with the parameters of the future ITER reactor. For this conguration, we obtained a stationary alpha particle distribution and identied an energetic and a thermal component. We showed that for high enough neutral densities, the alpha particle density is modied at the edge due to the inelastic transport. Finally, we studied the alpha particle redistribution in the ITER wall and divertor due to atomic processes, using data provided by well-known codes. In the second part of this thesis we studied the energy loss due to elastic collisions and zero-energy resonances in atomic processes ocurring in a plasma. On one hand, for the energy loss we employed a semiclassical method based on quantum scattering theory, which we called the SPWS method. This method reproduces quantum results with very good agreement even in several extreme conditions of plasma densities and temperatures, and agrees with the results of linear or perturbative calculations for bare ions in the appropriate limits. We compared the SPWS method with the dielectric formalism. For the latter, we have employed the full description given by the extension of the Lindhard dielectric function for plasmas of all degeneracies. We showed that the dielectric formalism has limitations when it is used for slow heavy ions or atoms in dense plasmas. We presented a study of these limitations and showed the regimes where the dielectric formalism can be used, with appropriate corrections to include the usual quantum and classical limits. On the other hand, the semiclassical method showed the correct behavior for all plasma conditions and projectile velocities and charges. We considered different models for the ion charge distributions, including bare and dressed ions as well as neutral atoms. On the other hand, we investigated the emergence of zero-energy resonance effects in atomic processes occurring within a plasma. By applying the nal{state interaction theory we uncovered the presence of these effects for particular congurations of density and temperature. We studied the distortions that these resonances might produce in the corresponding cross sections whenever the relative momentum of a pair of charged particles intervening in the atomic process vanishes. We exemplied this general theory by applying it to the study of the photoionization process. Finally we demonstrated that while for low enough plasma densities or high enough temperatures (like those of a magnetic fusion plasma) these resonances might be blurred out by inhomogeneities; On the contrary, for high enough densities (like those of a inertial fusion plasma) the plasma might be tuned to the conditions for a zero-energy resonance, producing cross sections many times larger than standard estimates at the energy threshold.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Fusion (Nuclear); Alpha particles; Partículas alfa; [Plasma physics; Física de plasma; Energy loss; Perdida de energía; Zero-energy resonances; Resonancias de energía cero]
Referencias:[1] Dolan, T. J. Fusion Research. Volume I - Principles. New York: Pergamon Press Inc., 1982. 1, 8 [2] INTERNATIONAL ATOMIC ENERGY AGENCY. Fusion Physics. Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY, 2012. URL http://www-pub.iaea.org/books/IAEABooks/8879/Fusion-Physics. 1, 11, 12, 41 [3] Ichimaru, S. Basic Principles of Plasma Physics: A Statistical Approach. London: W. A. Benjamin, Inc., 1973. 2, 4, 5, 25, 27, 28, 101, 103 [4] Krall, N. A., Trivelpiece, A. W. Principles of Plasma Physics. New York: McGraw-Hill, Inc., 1973. 2, 5, 101, 103 [5] Huang, K. Statistical Mechanics. 2a ed. John Wiley & Sons, Inc., 1987. 5 [6] Ichimaru, S. Nuclear fusion in dense plasmas. Reviews of Modern Physics, 65 (2), 255, 1993. URL http://rmp.aps.org/abstract/RMP/v65/i2/p21. 6 [7] Bosch, H.-S. S., Hale, G. M. Improved formulas for fusion cross-sections and thermal reactivities. Nuclear Fusion, 32 (4), 611-631, dec 1992. URL http://stacks.iop.org/0029-5515/32/i=4/a=I07?key=crossref. 499a5e49f8dde53d266bf4090e2da6c1http://stacks.iop.org/0029-5515/33/i=12/a=513?key=crossref.0eac4bf42cbeb9b3d3b769314a7201be. 10, 32 [8] Wesson, J. Tokamaks. 4a ed. New York: Oxford University Press, 2011. 13, 14, 41 [9] Shimada, M., Campbell, D. J., Mukhovatov, V., Fujiwara, M., Kirneva, N., Lackner, K., et al. Chapter 1: Overview and summary. Nuclear Fusion, 47 (6), S1-S17, jun 2007. URL http://stacks.iop.org/00295515/47/i=6/a=S01key=crossref.9f5018b333c98316af6e827446ba6d15. 13, 63 [10] Sitio oficial del Proyecto ITER. URL https://www.iter.org/. 13, 14 [11] Goldston, R. J., Rutherford, P. H. Introduction to Plasma Physics. New York: Taylor & Francis Group, 2000. 18, 32 [12] Cáceres, M. O. Elementos de estadística de no equilibrio y sus aplicaciones al transporte en medios desordenados. Barcelona: Reverte, 2003. 26 [13] Gardiner, C. W. Handbook of Stochastic Methods. 2a ed. Berlin: Springer- Verlag, 1985. 26 [14] Spitzer, L. Physics of Fully Ionized Gases. New York: Interscience Inc., 1956. 27, 93 [15] Trubnikov, B. A. Particle Interactions in a Fully Ionized Plasma. Reviews of Plasma Physics, 1, 105, 1965. 27, 93, 94 [16] De Ferrariis, L., Arista, N. R. Classical and quantum-mechanical treatments of the energy loss of charged particles in dilute plasmas. Physical Review A, 29 (4), 2145, 1984. 27, 28, 29, 93, 96, 99 [17] Kramer, G. J., Budny, R. V., Bortolon, A., Fredrickson, E. D., Fu, G. Y., Heidbrink, W. W., et al. A description of the full-particle-orbit-following SPIRAL code for simulating fast-ion experiments in tokamaks. Plasma Physics and Controlled Fusion, 55 (2), 025013, 2013. URL http://iopscience.iop.org/0741-3335/55/2/025013/article/. 27, 49, 53 [18] Peter, T., Meyer-Ter-Vehn, J. J. Energy loss of heavy ions in dense plasma. I. Linear and nonlinear Vlasov theory for the stopping power. Physical Review A, 43 (4), 1998-2014, feb 1991. URL https://link.aps.org/doi/10.1103/PhysRevA.43.1998. 28, 101 [19] Clauser, C. F., Arista, N. R. Stopping power of dense plasmas: The collisional method and limitations of the dielectric formalism. Physical Review E, 97 (2), 023202, feb 2018. URL https://link.aps.org/doi/10.1103/PhysRevE.97. 023202. 28, 94, 100, 112 [20] Rosenbluth, M. N., MacDonald, W. M., Judd, D. L. Fokker-planck equation for an inverse-square force. Physical Review, 107 (1), 1-6, jul 1957. URL https: //link.aps.org/doi/10.1103/PhysRev.107.1. 30 [21] Chen, T. S. A General Form of the Coulomb Scattering Operators for Monte Carlo Simulations and a Note on the Guiding Center Equations in Different Magnetic Coordinate Conventions. Inf. tec., Max Planck Institute for Plasma Physics, 1988. 30, 31 [22] Boozer, A. H. Monte Carlo evaluation of transport coeffcients. Physics of Fluids, 24 (5), 851, 1981. URL http://scitation.aip.org/content/aip/journal/pof1/24/5/10.1063/1.863445http://www.osti.gov/energycitations/product.biblio.jsp?ostiflid=5013139. 31 [23] Estrada-Mila, C., Candy, J., Waltz, R. E. Turbulent transport of alpha particles in reactor plasmas. Physics of Plasmas, 13 (11), 112303, 2006. URL http: //link.aip.org/link/PHPAEN/v13/i11/p112303/s1-&-Agg=doi. 33 [24] IAEA AMDIS ALADDIN Database. URL https://www-amdis.iaea.org/ ALADDIN/. 37, 40 [25] Janev, R. K. (ed.) Atomic and Molecular Processes in Fusion Edge Plasmas. New York: Springer US, 1995.URL http://link.springer.com/10.1007/978-1-4757-9319-2. 37, 42 [26] Fielding, S., Johnson, P., Forrest, M., Guilhem, D., Matthews, G. Atom energy distributions from H- lineshape measurements during gas puf experiments in DITE. Journal of Nuclear Materials, 162-164 (C), 482-488, apr 1989. URL http://linkinghub.elsevier.com/retrieve/pii/0022311589903164. 38, 43, 46 [27] Janev, R. K., Langer, W. D., Post, D. E., Evans, K. Elementary Processes in Hydrogen-Helium Plasmas. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. URL http://link.springer.com/10.1007/978-3-642-71935-6. 38, 43, 45 [28] Clauser, C. F., Farengo, R. Alpha particles diffusion due to charge changes. Physics of Plasmas, 22 (12), 0-7, 2015. URL http://dx.doi.org/10.1063/1.4936875. 38, 69, 77 [29] Barnett, C. F. Collisions of H, H2, He and Li Atoms and Ions with Atoms and Molecules. Inf. Tec. ORNL-6086/V1, Oak Ridge National Laboratory, 1990. 40 [30] Naujoks, D. Plasma-Material Interaction in Controlled Fusion, tomo 39 de Atomic, optical, and plasma physics. Berlin: Springer-Verlag, 2006. URL http://link.springer.com/10.1007/3-540-32149-7. 41 [31] Schneider, R., Bonnin, X., Borrass, K., Coster, D. P., Kastelewicz, H., Reiter, D., et al. Plasma edge physics with B2-Eirene. Contributions to Plasma Physics, 46 (1-2), 3-191, 2006. 42, 54 [32] Kotov, V., Reiter, D., Kukushkin, A. S. Numerical study of the ITER divertor plasma with the B2-EIRENE code package. Inf. tec., 2007. URL http://www.eirene.de/kotov-&-solps42-&-report.pdf. 42, 82 [33] Wiesen, S., Reiter, D., Kotov, V., Baelmans, M., Dekeyser, W., Kukushkin, A. S., et al. The new SOLPS-ITER code package. Journal of Nuclear Materials, 463, 480-484, aug 2015. URL http://dx.doi.org/10.1016/j.jnucmat.2014.10.012http://linkinghub.elsevier.com/retrieve/pii/S0022311514006965. 42, 54 [34] Rognlien, T. D., Rensink, M. E., Smith, G. R. Users Manual for the UEDGE Edge-Plasma Transport Code. Inf. tec., Lawrence Livermore National Laboratory, 2000. URL https://e-reports-ext.llnl.gov/pdf/246621.pdf. 42, 54 [35] Heifetz, D., Post, D., Petravic, M., Weisheit, J., Bateman, G. A Monte-Carlo model of neutral-particle transport in diverted plasmas. Journal of Computational Physics, 46 (2), 309-327, may 1982. URL http://linkinghub.elsevier.com/retrieve/pii/0021999182900171. 42, 43 [36] Cornelis, J., Sporken, R., Van Oost, G., Weynants, R. R. Predicting the radial electric eld imposed by externally driven radial currents in tokamaks. Nuclear Fusion, 34 (2), 171-183, 1994. 42 [37] Colchin, R. J., Owen, L. W. Neutral particle fueling at the midplane of DIII-D. Journal of Nuclear Materials, 316-316 (SUPPL.), 609-613, 2003. 42, 46 [38] IAEA. Atomic and plasma-material interaction data for fusion, tomo 4. Vienna, Austria: INTERNATIONAL ATOMIC ENERGY AGENCY, 1993. 43 [39] Sitio oficial de DIII-D. URL https://fusion.gat.com/global/diii-d. 46 [40] Colchin, R. J., Hillis, D. L., Maingi, R., Klepper, C. C., Brooks, N. H., Brooks, R. M. C. K. H., et al. The lterscope. Review of Scientic Instruments, 74 (3II), 2068-2070, 2003. 46 [41] Velasco, J. L., Bustos, A., Castejon, F., Fernandez, L. a., Martin-Mayor, V., Tarancon, A. ISDEP: Integrator of stochastic differential equations for plasmas. Computer Physics Communications, 183 (9), 1877-1883, 2012. URL http://dx.doi.org/10.1016/j.cpc.2012.04.005. 49 [42] Akers, R. J., Verwichte, E., Martin, T. J., Pinches, S. D., Lake, R. GPGPU Monte Carlo Calculation of Gyro-Phase Resolved Fast Ion and n-State Resolved Neutral Deuterium Distributions. En: 39th EPS Conference & 16th Int. Congress on Plasma Physics, pag. P5.088. 2012. URL http://ocs.ciemat.es/epsicpp2012pap/pdf/P5.088.pdf. 49, 50 [43] Akers, R. J., Akaslompolo, S., Colling, B., Hess, J., Liu, Y., Pinches, S. D., et al. High delity simulations of fast ion power ux driven by 3D eld perturbations on ITER. En: 26th IAEA Fusion Energy Conference, pags. TH/4-1. Kyoto, Japan, 2016. 49, 50 [44] Hirvijoki, E., Asunta, O., Koskela, T., Kurki-Suonio, T., Miettunen, J., Sipil a, S., et al. ASCOT: Solving the kinetic equation of minority particle species in tokamak plasmas. Computer Physics Communications, 185 (4), 1310-1321, apr 2014. URL http://dx.doi.org/10.1016/j.cpc.2014.01.014http://linkinghub.elsevier.com/retrieve/pii/S0010465514000277. 49 [45] Clauser, C. F., Farengo, R., Ferrari, H. E. FOCUS: A full-Orbit CUDA Solver for Particle Simulations in Magnetized Plasmas. Computer Physics Communications, Accepted, 2018. 50 [46] Ferrari, H., Farengo, R. Neutral beam injection in a D-3 He FRC reactor. Plasma Physics and Controlled Fusion, 49 (6), 713-727, jun 2007. URL http://stacks.iop.org/0741-3335/49/i=6/a=003?key=crossref.e5b2127375e8fbe9a5301488b0175cd1. 50 [47] Farengo, R., Ferrari, H. E., Firpo, M.-C. C., Garcia-Martinez, P. L., Lifschitz, A. F. Alpha particle redistribution due to experimentally reconstructed internal kink modes. Plasma Physics and Controlled Fusion, 54 (2), 025007,feb 2012. URL http://stacks.iop.org/0741-3335/54/i=2/a=025007?key=crossref.2ed010ac43bafaf0c9b6843f72d63005. 52, 54, 66, 85 [48] Farengo, R., Ferrari, H., Garcia-Martinez, P., Firpo, M.-C., Ettoumi, W., Lifschitz, A. Redistribution of high energy alpha particles due to sawteeth with partial reconnection. Nuclear Fusion, 53 (4), 043012, 2013. 50, 66 [49] Clauser, C. F., Barrachina, R. O. Atomic Zero Energy Resonance in Plasmas. Journal of Physics: Conference Series, 635 (5), 052013, sep 2015. URL http://stacks.iop.org/1742-6596/635/i=5/a=052013?key=crossref. cc076a1e01423ba46a798adc166f24a2. 50, 66, 126 [50] Clauser, C., Farengo, R. The effect of inelastic collisions on the transport of alpha particles in ITER-like plasmas. Nuclear Fusion, 57 (4), 046013, 2017. URL http://stacks.iop.org/0029-5515/57/i=4/a=046013? key=crossref.20896fdb267d5f490ba4404426c84010. 50, 52, 66, 69, 78 [51] Lao, L., Ferron, J., Groebner, R., Howl, W., St. John, H., Strait, E., et al. Equilibrium analysis of current proles in tokamaks. Nuclear Fusion, 30 (6), 1035-1049, jun 1990. URL http://stacks.iop.org/0029-5515/30/i=6/a=006 key=crossref.2d6eb695f424f6462ccffab4628c2fd0. 52 [52] Abramowitz, M., Stegun, I. A. (eds.) Handbook of Mathematical Functions: With Formulas, Graphs and Mathematical Tables. New York: Dover Pub., 1695. 53 [53] Pacher, H., Kukushkin, A., Pacher, G., Kotov, V., Pitts, R., Reiter, D. Impurity seeding in ITER DT plasmas in a carbon-free environment. Journal of Nuclear Materials, 463, 591-595, aug 2015. URL http://dx.doi.org/10.1016/j.jnucmat.2014.11.104http://linkinghub. elsevier.com/retrieve/pii/S0022311514009088. 55 [54] Boris, J. P., Shanny, R. Proceedings of the conference on the numerical simulation of plasmas (4th). Naval Research Laboratory (Washington D. C.), 1970. 56 [55] Qin, H., Zhang, S., Xiao, J., Liu, J., Sun, Y., Tang, W. M. Why is Boris algorithm so good? Physics of Plasmas, 20 (8), 084503, 2013. URL http://scitation.aip.org/content/aip/journal/pop/20/8/10.1063/1.4818428http://aip.scitation.org/doi/10.1063/1.4818428. 56, 59 [56] Berland, J., Bogey, C., Bailly, C. Low-dissipation and low-dispersion fourth-order Runge-Kutta algorithm. Computers & Fluids, 35 (10), 1459-1463, dec 2006. URL http://linkinghub.elsevier.com/retrieve/pii/S0045793005000575. 56 [57] Kloeden, P. E., Platen, E. Numerical Solution of Stochastic Differential Equations. Berlin: Springer-Verlag, 1992. 59 [58] Cohen, B. I., Dimits, A. M., Friedman, A., Caisch, R. E., Cohen, P. B. I., Dimits, A. M., et al. Time-Step Considerations in Particle Simulation Algorithms for Coulomb Collisions in Plasmas. IEEE Transactions on Plasma Science, 38 (9), 2394-2406, 2010. 59, 60 [59] Manssen, M., Weigel, M., Hartmann, A. K. Random number generators for massively parallel simulations on GPU. European Physical Journal: Special Topics, 210 (1), 53-71, 2012. 60 [60] Salmon, J. K., Moraes, M. A., Dror, R. O., Shaw, D. E. Parallel random numbers. En: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis on - SC '11, 5, pag. 1. New York, New York, USA: ACM Press, 2011. URL http://dl.acm.org/citation.cfm?doid=2063384.2063405. 60 [61] Polevoi, A., Loarte, A., Hayashi, N., Kim, H., Kim, S., Koechl, F., et al. Assessment of operational space for long-pulse scenarios in ITER. Nuclear Fusion, 55 (6), 063019, jun 2015. URL http://stacks.iop.org/00295515/55/i=6/a=063019key=crossref.990cfa0a86e59bd0cb1c21d3fd08e44d. 63, 80 [62] Snicker, A., Sipila, S., Kurki-Suonio, T. Orbit-following fusion alpha wall load simulation for ITER scenario 4 including full orbit effects. Nuclear Fusion, 52 (9), 094011, sep 2012. URL http://stacks.iop.org/0029-5515/52/i=9/a=094011?key=crossref.8ab4baa5a0adec6920a4f8fd08a1040f. 65 [63] Snicker, A., Asunta, O., Ylitie, H., Kurki-Suonio, T., Schneider, M., Pinches, S. D. Alpha particle driven current and torque in ITER baseline scenarios with 3D perturbations. Nuclear Fusion, 55 (6), 063023, jun 2015. URL http://stacks.iop.org/0029-5515/55/i=6/a=063023?key=crossref.bdacc9e203e89f9a0e954b7a76ef8668. 65 [64] Ferrari, H. E., Farengo, R., Clauser, C. F. The effect of a saturated kink on the dynamics of tungsten impurities in the plasma core. Physics of Plasmas, pag. to be published, 2018. 66 [65] Fussmann, G. Cross-Field Diffusion by Charge Changing Process. Contributions to Plasma Physics, 37 (4), 363-375, 1997. 71 [66] Kukushkin, a. S., Pacher, H. D., Pacher, G. W., Janeschitz, G., Coster, D., Loarte, A., et al. Scaling laws for edge plasma parameters in ITER from two-dimensional edge modelling. Nuclear Fusion, 43 (8), 716-723, aug 2003. URL http://stacks.iop.org/0029-5515/43/i=8/a=312?key=crossref.b8bda7d18c28aae3ea2def46dfb8cfaf. 78 [67] Kukushkin, A. S., Pacher, H. D., Kotov, V., Pacher, G. W., Reiter, D. Finalizing the ITER divertor design: The key role of SOLPS modeling. Fusion Engineering and Design, 86 (12), 2865-2873, dec 2011. URL http://dx.doi.org/10.1016/j.fusengdes.2011.06.009http:// linkinghub.elsevier.com/retrieve/pii/S092037961100514X. 78, 83 [68] Afanasyev, V. I., Chernyshev, F. V., Kislyakov, A. I., Kozlovski, S. S., Lyublin, B. V., Mironov, M. I., et al. Neutral particle analysis on ITER: present status and prospects. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 621 (1-3), 456{ 467, sep 2010. URL http://dx.doi.org/10.1016/j.nima.2010.06.201http: //linkinghub.elsevier.com/retrieve/pii/S0168900210013914. 78 [69] Zylstra, A. B., Frenje, J. A., Grabowski, P. E., Li, C. K., Collins, G. W., Fitzsimmons, P., et al. Measurement of Charged-Particle Stopping in Warm Dense Plasma. Physical Review Letters, 114 (21), 215002, may 2015. URL http://link.aps.org/doi/10.1103/PhysRevLett.114.215002. 93 [70] Frenje, J. A., Grabowski, P. E., Li, C. K., Seguin, F. H., Zylstra, A. B., Gatu Johnson, M., et al. Measurements of Ion Stopping Around the Bragg Peak in High-Energy-Density Plasmas. Physical Review Letters, 115 (20), 205001, nov 2015. URL http://link.aps.org/doi/10.1103/PhysRevLett.115.205001. 93 [71] Fermi, E. The Ionization Loss of Energy in Gases and in Condensed Materials. Physical Review, 57 (6), 485-493, mar 1940. URL http://link.aps.org/doi/10.1103/PhysRev.57.485. 93, 101 [72] Pines, D., Bohm, D. A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions. Physical Review, 85 (2), 338- 353, jan 1952. URL http://link.aps.org/doi/10.1103/PhysRev.85.338. 93, 101 [73] Gryzinski, M. Stopping Power of a Mdium for Heavy, Charged Particles. The Physical Review, 107 (6), 1471-1475, 1957. 93 [74] Butler, S. T., Buckingham, M. J. Energy Loss of a Fast Ion in a Plasma. Physical Review, 126 (1), 1-4, apr 1962. URL http://link.aps.org/doi/10.1103/ PhysRev.126.1. 93 [75] Clauser, C. F., Arista, N. R. Energy loss and Z oscillations of atomic beams in plasmas. Physical Review E, 88 (5), 053102, nov 2013. URL http://link.aps.org/doi/10.1103/PhysRevE.88.053102. 93, 94, 95, 98, 99, 102, 103, 106, 112 [76] Akhiezer, A. I., Akhiezer, I. A., Polovin, R. V., Sitenko, A. G., Stepanov, K. N. Plasma Electrodynamics 2. Non-linear theory and uctuations. Oxford: Pergamon Press Ltd., 1975. 94 [77] Bohr, N. Mat. Fys. Medd. K. Dan. Vidensk. Selsk, 18/8, 1, 1948. 96 [78] Lindhard, J., Winther, A. Stopping Power of Electron Gas and Equipartition Rule. Mat. Fys. Medd. K. Dan. Vidensk. Selsk., 34 (4), 1964. 96, 101 [79] Bloch, F. Zur Bremsung rasch bewegter Teilchen beim Durchgang durch Materie. Annalen der Physik, 408 (3), 285{320, 1933. URL http://doi.wiley.com/10. 1002/andp.19334080303. 97 [80] Arista, N. R., Brandt, W. Dielectric response of quantum plasmas in thermal equilibrium. Physical Review A, 29 (3), 1471-1480, mar 1984. URL https://link.aps.org/doi/10.1103/PhysRevA.29.1471. 97, 103 [81] Ichimaru, S. Statistical physics of dense plasmas: Thermodynamics, transport coefficients and dynamic correlations. Physics Reports, 149 (2-3), 91-205, may 1987. URL http://linkinghub.elsevier.com/retrieve/pii/0370157387901256. 97 [82] Neufeld, J., Ritchie, R. H. Passage of Charged Particles through Plasma. Physical Review, 98 (6), 1632, 1955. 98 [83] Arista, N. R., Brandt, W. Effective charge and collision logarithm for slow ions in fusion plasmas. Physical Review A, 30 (1), 630-632, jul 1984. URL http://link.aps.org/doi/10.1103/PhysRevA.30.630https://link.aps.org/doi/10.1103/PhysRevA.30.630. 98, 101 [84] Arista, N. R., Sigmund, P. Stopping of ions based on semiclassical phase shifts. Physical Review A - Atomic, Molecular, and Optical Physics, 76 (6), 062902, dec 2007. URL http://link.aps.org/doi/10.1103/PhysRevA.76.062902. 99 [85] Landau, L. D., Lifshitz, E. M. Quantum Mechanics: Non-Relativistic Theory. Oxford: Pergamon Press, 1960. 99, 104 [86] Maynard, G., Zwicknagel, G., Deutsch, C., Katsonis, K. Diffusion-transport cross section and stopping power of swift heavy ions. Physical Review A, 63 (5), 052903, 2001. URL http://link.aps.org/doi/10.1103/PhysRevA.63.052903. 99, 107 [87] Lindhard, J. On the Properties of a Gas of Charged Particles. Mat. Fys. Medd. K. Dan. Vidensk. Selsk., 28 (8), 1954. 101 [88] Ritchie, R. H. Interaction of charged particles with a degenerate fermi-diracelectron gas. Physical Review, 114 (3), 644-654, may 1959. URL http://link. aps.org/doi/10.1103/PhysRev.114.644. 101 [89] Skupsky, S. Energy loss of ions moving through high-density matter. Physical Review A, 16 (2), 727-731, aug 1977. URL https://link.aps.org/doi/10. 1103/PhysRevA.16.727. 101 [90] Arista, N. R., Brandt, W. Energy loss and straggling of charged particles in plasmas of all degeneracies. Physical Review A, 23 (4), 1898-1905, apr 1981. URL https://link.aps.org/doi/10.1103/PhysRevA.23.1898. [91] Arista, N. R. Low-velocity stopping power of semidegenerate quantum plasmas. Journal of Physics C: Solid State Physics, 18 (26), 5127-5134, sep 1985. URL http://stacks.iop.org/0022-3719/18/i=26/a=023?key=crossref.f7092357337e0261d6906e526f2b2b0a. [92] Bringa, E. M., Arista, N. R. Energy loss of correlated ions in plasmas: Collective and individual contributions. Physical Review E, 54 (4), 4101-4111, oct 1996. URL http://link.aps.org/doi/10.1103/PhysRevE.54.4101. [93] Barriga-Carrasco, M. D. Heavy ion charge-state distribution effects on energy loss in plasmas. Physical Review E, 88 (4), 043107, oct 2013. URL https: //link.aps.org/doi/10.1103/PhysRevE.88.043107. 111 [94] Barriga-Carrasco, M. D., Casas, D., Morales, R. Calculations on charge state and energy loss of argon ions in partially and fully ionized carbon plasmas. Physical Review E, 93 (3), 033204, mar 2016. URL https://link.aps.org/doi/10.1103/PhysRevE.93.033204. 101 [95] Brandt, W., Kitagawa, M. Effective stopping-power charges of swift ions in condensed matter. Physical Review B, 25 (9), 5631-5637, may 1982. URL https://link.aps.org/doi/10.1103/PhysRevB.25.5631. 101, 103 [96] Yukawa, H. On the Interaction of Elemenetary Particles. I. Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, 14, 48-57, 1935. 103 [97] Aage Bohr. Atomic Interaction in Penetration Phenomena. Mat. Fys. Medd. Dan. Vid. Selsk., 24 (19), 1, 1948. 103 [98] Zwicknagel, G., Toeper, C., Reinhard, P.-G. Stopping of heavy ions in plasmas at strong coupling. Physics Reports, 309 (3), 117-208, feb 1999. URL http://linkinghub.elsevier.com/retrieve/pii/S0370157398000568. 103, 107, 109 [99] Moliere, G. Theorie der Streuung schneller geladener Teilchen I. Einzelstreuung am abgeschirmten Coulomb-Field. Zeitschrift fur Naturforschung A. A Journal of Physical Sciences, 2 (3), 133-145, 1947. URL https://www.degruyter.com/view/j/zna.1947.2.issue-3/zna-1947-0302/zna-1947-0302.xml. 103, 104 [100] Deutsch, C., Maynard, G. Stopping of ions with extended charge distribution in dense matter. Physical Review A, 40 (6), 3209-3218, sep 1989. URL https://link.aps.org/doi/10.1103/PhysRevA.40.3209. 104 [101] Mabong, S., Maynard, G., Katsonis, K. Parametric potential for modelling of highly charged heavy ions. Laser and Particle Beams, 14 (04), 575, dec 1996. URL http://www.journals.cambridge.org/abstract_S0263034600010296. [102] Maynard, G., Katsonis, K., Deutsch, C., Zwicknagel, G., Chabot, M., Gardes, D. Modeling of swift heavy ions interaction with dense matter. Nuclear InsBibliografa 143 truments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 464 (1-3), 86-92, may 2001. URL http://linkinghub.elsevier.com/retrieve/pii/S0168900201000122. 103 [103] Arista, N. R. Energy loss of ions in solids: Non-linear calculations for slow and swift ions. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 195 (1-2), 91-105, oct 2002. URL http://linkinghub.elsevier.com/retrieve/pii/S0168583X02006870. 104 [104] Brown, L. S., Preston, D. L., Singleton, R. L. Charged particle motion in a highly ionized plasma. Physics Reports, 410 (4), 237-333, 2005. 109 [105] Gericke, D. O., Schlanges, M. Beam-plasma coupling eects on the stopping power of dense plasmas. Physical Review E, 60 (1), 904-910, jul 1999. URL https://link.aps.org/doi/10.1103/PhysRevE.60.904. 109 [106] Debye, P., Huckel, E. Zur Theorie der Elektrolyte. I. Gefrierpunktserniedrigung und verwandte Erscheinungen. Physikalische Zeitschrift, 24, 185, 1923. 113 [107] Stubbins, C. Bound states of the Hulthen and Yukawa potentials. Physical Review A, 48 (1), 220-227, jul 1993. URL http://www.ncbi.nlm.nih.gov/pubmed/9909590. 113, 122 [108] Gupta, U., Rajagopal, A. Density functional formalism at nite temperatures with some applications. Physics Reports, 87 (6), 259-311, jul 1982. URL http://linkinghub.elsevier.com/retrieve/pii/0370157382900771. 113 [109] Rogers, F. J., Graboske, H. C., Harwood, D. J. Bound Eigenstates of the Static Screened Coulomb Potential. Physical Review A, 1 (6), 1577-1586, jun 1970. URL https://link.aps.org/doi/10.1103/PhysRevA.1.1577. 113 [110] Dai, S.-T., Solovyova, A., Winkler, P. Calculations of properties of screened Helike systems using correlated wave functions. Physical Review E, 64 (1), 016408, jun 2001. URL https://link.aps.org/doi/10.1103/PhysRevE.64.016408. [111] Okutsu, H., Sako, T., Yamanouchi, K., Diercksen, G. H. F. Electronic structure of atoms in laser plasmas: a Debye shielding approach. Journal of Physics B: Atomic, Molecular and Optical Physics, 38 (7), 917-927, apr 2005. URL http://stacks.iop.org/0953-4075/38/i=7/a=012?key=crossref.2a6c624003a5c8e3bf1967d66f6f243e. 113 [112] Hatton, G. J., Lane, N. F., Weisheit, J. C. Inelastic electron-ion scattering in a dense plasma. Journal of Physics B: Atomic and Molecular Physics, 14 (24), 4879-4888, dec 1981. URL http://stacks.iop.org/0022-3700/14/i=24/a=021?key=crossref.98424079a17a6ccad438eb4853ce684f. 113 [113] Whitten, B. L., Lane, N. F., Weisheit, J. C. Plasma-screening eects on electronimpact excitation of hydrogenic ions in dense plasmas. Physical Review A, 29 (2), 945-952, feb 1984. URL https://link.aps.org/doi/10.1103/PhysRevA.29. 945. [114] Deb, N. C., Sil, N. C. Electron impact excitation of positive ions in dense plasma. Journal of Physics B: Atomic and Molecular Physics, 17 (17), 3587-3591, sep 1984. URL http://stacks.iop.org/0022-3700/17/i=17/a=027 key=crossref.7785e3dae67bebce930a7a07d91f00ec. [115] Jung, Y. D., Yoon, J. S. Plasma-screening effects on semiclassical ionization probabilities for the electron-impact ionization of hydrogenic ions in dense plasmas. Journal of Physics B: Atomic, Molecular and Optical Physics, 29 (15), 3549-3555, 1996. [116] Zhang, S. B., Wang, J. G., Janev, R. K. Electron{hydrogen-atom elastic and inelastic scattering with screened Coulomb interaction around the n=2 excitation threshold. Physical Review A, 81 (3), 032707, mar 2010. URL https://link. aps.org/doi/10.1103/PhysRevA.81.032707. 113 [117] Zhao, L. B., Ho, Y. K. Influence of plasma environments on photoionization of atoms. Physics of Plasmas, 11 (4), 1695, 2004. URL http://link.aip.org/ link/PHPAEN/v11/i4/p1695/s1-&-Agg=doi. 113, 125, 126 [118] Lin, C. Y., Ho, Y. K. Eects of screened Coulomb (Yukawa) and exponentialcosine- screened Coulomb potentials on photoionization of H and He+. The European Physical Journal D, 57 (1), 21-26, jan 2010. URL http://www. springerlink.com/index/10.1140/epjd/e2010-00009-8. 125, 126, 128 [119] Sahoo, S., Ho, Y. Photoionization of the excited He atom in Debye plasmas. Journal of Quantitative Spectroscopy and Radiative Transfer, 111 (1), 52-62, jan 2010. URL http://dx.doi.org/10.1016/j.jqsrt.2009.06.008http:// linkinghub.elsevier.com/retrieve/pii/S0022407309002209. [120] Chang, T. N., Fang, T. K., Ho, Y. K. One- and two-photon ionization of hydrogen atom embedded in Debye plasmas. Physics of Plasmas, 20 (9), 092110, sep 2013. URL http://aip.scitation.org/doi/10.1063/1.4821123. 113 [121] Gillespie, J. Final-State Effects in Atomic Processes: Photodetachment. Physical Review, 135 (1A), A75-A79, jul 1964. URL https://link.aps.org/doi/10.1103/PhysRev.135.A75. 114 [122] Barrachina, R. Final-state interaction theory of cusp formation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 124 (2-3), 198-205, apr 1997. URL http://linkinghub. elsevier.com/retrieve/pii/S0168583X9600821X. [123] Fiol, J., Barrachina, R. O., Rodrguez, V. D. Cusp formation in the single-particle momentum distributions of three-body continuum states. Journal of Physics B: Atomic, Molecular and Optical Physics, 35 (1), 149-164, 2002. 114 [124] Jost, R. Uber die falschen Nullstellen der Eigenwerte der S-Matrix. Helvetica Physica Acta, 20, 256, 1947. 114 [125] Jost, R., Pais, A. On the Scattering of a Particle by a Static Potential. Physical Review, 82 (6), 840-851, jun 1951. URL https://link.aps.org/doi/10.1103/ PhysRev.82.840. 114 [126] Taylor, J. R. Scattering Theory: The Quantum Theory of Nonrelativistic Collisions. New York: John Wiley & Sons, 1972. 114, 115, 116, 117 [127] Clauser, C. F., Barrachina, R. O. Exact photoionization and radiative recombination cross section in a Coulomb potential. Journal of Physics: Conference Series, 583, 012034, jan 2015. URL http://stacks.iop.org/1742-6596/583/i=1/a=012034?key=crossref.a482bd39529b54f58d3a2cbecd71f423. 115, 124 [128] Barrachina, R. O. Collisional electron capture to the continuum of neutral projectiles. Journal of Physics B: Atomic, Molecular and Optical Physics, 23 (14), 2321-2332, 1990. 115 [129] Clauser, C. F., Barrachina, R. Zero-energy resonance eects in atomic processes within a plasma environment. Journal of Physics B: Atomic, Molecular and Optical Physics, 49 (23), 1-11, 2016. URL http://dx.doi.org/10.1088/0953-4075/49/23/235702. 115, 127, 128 [130] Newton, R. G. Scattering Theory of Waves and Particles. Berlin: Springer, 1982. 116 [131] Burke, P. G. Theory of Electron-Atom Collisions. Part 1. Potential Scattering. New York: Plenum, 1995. 116 [132] Macri, P. a., Barrachina, R. O. A Jost function description of zero-energy resonance and transparency eects in elastic collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 46 (6), 065202, mar 2013. URL http://stacks.iop.org/0953-4075/46/i=6/a=065202?key=crossref. 96653646509411c79aeecec20760cb1e. 116, 117 [133] Bethe, H. A. Theory of the Effective Range in Nuclear Scattering. Physical Review, 76 (1), 38-50, jul 1949. URL https://link.aps.org/doi/10.1103/ PhysRev.76.38. 116 [134] Hulthen, L. On the Virtual State of the Deuteron. Physical Review Letters, 61 (9-10), 671, may 1942. URL https://link.aps.org/doi/10.1103/PhysRev.61. 671. 118 [135] Ford, W. F. Anomalous Behavior of the Coulomb T Matrix. Physical Review, 133 (6B), B1616-B1621, mar 1964. URL http://link.aps.org/doi/10.1103/PhysRev.133.B1616https://link.aps.org/doi/10.1103/PhysRev.133.B1616. 118 [136] Abramowitz, M., Stegun, I. A. Handbook of Mathematical Functions: With Formulas, Graphs and Mathematical Tables. New York: Dover Pub., 1965. 118 [137] Barrachina, R., Garibotti, C. E. R., Barrachina, E. O., Garibotti, C. E. R. Low- Energy Scattering of Charged Particles. Lettere al Nuovo Cimento, 36 (17), 583, 1983. 118 [138] Ma, S. On the Coulomb and Hulthen Potentials. Australian Journal of Physics, 7 (3), 365, 1954. URL http://www.publish.csiro.au/?paper=PH540365. 119 [139] Kolsrud, M. Limits of screened-Coulomb amplitudes. Journal of Physics A: Mathematical and General, 11 (7), 1271-1293, jul 1978. URL http://stacks.iop.org/0305-4470/11/i=7/a=015?key=crossref.bf48116dffc84960e0490ca86ffcefad. 119 [140] Wang, X. R. General theorem on the Schrodinger equation. Physical Review A, 46 (11), 7295-7296, dec 1992. URL https://link.aps.org/doi/10.1103/PhysRevA.46.7295. 119, 122 [141] Hall, R. L. The Yukawa and Hulthen potentials in quantum mechanics. Journal of Physics A: Math. Gen., 25, 1373, 1992. 121 [142] Nordsieck, A. Reduction of an Integral in the Theory of Bremsstrahlung. Physical Review, 93 (4), 785-787, feb 1954. URL https://link.aps.org/doi/10.1103/PhysRev.93.785. 124 [143] Clauser, C. F., Barrachina, R. O. Zero energy resonances in atomic processes within a plasma. Journal of Physics: Conference Series, 583, 012037, jan 2015. URL http://stacks.iop.org/1742-6596/583/i=1/a=012037?key=crossref. 8af94dc3eae98a2be3e23aeee9fdf647. 125 [144] Garibotti, C. R., Barrachina, R. O. Consequences on the electron-capture to continuum peak produced by a screening of the postcollisional electron-projectile interaction. Physical Review A, 28 (5), 2792-2795, 1983. 127 [145] Johnson, W., Guet, C., Bertsch, G. Optical properties of plasmas based on an average-atom model. Journal of Quantitative Spectroscopy and Radiative Transfer, 99 (1-3), 327-340, may 2006. URL http://linkinghub.elsevier.com/retrieve/pii/S0022407305001573. 128 [146] Faussurier, G., Blancard, C., Cosse, P., Renaudin, P. Equation of state, transport coefficients, and stopping power of dense plasmas from the average-atom model self-consistent approach for astrophysical and laboratory plasmas. Physics of Plasmas, 17 (5), 052707, may 2010. URL http://aip.scitation.org/doi/10.1063/1.3420276. 128 [147] Shukla, P. K., Eliasson, B. Screening and wake potentials of a test charge in quantum plasmas. Physics Letters A, 372 (16), 2897-2899, apr 2008. URL http://linkinghub.elsevier.com/retrieve/pii/S0375960108000340. 128
Materias:Física
Divisiones:Investigación y aplicaciones no nucleares > Física > Fusión nuclear y física de plasmas
Código ID:1091
Depositado Por:Tamara Cárcamo
Depositado En:26 Aug 2022 16:16
Última Modificación:26 Aug 2022 16:16

Personal del repositorio solamente: página de control del documento