Desarrollo e implementación de la técnica de nanoindentación instrumentada por microscopía de fuerza atómica : aplicación en el estudio de las propiedades mecánicas de sistemas nanoestructurados / Development and implementation of the nanoindentation technique instrumented by atomic force microscopy: application in the study of the mechanical properties of nanostructured systems

Roa Díaz, Simón A. (2022) Desarrollo e implementación de la técnica de nanoindentación instrumentada por microscopía de fuerza atómica : aplicación en el estudio de las propiedades mecánicas de sistemas nanoestructurados / Development and implementation of the nanoindentation technique instrumented by atomic force microscopy: application in the study of the mechanical properties of nanostructured systems. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis )
Español
10Mb

Resumen en español

La industria nanotecnológica ha estado en continuo progreso debido al desarrollo acelerado de tecnologías de nano y micro fabricación, que han permitido fabricar diversos sistemas nanoestructurados para diferentes aplicaciones. El estudio de las propiedades mecánicas de estos sistemas, fundamentales para el desarrollo de nuevas tecnologías emergentes como sistemas electro-mecánicos a escala micro (MEMS) y nanométrica (NEMS), ha sido un tópico de alto impacto dentro de la física de materiales en los últimos años. Hoy en día, la técnica de nanoindentación es uno de los métodos más extendidos para la caracterización de estas propiedades en nanomateriales. El reciente interés por esta técnica se ha debido al desarrollo de equipos especializados en su implementación, siendo principalmente impulsado por la creciente demanda multidisciplinaria de este tipo de caracterización a escala nanométrica en diversas áreas de la nanotecnología. En virtud de la relevancia actual de la técnica de nanoindentación, los objetivos fundamentales de la tesis propuesta son el desarrollo e implementación de esta técnica utilizando el Microscopio de Fuerza Atómica (AFM) ubicado en las dependencias del Instituto de Nanociencia y Nanotecnología (INN – Nodo Bariloche). Más allá de ésto, el objetivo principal y el fin de esta tesis es proveer de nuevas e importantes perspectivas con respecto al rol que juegan distintos tipos de confinamiento u otros fenómenos no triviales en el comportamiento mecánico de diversos tipos de nanoestructuras. La fundamental y primera parte de esta tesis abarca un estudio sobre la instrumentación de la nanoindentación por AFM. El objetivo principal es la sistematización de distintos protocolos de calibración para la obtención de curvas de fuerza (𝑃)-desplazamiento (ℎ) (o curvas 𝑃(ℎ) por simplicidad) por AFM, las cuales son cruciales para el análisis cuantitativo de las propiedades mecánicas mediante modelos estándar de indentación. Además, con el objetivo de proveer una estimación cuantitativa de las tales propiedades, se presenta una nueva metodología indirecta para la calibración del perfil geométrico del nanoindentador basado en el estudio de deformación plástica. Los resultados derivados de esta primera fase de desarrollo han permitido dilucidar de forma exacta las limitaciones físicas asociadas a la implementación de esta técnica, y validarla para el futuro estudio de la mecánica de distintos tipos de nanomateriales. La segunda parte de esta tesis muestra los primeros estudios de factibilidad y validación de esta técnica para la caracterización mecánica. En este contexto, el objetivo es validar la técnica, a primer orden, mediante el estudio de las propiedades mecánicas de distintos materiales tipo bulk (Si, SiO2 e In), enfocándose en la estimación cuantitativa de propiedades tales como dureza y módulo de Young. Este estudio nos ha mostrado el buen acuerdo que existe entre los valores determinados para estas propiedades usando el AFM y los rangos típicos esperados, lo que nos ha permitido verificar la validez de esta técnica para la cuantificación precisa y exacta de las propiedades mecánicas. La parte principal y final de esta tesis tiene como objetivo la implementación de la técnica de nanoindentación por AFM para el estudio de fenómenos físicos interesantes en distintos sistemas nanoestructurados. Como objetivo específico se ha planteado el estudio de sistemas tales como películas delgadas de Cu y Ag y nanodiscos de Ag, los cuales fueron analizados con el fin de entender y cuantificar el efecto de distintos tipos de confinamiento en el comportamiento mecánico efectivo de los mismos. Para el caso de películas delgadas de Cu se ha estudiado particularmente la competencia entre efectos microestructurales y efectos de tamaño (inducidos por espesor) en las propiedades mecánicas de éstas, dándose nuevas perspectivas con respecto del rol de ambos factores en el comportamiento mecánico efectivo. En este caso, los resultados nos han mostrado que la sensibilidad instrumental es adecuada para estudiar y discriminar la influencia de efectos de tamaño y microestructurales en las propiedades mecánicas. Además, nos han nos han permitido plantear que tanto el espesor de la película como los efectos microestructurales son importantes a la hora de describir las propiedades mecánicas efectivas de películas delgadas policristalinas. Por otro lado, los estudios en películas delgadas y nanodiscos de Ag nos han demostrado que esta técnica es una herramienta eficiente para la caracterización del comportamiento nanomecánico tanto de películas delgadas como nanodiscos, evidenciando su potencial para la detección de efectos de substrato y confinamiento lateral. Los resultados han demostrado que en ciertos regímenes ambos efectos compiten, siendo el confinamiento lateral una contribución de segundo orden cuya magnitud parece no estar asociada a escalas de longitud absoluta, sino más bien con escalas de longitud relativa. Nuestros estudios han demostrado que los efectos de espesor y confinamiento lateral deberían tenerse en cuenta en el desarrollo de componentes metálicos a nanoescala para su uso en tecnologías emergentes como MEMS/NEMS, ya que su vida útil podría verse negativamente afectada en determinadas condiciones de tamaño. Los resultados provistos a lo largo de esta tesis proveen sólidos cimientos para la futura implementación de esta facilidad por parte de investigadores que requieran estudios complementarios de este tipo, tanto para investigación básica como aplicada. Se ha validado la factibilidad y utilidad de esta técnica para el estudio del comportamiento mecánico de sistemas tanto bulk como nanoestructurados, abriendo futuras perspectivas para el estudio de diversos materiales con alto impacto en la industria nanotecnológica.

Resumen en inglés

The nanotechnology industry has been in continuous progress due to the accelerated development of nano and micro fabrication technologies, which have allowed the fabrication of various nanostructured systems for different applications. The study of the mechanical properties of these systems, which are fundamental for the development of new emerging technologies such as electro-mechanical systems at micro (MEMS) and nano (NEMS) scales, has been a high-impact topic in materials physics in recent years. Nowadays, nanoindentation technique is one of the most extended methods for characterizing these properties in nanomaterials. The recent interest in this technique is due to the development of instruments specialized for its implementation, being mainly boosted by the increasing multidisciplinary demand for this type of characterization at the nanometric scale in various areas of nanotechnology. Due to the current relevance of the nanoindentation technique, the fundamental objectives of the proposed thesis are the development and implementation of this technique by using the Atomic Force Microscope (AFM) located in the Institute of Nanoscience y Nanotechnology (INN – Nodo Bariloche) facilities. Beyond these objectives, the main objective and purpose of this thesis is to provide new and relevant perspectives regarding the role of different types of confinement or other non-trivial phenomena on the mechanical behavior of various types of nanostructures. The fundamental and first part of this thesis encompasses a study on the instrumentation of nanoindentation by AFM. The main objective is the systematization of different calibration protocols for obtaining force (𝑃)-displacement (ℎ) curves (or 𝑃(ℎ) curves for simplicity) by AFM, which are crucial for the quantitative analysis of the mechanical properties by standard indentation models. In addition, to provide a quantitative estimation of such properties, a new indirect methodology is presented for the calibration of the nanoindenter geometric profile based on the study of plastic strain. The results obtained from this first development phase have enabled to elucidate the exact physical limitations associated with the implementation of this technique, and to validate it for the future study of the mechanics of different types of nanomaterials. The second part of this thesis shows the first feasibility and validation studies of this technique for mechanical characterization. In this context, the objective is to validate this technique, firstly, by studying the mechanical properties of different bulk materials (Si, SiO2 and In), focusing on the quantitative estimation of mechanical properties such as hardness and Young's modulus. This study has shown us the good agreement that exists between the values determined for these properties by using the AFM and the expected typical ranges, which has enabled us to verify the validity of this technique for a precise and accurate quantification of the mechanical properties. The main and final part of this thesis has the objective of implementing the AFM-assisted nanoindentation technique for the study of interesting physical phenomena in different nanostructured systems. As a specific objective, we have proposed the study of different systems such as Cu and Ag thin films and Ag nanodisks, which were analyzed to understand and quantify the effect of different types of confinement on their effective mechanical behavior. For the case of Cu thin films, the competition between microstructural effects and size effects (induced by thickness changes) on their mechanical properties has been particularly studied, giving new insights regarding the role of both factors on the effective mechanical behavior. In this case, the results have shown us that the instrumental sensitivity is adequate to study and discriminate the influence of size and microstructural effects on the films mechanical properties. Also, these have enabled us to state that both film thickness and microstructural effects are important to describe the effective mechanical properties of polycrystalline thin films. On the other hand, the studies on Ag thin films and nanodisks have shown us that this technique is an efficient tool for characterizing the nanomechanical behavior of both kinds of systems, evidencing its potential for the detection of substrate and lateral confinement effects. The results have shown that in certain regimes both effects compete, being lateral confinement a second-order contribution whose magnitude does not seem to be associated with absolute length scales, but rather with relative length scales. Our studies have shown that the effects of thickness and lateral confinement should be considered in the development of metallic components at nanoscale for their use in emerging technologies such as MEMS/NEMS, since their lifetime could be negatively affected under certain size conditions.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Mechanical properties; Propiedades mecánicas; Thin films; Capas finas; Atomic force microscopy; Microscopia de fuerza atómica [Nanoindentation; Nanoindentación; Confinement effect; Efectos de confinamiento; Microstucture effects; Efectos Microestructurales]
Referencias:[1] A. C. Fischer-Cripps, Depth-Sensing Indentation Testing. In: Introduction to Contact Mechanics. Springer, New York, 2007, pp. 189-199. [2] B. Bhushan, Depth-sensing nanoindentation measurement techniques and applications, Microsystem Technologies 23 (2017) 1595–1649, https://doi.org/10.1007/s00542-017-3372-2 [3] D. Olasz, J. Lendvai, A. Szállás, G. Gulyás, N. Q. Chinh, Extended Applications of the Depth-Sensing Indentation Method, Micromachines 11 (2020) 1023, https://doi.org/10.3390/mi11111023 [4] S. Roa Díaz, On the propagation of methodological uncertainties in Depth Sensing Indentation data analysis: A brief and critical review, Mechanics Research Communications 105 (2020) 103516, https://doi.org/10.1016/j.mechrescom.2020.103516 [5] E. L. Kossovich, F. M. Borodich, S. J. Bull, S. A. Epshtein, Substrate effects and evaluation of elastic moduli of components of inhomogeneous films by nanoindentation, Thin Solid Films 619 (2016) 112-119, https://doi.org/10.1016/j.tsf.2016.11.018 [6] N. Chakroun, H. Belhadjsalah, Mechanical Characterization of Film/Substrate Materials Using Nanoindentation Technique, Materials Design and Application II 98 (2019) 453-466, https://doi.org/10.1007/978-3-030-02257-0_31 [7] F. Seifried, H. Leiste, R. Schwaiger, S. Ulrich, H. J. Seifert, M. Stueber, Structure, morphology and selected mechanical properties of magnetron sputtered (Mo, Ta, Nb) thin films on NiTi shape memory alloys, Surface and Coatings Technology 347 (2018) 379-389, https://doi.org/10.1016/j.surfcoat.2018.05.014 [8] H.-D. Lai, S.-R. Jian, L. T. C. Tuyen, P. H. Le, C.-W. Luo, J.-Y. Juang, Nanoindentation of Bi2Se3 Thin Films, Micromachines 9 (2018) 518-527, https://doi.org/10.3390/mi9100518 [9] E. A. Villegas, R. Parra, L. Ramajo, Integral nanoindentation evaluation of TiO2, SnO2, and ZnO thin films deposited via spray-pyrolysis on glass substrates, Journal of Materials Science: Materials in Electronics 30 (2019) 1360-1365, https://doi.org/10.1007/s10854-018-0404-3 [11] G. Tang, Y.-L. Shen, D. R. P. Singh, N. Shawla, Indentation behavior of metal–ceramic multilayers at the nanoscale: Numerical analysis and experimental verification, Acta Materialia 58 (2010) 2033-2044, https://doi.org/10.1016/j.actamat.2009.11.046 [12] J. Deng, N. Liao, M. Zhang, W. Xue, Extended finite element analysis of plastic and fracture behaviors of SiC-based multi-layer thin films system, International Journal of Mechanical Sciences 161-162 (2019) 105017, https://doi.org/10.1016/j.ijmecsci.2019.105017 [13] W. Yongqiang, Z. Xiaoya, J. Zhiqiang, T. Xiubo, Characterization and mechanical properties of TiN/TiAlN multilayer coatings with different modulation periods, The International Journal of Advanced Manufacturing Technology 96 (2018) 1677-1683, https://doi.org/10.1007/s00170-017-0832-x [14] T. Mukhopadhyay, A. Mahata, S. Adhikari, M. Asle Zaeem, Effective mechanical properties of multilayer nano-heterostructures, Scientific Reports 7 (2017) 15818, https://doi.org/10.1038/s41598-017-15664-3 [15] N. A. Che Lah, S. Trigueros, Synthesis and modelling of the mechanical properties of Ag, Au and Cu nanowires, Science and Technology of Advanced Materials 20 (2019) 225-261, https://doi.org/10.1080/14686996.2019.1585145 [16] Y.‐J. Kim, K. Son, I.‐C. Choi, I.‐S. Choi, W. Il Park, J.‐il Jang, Exploring Nanomechanical Behavior of Silicon Nanowires: AFM Bending Versus Nanoindentation, Advanced Functional Materials 21 (2011) 279-286, https://doi.org/10.1002/adfm.201001471 [17] Y. Zhu, Mechanics of Crystalline Nanowires: An Experimental Perspective, Applied Mechanics Reviews 69 (2017) 010802, https://doi.org/10.1115/1.4035511 [18] G. Hamdana, T. Granz, M. Bertke, Zhi Li, P. Puranto, U. Brand, H. S. Wasisto, E. Peiner, Nanomechanical Traceable Metrology of Vertically Aligned Silicon and Germanium Nanowires by Nanoindentation, Proceedings 1 (2017) 375, https://doi.org/10.3390/proceedings1040375 [19] A. G. N. Sofiah, M. Samykano, K. Kadirgama, R. V. Mohan, N. A. C. Lah, Metallic nanowires: Mechanical properties – Theory and experiment, Applied Materials Today 11 (2018) 320-337, https://doi.org/10.1016/j.apmt.2018.03.004 [20] S. Roy, R. Gatti, B. Devincre, D. Mordehai, A multiscale study of the size-effect in nanoindentation of Au nanoparticles, Computational Materials Science 162 (2019) 47–59, https://doi.org/10.1016/j.commatsci.2019.02.013 [21] D. Mordehai, M. Kazakevich, D. J. Srolovitz, E. Rabkin, Nanoindentation size effect in single-crystal nanoparticles and thin films: A comparative experimental and simulation study, Acta Materialia 59 (2011) 2309–2321, https://doi.org/10.1016/j.actamat.2010.12.027 [22] D. R. Saha, A. Mandal, S. Mitra, Nanoindentation studies on silver nanoparticles, AIP Conference Proceedings 1536 (2013) 257, https://doi.org/10.1063/1.4810198 [23] D. Maharaj, B. Bhushan, Scale effects of nanomechanical properties and deformation behavior of Au nanoparticle and thin film using depth sensing nanoindentation, Beilstein Journal of Nanotechnology 5 (2014) 822–836, https://doi.org/10.3762/bjnano.5.94 [24] Hu Li, Y. Han, T. Duan, K. Leifer, Size-dependent elasticity of gold nanoparticle measured by atomic force microscope based nanoindentation, Applied Physics Letters 115 (2019) 053104, https://doi.org/10.1063/1.5095182 [25] A. C. Fischer-Cripps, Nanoindentation Test Instruments. In: Introduction to Contact Mechanics. Mechanical Engineering Series, Springer, New York, 2000, pp. 142-158, https://doi.org/10.1007/0-387-22651-6_9 [26] A. K. Bhattacharya, W. D. Nix, Finite element simulation of indentation experiments, International Journal of Solids and Structures 24 (1988) 881-891, https://doi.org/10.1016/0020-7683(88)90039-X [27] T. A. Laursen, J. C. Simo, A study of the mechanics of microindentation using finite elements, Journal of Materials Research 7 (1992) 618-626, https://doi.org/0.1557/JMR.1992.0618 [28] A. Bolshakov, W. C. Oliver, G. M. Pharr, Influences of stress on the measurement of mechanical properties using nanoindentation: Part II. Finite element simulations, Journal of Materials Research 11 (1996) 760- 768, https://doi.org/10.1557/JMR.1996.0092 [29] J. A. Knapp, D. M. Follstaedt, S. M. Myers, J. C. Barbour, T. A. Friedmann, Finite-element modeling of nanoindentation, Journal of Applied Physics 85 (1999) 1460-1474, https://doi.org/10.1063/1.369178 [30] N. Noii, I. Aghayan, Characterization of elastic-plastic coated material properties by indentation techniques using optimization algorithms and finite element analysis, International Journal of Mechanical Sciences 152 (2019) 465-480, https://doi.org/10.1016/j.ijmecsci.2019.01.010 [31] A. S. Alaboodi, Z. Hussain, Finite element modeling of nano-indentation technique to characterize thin film coatings, Journal of King Saud University - Engineering Sciences 31 (2019) 61-69, https://doi.org/10.1016/j.jksues.2017.02.001 [32] H. R. C. Bao, D. Zhu, G. S. Gu, H. Gong, The effect of complete radial lateral meniscus posterior root tear on the knee contact mechanics: a finite element analysis, Journal of Orthopedic Science 18 (2013) 256-263, https://doi.org/10.1007/s00776-012-0334-5 [33] A. Xu, T. Vodenitcharova, K. Kabir, E. A. Flore-Johnson, M. Hoffman, Finite element analysis of indentation of aluminium foam and sandwich panels with aluminium foam core, Materials Science and Engineering: A 599 (2014) 125-133, doi: https://doi.org/10.1016/j.msea.2014.01.080 [34] Y. Xiao, W. Shi, J. Luo, Indentation for evaluating cracking and delamination of thin coatings using finite element analysis, Vacuum 122 (2015) 17-30, https://doi.org/10.1016/j.vacuum.2015.09.003 [35] H. A. Shirazi, S. A. Mirmohammadi, M. Shaali, A. Asnafi, M. R. Ayatollahi, A constitutive material model for a commercial PMMA bone cement using a combination of nano-indentation test and finite element analysis, Polymer Testing 59 (2017) 328-335, https://doi.org/10.1016/j.polymertesting.2017.01.031 [36] A. Karimi, R. Razaghi, T. Sera, S. Kudo, A combination of the finite element analysis and experimental indentation via the cornea, Journal of the Mechanical Behavior of Biomedical Materials 90 (2019) 146-154, https://doi.org/10.1016/j.jmbbm.2018.10.017 [37] N.-V. Nguyen, T.-H. Pham, S.-E. Kim, Strain rate-dependent behaviors of mechanical properties of structural steel investigated using indentation and finite element analysis, Mechanics of Materials 137 (2019) 103089, https://doi.org/10.1016/j.mechmat.2019.103089 [38] L. Shi, W. Yao, Yu. Gan, L. Y. Zhao, W. E. McKee, J. Vink, R. J. Wapner, C. P. Hendon, K. Myers, Anisotropic Material Characterization of Human Cervix Tissue Based on Indentation and Inverse Finite Element Analysis, Journal of Biomechanical Engineering 141 (2019) 091017, https://doi.org/10.1115/1.4043977 [39] S. Roa, M. Sirena, A finite element analysis of conical indentation in elastic-plastic materials: On strain energy based strategies for an area-independent determination of solids mechanical properties, International Journal of Mechanical Sciences 207C (2021) 106651, https://doi.org/10.1016/j.ijmecsci.2021.106651 [40] I. N. Sneddon, Boussinesq’s problem for a rigid cone, Mathematical Proceedings of the Cambridge Philosophical Society 44 (1948) 492-507, https://doi.org/10.1017/S0305004100024518 [41] A. E. H. Love, Boussinesq’s problem for a rigid cone, The Quarterly Journal of Mathematics 10 (1939) 161-175, https://doi.org/10.1093/qmath/os-10.1.161 [42] H. Hertz, Über die berührung fester elastischer Körper, Journal für die reine und angewandte Mathematik 92 (1881)156-171. [43] G. N. Kalei, Some results of microhardness test using the depth of impression, Mashinovedenie 4 (1968) 105–107. [44] S. I. Bulychev, V. P. Alekhin, M. Kh. Shorshorov, A. P. Ternovskii, G. D. Shnyrev, Determination of Young’s modulus according to indentation diagram, Industrial Laboratory 41 (1975) 1409–1412. [45] S. I. Bulychev, V. P. Alekhin, M. Kh. Shorshorov, A. P. Ternovskii, Mechanical properties of materials studied from kinetic diagrams of load versus depth of impression during microimpression, Strength of Materials 8 (1976) 1084–1089, https://doi.org/10.1007/BF01529860 [46] M. K. Shorshorov, S. I. Bulychev, V. P. Alekhin, Work of plastic and elastic deformation during indenter indentation, Soviet Physics-Doklady 26 (1981) 769–771. [47] M. F. Doener, W. D. Nix, A method for interpreting the data from depth sensing indentation instruments, Journal of Materials Research 1 (1986) 601-609, https://doi.org/10.1557/JMR.1986.0601 [48] W. C. Oliver, G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research 7 (1992) 1564-1583, https://doi.org/10.1557/JMR.1992.1564 [49] A. C. Fischer-Cripps, Elastic and Elastic-Plastic Contact. In: Introduction to Contact Mechanics. Springer, New York, 2007, pp. 175-188. [50] K. L. Johnson, Contact Mechanics, Cambridge University Press, 1985. [51] M. Liu, J.-Y. Lin, C. Lu, K. A. Tieu, K. Zhou, T. Koseki, Progress in Indentation Study of Materials via Both Experimental and Numerical Methods, Crystals 7 (2017) 258, https://doi.org/10.3390/cryst7100258 [52] L. Xu, L. Kong, H. Zhao, S. Wang, S. Liu, L. Qian, Mechanical Behavior of Undoped n-Type GaAs under the Indentation of Berkovich and Flat-Tip Indenters, Materials 12 (2019) 1192, https://doi.org/10.3390/ma12071192 [53] H. Huang, Ch. Shi, H. Zhao, L. Zhang, Influence of friction on the residual morphology, the penetration load and the residual stress distribution of a Zr-based bulk metallic glass, AIP Advances 3 (2013), https://doi.org/10.1063/1.4802835 [54] D.-X. Liu, T.-H. Zhang, An New Area Function for Sharp Indenter Tips in Nanoindentation, Chinese Journal of Aeronautics 17 (2004) 159-164, https://doi.org/10.1016/S1000-9361(11)60231-8 [55] A. S. Alaboodi, Z. Hussain, Finite element modeling of nano-indentation technique to characterize thin film coatings, Journal of King Saud University - Engineering Sciences 31 (2019) 61-69, https://doi.org/10.1016/j.jksues.2017.02.001 [56] Micro Star Technologies, Nano Indenter Specifications, http://www.microstartech.com/nano-indenter-specifications.html accessed 5 November 2021. [57] K. W. Mc Elhaney, J. J. Vlassak, W. D. Nix, Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments, Journal of Materials Research 13 (1998) 1300- 1306, https://doi.org/10.1557/JMR.1998.0185 [58] J. B. Pethicai, R. Hutchings, W. C. Oliver, Hardness measurement at penetration depths as small as 20 nm, Philosophical Magazine A 48 (1983) 593-606, https://doi.org/10.1080/01418618308234914 [59] K. Herrmann, N. M. Jennett, W. Wegener, J. Meneve, K. Hasche, R. Seemann, Progress in determination of the area function of indenters used for nanoindentation, Thin Solid Films 377 (2000) 394-400, https://doi.org/10.1016/S0040-6090(00)01367-5 [60] J. Thurn, R. F. Cook, Simplified Area Function for Sharp Indenter Tips in Depth-sensing Indentation, Journal of Materials Research 17 (2002) 1143-1146, https://doi.org/10.1557/JMR.2002.0169 [61] R. B. King, Elastic analysis of some punch problems for a layered medium, International Journal of Solids and Structures 23 (1987) 1657-1664, https://doi.org/10.1016/0020-7683(87)90116-8 [62] A. Mukanova, A. Jetybayeva, S-T. Myung, S.-S. Kim, Z. Bakenov, A mini-review on the development of Si-based thin film anodes for Li-ion batteries, Materials Today Energy 9 (2018) 49-66, https://doi.org/10.1016/j.mtener.2018.05.004 [63] J. Wang, D. Shi, Spectral selective and photothermal nano structured thin films for energy efficient windows, Applied Energy 208 (2015) 83-96, https://doi.org/10.1016/j.apenergy.2017.10.066 [64] K. Ariga, J. Li, J. Fei, Q. Ji, J. P. Hill, Nanoarchitectonics for Dynamic Functional Materials from Atomic-/Molecular-Level Manipulation to Macroscopic Action, Advanced Materials 28 (2016) 1251-1286, https://doi.org/10.1002/adma.201502545 [65] V. Malgras, Q. Ji, Y. Kamachi, T. Mori, F. Shieh, W. Wu, K. Ariga, Y. Yamauchi, Templated Synthesis for Nanoarchitectured Porous Materials, Bulletin of the Chemical Society of Japan 88 (2015) 1171-1200, https://doi.org/10.1246/bcsj.20150143 [66] A. Pogrebnjak, K. Smyrnova, O. Bondar, Nanocomposite Multilayer Binary Nitride Coatings Based on Transition and Refractory Metals: Structure and Properties, Coatings 9 (2019) 155, https://doi.org/10.3390/coatings9030155 [67] S. Azzawi, A. T. Hindmarch, D. Atkinson, Magnetic damping phenomena in ferromagnetic thin-films and multilayers, Journal of Physics D: Applied Physics 50 (2017) 473001, https://doi.org/10.1088/1361-6463/aa8dad [68] M. Khadem, O. V. Penkov, H.-K. Yang, D.-E. Kim, Tribology of multilayer coatings for wear reduction: A review, Friction 5 (2017) 248-262, https://doi.org/10.1007/s40544-017-0181-7 [69] E. Barrigón, M. Heurlin, Z. Bi, Bo Monemar, Lars Samuleson, Synthesis and Applications of III–V Nanowires, Chemical Reviews 119 (2019) 9170-9220, https://doi.org/10.1021/acs.chemrev.9b00075 [70] N. I. Goktas, P. Wilson, A. Ghukasyan, D. Wagner, S. McNamee, R. R. LaPierre, Nanowires for energy: A review, Applied Physics Reviews 5 (2018) 041305, https://doi.org/10.1063/1.5054842 [71] Vu Binh Nam, D. Lee, Copper Nanowires and Their Applications for Flexible, Transparent Conducting Films: A Review, Nanomaterials 6 (2016) 47, https://doi.org/10.3390/nano6030047 [72] W. He, Ch. Ye, Flexible Transparent Conductive Films on the Basis of Ag Nanowires: Design and Applications: A Review, Journal of Materials Science & Technology 31 (2015) 581-588, https://doi.org/10.1016/j.jmst.2014.11.020 [73] H. D. Beyenea, A. A. Werkneh, H. K. Bezabh, T. G. Ambaye, Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review, Sustainable Materials and Technologies 13 (2017) 18-23, https://doi.org/10.1016/j.susmat.2017.08.001 [74] A. S. Algamili, M. H. Md. Khir, J. O. Dennis, A. Y. Ahmed, S. S. Alabsi, S. S. Ba Hashwan, M. M. Junaid, A Review of Actuation and Sensing Mechanisms in MEMS-Based Sensor Devices, Nanoscale Research Letters 16 (2021) 16, https://doi.org/10.1186/s11671-021-03481-7 [75] K. S. Teh, Additive direct-write microfabrication for MEMS: A review, Frontiers of Mechanical Engineering 12 (2017) 490–509, https://doi.org/10.1007/s11465-017-0484-4 [76] A. Schröfel, G. Kratošová, Ivo Šafařík, M. Šafaříková, I. Raška, L. M. Shor, Applications of biosynthesized metallic nanoparticles – A review, Acta Biomaterialia 10 (2014) 4023-4042, https://doi.org/10.1016/j.actbio.2014.05.022 [77] R. Ghodssi, P. Lin, MEMS Materials and Processes Handbook, Springer, Berlin, 2011. [78] P. Rai-Choudhury, MEMS and MOEMS Technology and Applications, SPIE Press, 2000. [79] G. Binning, C. F. Quate, Ch. Gerber, Atomic Force Microscope, Physical Review Letters 56 (1986) 930, https://doi.org/10.1103/PhysRevLett.56.930 [80] G. Binning, H. Rohrer, Ch. Gerber, E. Weibel, Surface Studies by Scanning Tunneling Microscopy, Physical Review Letters 49 (1982) 57, https://doi.org/10.1103/PhysRevLett.49.57 [81] N. Ashcroft, N. Mermin, Solid State Physics, Harcourt Asia, 2001. [82] C. Kittel, Introduction to Solid State Physics, Wiley, USA, 1996. [83] Park Systems Corp., Research Application Technology Center, Contact mode, https://parksystems.com/images/spmmodes/standard/ModeNote_Contact_mode_Park_Systems.pdf accessed 28 September 2021. [84] B. Bhushan, Springer Handbook of Nanotechnology. N°v. 1 in Springer Hand- book of Nanotechnology, Springer-Verlag, 2004, pp. 21-22. [85] Y. Liu, D. Sellmyer, D. Shindo, Handbook of Advanced Magnetic Materials: Vol 1. Nanostructural Effects. Vol 2. Characterization and Simulation. Vol 3. Fabrication and Processing. Vol 4. Properties and Applications. N°v. 1 in Developments in Hydrobiology S. Springer, 2005. [86] M. R. Ward, Electrical Engineering Science, McGraw-Hill Book Co, New York, 1971, pp. 141-142. [87] Y. Martin, C. C. Williams, H. K. Wickramasinghe, Atomic force microscope-force mapping and profiling on a sub 100-Å scale, Journal of Applied Physics 61 (1987) 4723–4729, https://doi.org/10.1063/1.338807 [88] B. Tang, A. H. W. Ngan, Nanoindentation using an atomic force microscope, Philosophical Magazine 91 (2011) 1329-1338, https://doi.org/10.1080/14786431003745351 [89] Y. Guo, W. H. Roos, AFM Nanoindentation Experiments on Protein Shells: A Protocol. In: N. Santos, F. Carvalho (eds) Atomic Force Microscopy. Methods in Molecular Biology, vol 1886. Humana Press, New York, 2019, pp. 24-257, https://doi.org/10.1007/978-1-4939-8894-5_14 [90] J. Notbohm, B. Poon, G. Ravichandran, Analysis of nanoindentation of soft materials with an atomic force microscope, Journal of Materials Research 27 (2012) 229–237, https://doi.org/10.1557/jmr.2011.252 [91] R. C. Germanicus, D. Mercier, F. Agrebi, M. Febvre, D. Mariolle, Ph. Descamps, Ph. Leclere, Quantitative mapping of high modulus materials at the nanoscale: comparative study between atomic force microscopy and nanoindentation, Journal of Microscopy 280 (2020) 51-62, https://doi.org/10.1111/jmi.12935 [92] S. Roa, M. Sirena, Thickness and microstructure influence on the nanocrystalline Cu thin films’ mechanical properties, Journal of Materials Research (2021), https://doi.org/10.1557/s43578-021-00147-z [93] E. L. Wooda, T. Avant, G. S. Kimb, S. K. Leec, Z. Burchman, J. M. Hughes, F. Sansoz, Size effects in bimetallic nickel–gold nanowires: Insight from atomic force microscopy nanoindentation, Acta Materialia 66 (2014) 32-43, https://doi.org/10.1016/j.actamat.2013.11.067 [94] S. Marcotti, G. C. Reilly, D. Lacroix, Effect of cell sample size in atomic force microscopy nanoindentation, Journal of the Mechanical Behavior of Biomedical Materials 94 (2019) 259-266, https://doi.org/10.1016/j.jmbbm.2019.03.018 [95] I. A. Morozov, Atomic force microscopy nanoindentation kinetics and subsurface visualization of soft inhomogeneous polymer, Microscopy Research & Technique (2021), https://doi.org/10.1002/jemt.23751 [96] D. Maji, S. Das, Atomic force microscopy and nanoindentation investigation of polydimethylsiloxane elastomeric substrate compliancy for various sputtered thin film morphologies, Journal of Biomedical Materials Research 106 (2018) 725-737, https://doi.org/10.1002/jbm.a.36283 [97] S. Roa, M. Sirena, Size effects on the optimization of the mechanical resistance and the electrical conductivity of Cu thin films, Materials Today Communications 28 (2021) 102572, https://doi.org/10.1016/j.mtcomm.2021.102572 [98] T. R. Aslamazova, V. I. Zolotarevskii, V. A. Kotenev, A. Yu. Tsivadze, Application of Atomic-Force Microscopy for Nanoindentation of the Surface Layer of Filled Polymer Films, Measurement Techniques 62 (2019) 681-685, https://doi.org/10.1007/s11018-019-01678-y [99] L. Calabri, N. Pugno, S. Valeri, Applied Scanning Probe Methods XI, NanoScience and Technology, Springer, Berlin, Heidelberg, 2009, pp. 139-164, https://doi.org/10.1007/978-3-540-85037-3_6 [100] Test & Measurement, Nanomechanical Test Systems, https://www.bruker.com/content/bruker/int/en/products-and-solutions/test-and-measurement/nanomechanical-test-systems.html accessed 22 November 2021. [101] Technical report from Bruker (Hysitron) Nano Mechanical Technology, Bruker Nano Surfaces Division, 2017, https://mdmf.hkust.edu.hk/useful%20links/Nano-Mechanical%20Technology%20&%20its%20Applications.pdf accessed 22 November 2021. [102] TI 980 TriboIndenter User Manual, Hysitron Incorporated, 2016, https://www.lamar.edu/engineering/mechanical/faculty-staff/keivan-davami/documents/ti980-user-manual.pdf accessed 22 November 2021. [103] Bruker AFM Probes, Nanoindentation Probes, https://www.brukerafmprobes.com/c-282-nanoindentation.aspx accessed 22 November 2021. [104] DimensionTM 3100 Manual ver. 4.43B, Digital Instruments Veeco Metrology Group, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.176.204&rep=rep1&type=pdf accessed 27 November 2021. [105] Bruker AFM Probes, Nanoindentation Probes, PDNISP-HS model, https://www.brukerafmprobes.com/p-3611-pdnisp-hs.aspx accessed 24 November 2021. [106] Bruker AFM Probes, SPM Accessories, SAPPHIRE-12M, https://www.brukerafmprobes.com/p-3741-sapphire-12m.aspx accessed 24 November 2021. [107] AZO Materials data base, Supplier Data - Sapphire Single Crystal (Alumina 99.9%) - (Goodfellow), 2002, https://www.azom.com/properties.aspx?ArticleID=1721 accessed 24 November 2021. [108] AZO Materials data base, Diamond (C) - Properties and Applications, 2001 https://www.azom.com/properties.aspx?ArticleID=262 accessed 24 November 2021. [109] Bruker AFM Probes, SPM Accessories, ISGS, https://www.brukerafmprobes.com/p-3517-isgs.aspx accessed 24 November 2021. [110] NanoScope Software 6.13 User Guide, Veeco Instruments Inc., 2004, https://www.tcd.ie/Physics/research/groups/1d-nanostructures/resources/equipment/AFM%20Software.pdf accessed 26 November. [111] Bruker AFM Probes, TappingMode/Non-Contact Probes, https://www.brukerafmprobes.com/c-283-tappingmode-non-contact.aspx accessed 26 November 2021. [112] J. H. Hoh, A. Engel, Friction effects on force measurements with an atomic force microscope, Langmuir 9 (1993) 3310-3312, https://doi.org/10.1021/la00035a089 [113] R. J. Cannara, M. J. Brukman, R. W. Carpick, Cantilever tilt compensation for variable-load atomic force microscopy, Review of Scientific Instruments 76 (2005) 053706, https://doi.org/10.1063/1.1896624 [114] S. Garcia-Manyes, A. G. Güell, P. Gorostiza, F. Sanz, Nanomechanics of silicon surfaces with atomic force microscopy: An insight to the first stages of plastic deformation, The Journal of Chemical Physics 123 (2005) 114711, https://doi.org/10.1063/1.2035094 [115] L. Huang, C. Meyer, C. Prater, Eliminating Lateral Forces During AFM Indentation, Journal of Physics: Conference Series 61 (2007) 161, https://doi.org/10.1088/1742-6596/61/1/161 [116] S. M. Han, H. Benaroya, T. Wei, Dynamics of Transversely Vibrating Beams using Four Engineering Theories, Journal of Sound and Vibration 225 (1999) 935-988, https://doi.org/10.1006/jsvi.1999.2257 [117] B. Yang, H. Vehoff, Dependence of nanohardness upon indentation size and grain size – A local examination of the interaction between dislocations and grain boundaries, Acta Materialia 55 (2007) 849-856, https://doi.org/10.1016/j.actamat.2006.09.004 [118] B.-bu Jung, H.-kee Lee, H.-chul Park, Effect of grain size on the indentation hardness for polycrystalline materials by the modified strain gradient theory, International Journal of Solids and Structures 50 (2013) 2719-2724, https://doi.org/10.1016/j.ijsolstr.2013.05.002 [119] C.-Ch. Huang, T.-Ch. Chiang, T.-H. Fang, Grain size effect on indentation of nanocrystalline copper, Applied Surface Science 353 (2015) 494-498, https://doi.org/10.1016/j.apsusc.2015.06.135 [120] G.-yu Liu, S. Ni, M. Song, Effect of indentation size and grain/sub-grain size on microhardness of high purity tungsten, Transactions of Nonferrous Metals Society of China 25 (2015) 3240-3246, https://doi.org/10.1016/S1003-6326(15)63958-9 [121] E. Broitman, Indentation Hardness Measurements at Macro-, Micro-, and Nanoscale: A Critical Overview, Tribology Letters 65 (2017) 23, https://doi.org/10.1007/s11249-016-0805-5 [122] C. Walter, T. Antretter, R. Daniel, C. Mitterer, Finite element simulation of the effect of surface roughness on nanoindentation of thin films with spherical indenters, Surface and Coatings Technology 202 (2007) 1103-1107, https://doi.org/10.1016/j.surfcoat.2007.07.038 [123] Y. Xia, M. Bigerelle, J. Marteau, P.-E. Mazeran, S. Bouvier, A. Iost, Effect of surface roughness in the determination of the mechanical properties of material using nanoindentation test, Scanning 36 (2014) 134-139, https://doi.org/10.1002/sca.21111 [124] M. Laurent-Borcq, E. Béjanin, Y. Champion, Influence of roughness and tilt on nanoindentation measurements: A quantitative model, Scanning 37 (2015) 350-360, https://doi.org/10.1002/sca.21220 [125] A. C. Campbell, V. Buršíková, J. Martinek, P. Klapetek, Modeling the influence of roughness on nanoindentation data using finite element analysis, International Journal of Mechanical Sciences 161-162 (2019) 105015, https://doi.org/10.1016/j.ijmecsci.2019.105015 [126] AFM WorkshopTM, Technical Notes: Measuring Force Distant Curves with AFM, https://www.afmworkshop.com/newsletter/measuring-and-analyzing-force-distance-curves-with-atomic-force-microscopy accessed 6 December 2021. [127] S. Dinarelli, M. Girasole, G. Longo, FC analysis: a tool for investigating atomic force microscopy maps of force curves, BMC Bioinformatics 19 (2018) 258, https://doi.org/10.1186/s12859-018-2265-4 [128] M. Pierce, J. Stuart, A. Pungor, P. Dryden, V. Hlady, Adhesion Force Measurements Using an Atomic Force Microscope Upgraded with a Linear Position Sensitive Detector, Langmuir 10 (1994) 3217-3221, https://doi.org/10.1021/la00021a053 [129] D. L. Sedin, K. L. Rowlen, Adhesion Forces Measured by Atomic Force Microscopy in Humid Air, Analytical Chemistry 72 (2000) 2183-2189, https://doi.org/10.1021/ac991198c [130] F. L. Leite, C. C. Bueno, A. L. Da Róz, E. C. Ziemath, O. N. Oliviera, Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy, International Journal of Molecular Sciences 13 (2012) 12773-12856, https://doi.org/10.3390/ijms131012773 [131] Y. Jiang, K. T. Turner, Measurement of the strength and range of adhesion using atomic force microscopy, Extreme Mechanics Letters 9 (2016) 119-126, https://doi.org/10.1016/j.eml.2016.05.013 [132] X. Zhu, E. Siamantouras, K. K. Liu, X. Liu, Determination of work of adhesion of biological cell under AFM bead indentation, Journal of the Mechanical Behavior of Biomedical Materials 56 (2016) 77-86, https://doi.org/10.1016/j.jmbbm.2015.11.034 [133] S. S. Hassani, M. Daraee, Z. Sobat, Application of atomic force microscopy in adhesion force measurements, Journal of Adhesion Science and Technology 35 (2021) 221-241, https://doi.org/10.1080/01694243.2020.1798647 [134] G. E. Fougere, J. R. Weertman, R. W. Siegel, S. Kim, Grain-size dependent hardening and softening of nanocrystalline Cu and Pd, Scripta Metallurgica et Materialia 26 (1992) 1879-1883, https://doi.org/10.1016/0956-716X(92)90052-G [135] AZO Materials data base, An Insight into Indium, 2002, https://www.azom.com/properties.aspx?ArticleID=1522 accessed 14 December 2021. [136] W. D. Nix, H. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity, Journal of the Mechanics and Physics of Solids 46 (1998) 411-425, https://doi.org/10.1016/S0022-5096(97)00086-0 [137] G. M. Pharr, E. G. Herbert, Y. Gao, The Indentation Size Effect: A Critical Examination of Experimental Observations and Mechanistic Interpretations, Annual Review of Materials Research 40 (2010) 271-292, https://doi.org/10.1146/annurev-matsci-070909-104456 [138] P. S. Thomas, T. Vascott, High Temperature Glass Melt Property Database for Process Modeling, Wiley, USA, 2005. [139] W.-G. Jiang, J.-J. Su, X.-Q. Feng, Effect of surface roughness on nanoindentation test of thin films, Engineering Fracture Mechanics 74 (2008) 4965-4972, https://doi.org/10.1016/j.engfracmech.2008.06.016 [140] L. Chen, A. Ahadi, J. Zhou, J.-E. Stahl, Modeling Effect of Surface Roughness on Nanoindentation Tests, Procedia CIRP 8 (2013) 334-339, https://doi.org/10.1016/j.procir.2013.06.112 [141] N. A. Sakharova, J. V. Fernandes, J. M. Antunes, M. C. Oliveira, Comparison between Berkovich, Vickers and conical indentation tests: A three-dimensional numerical simulation study, International Journal of Solids and Structures 46 (2009) 1095–1104, https://doi.org/10.1016/j.ijsolstr.2008.10.032 [142] J. H. Lee, G. M. Pharr, Y. Gao, Corrections to the stiffness relationship in 3-sided and conical indentation problems, International Journal of Solids and Structures 166 (2019) 154–166, https://doi.org/10.1016/j.ijsolstr.2019.02.014 [143] AZO Materials data base, A Background to Silicon and its Applications, 2001, https://www.azom.com/properties.aspx?ArticleID=599 accessed 04 March 2022. [144] AZO Materials data base, Silica - Fused Silica (Silicon Dioxide), 2002, https://www.azom.com/properties.aspx?ArticleID=1387 accessed 04 March 2022. [145] D. L. Joslin, W. C. Oliver, A new method for analyzing data from continuous depth-sensing microindentation tests, Journal of Materials Research 5 (1990) 123-126, https://doi.org/10.1557/JMR.1990.0123 [146] R. Saha, W. D. Nix, Effects of the substrate on the determination of thin film mechanical properties by nanoindentation, Acta Materialia 50 (2002) 23-38, https://doi.org/10.1016/S1359-6454(01)00328-7 [147] Sh. Chen, L. Liu, T. Wang, Nanoindentation of Thin-Film-Substrate System: Determination of Film Hardness and Young´s Modulus, Acta Mechanica Sinica 20 (2004) 383-392, https://doi.org/10.1007/BF02489376 [148] J. D. Bressan, A. Tramontin, C. Rosa, Modeling of nanoindentation of bulk and thin film by finite element method, Wear 258 (2005) 115-122, https://doi.org/10.1016/j.wear.2004.05.021 [149] N. Moharrami, S. J. Bull, A comparison of nanoindentation pile-up in bulk materials and thin films, Thin Solid Films 572 (2014) 189-199, http://dx.doi.org/10.1016/j.tsf.2014.06.060 [150] A. Bolshakov, G. M. Pharr, Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques, Journal of Materials Research 13 (1998) 1049-1058, https://doi.org/10.1557/JMR.1998.0146 [151] M. Yetna N’jock, D. Chicot, J. M. Ndjaka, J. Lesage, A. Mejias, A criterion to identify sinking-in and piling-up in indentation of materials, International Journal of Mechanical Sciences 90 (2015) 145-150, https://doi.org/10.1016/j.ijmecsci.2014.11.008 [152] P. Burik, L. Pešek, L. Voleský, Effect of Pile-Up on the Mechanical Characteristics of Steel by Depth Sensing Indentation, Key Engineering Materials 606 (2014) 81-84, https://doi.org/10.4028/www.scientific.net/KEM.606.81 [153] M. Hardiman, T. J. Vaughan, C. T. McCarthy, The effects of pile-up, viscoelasticity and hydrostatic stress on polymer matrix nanoindentation, Polymer Testing 52 (2016) 157-166, https://doi.org/10.1016/j.polymertesting.2016.04.003 [154] P. Burik, L. Pešek, L. Voleský, Pile-Up Correction of Mechanical Characteristics of Individual Phases in Various Steel by Depth Sensing Indentation, Key Engineering Materials 662 (2015) 7-10, https://doi.org/10.4028/www.scientific.net/KEM.662.7 [155] L. N. Zhu, B. S. Xu, H. D. Wang, C. B. Wang, Pileup Behavior in Sharp Nanoindentation of AISI 1045 Steel, Physics Procedia 50 (2013) 214-218, https://doi.org/10.1016/j.phpro.2013.11.034 [156] M. Cabibbo, D. Ciccarelli, S. Spigarelli, Nanoindentation Hardness Measurement in Piling up SiO2 Coating, Physics Procedia 40 (2013) 100-112, https://doi.org/10.1016/j.phpro.2012.12.014 [157] Z. Tang, Y. Guo, Z. Jia, Y. Li, Q. Wei, Examining the Effect of Pileup on the Accuracy of Sharp Indentation Testing, Advances in Materials Science and Engineering 2015 (2015) 1-10, https://doi.org/10.1155/2015/528729 [158] M. Liu, A. K. Tieu, C.-T. Peng, K. Zhou, Explore the anisotropic indentation pile-up patterns of single-crystal coppers by crystal plasticity finite element modelling, Materials Letters 161 (2015) 227-230, https://doi.org/10.1016/j.matlet.2015.08.093 [159] C. Chang, M. A. Garrido, J. Ruiz-Hervias, J. Rodríguez, On the possibility of reducing the pile-up effect on the Berkovich instrumented indentation tests, International Journal of Mechanical Sciences 121 (2017) 181-186, https://doi.org/10.1016/j.ijmecsci.2017.01.008 [160] W. Z. Yao, J. H. You, Berkovich nanoindentation study of monocrystalline tungsten: a crystal plasticity study of surface pile-up deformation, Philosophical Magazine 97 (2017) 1418-1435, https://doi.org/10.1080/14786435.2017.1299237 [161] K. Goto, I. Watanabe, T. Ohmura, Inverse estimation approach for elastoplastic properties using the load-displacement curve and pile-up topography of a single Berkovich indentation, Materials & Design 194 (2020) 108925, https://doi.org/10.1016/j.matdes.2020.108925 [162] F. M. Borodich, The Hertz-Type and Adhesive Contact Problems for Depth-Sensing Indentation, Advances in Applied Mechanics 47 (2014) 225-366, https://doi.org/10.1016/B978-0-12-800130-1.00003-5 [163] M. M. McCann, S. G. Corcoran, Nanoindentation Behavior of Gold Single Crystals, MRS Online Proceedings Library 795 (2003) 45-51, https://doi.org/10.1557/PROC-795-U8.30 [164] F. M. Borodich, Hertz contact problems for an anisotropic physically nonlinear elastic medium, Strength of Materials 21 (1989) 1668-1676, https://doi.org/10.1007/BF01533408 [165] F. M. Borodich, Parametric homogeneity and non-classical self-similarity. II. Some applications, Acta Mechanica 131 (1998) 47–67, https://doi.org/10.1007/BF01178244 [166] F. M. Borodich, Parametric homogeneity and non-classical self-similarity. I. Mathematical background, Acta Mechanica 131 (1998) 27–45, https://doi.org/10.1007/BF01178243 [167] E. Buckingham, On physically similar systems: Illustrations of the use of dimensional equations, Physical Review 4 (1914) 345–376, https://doi.org/10.1103/PhysRev.4.345 [168] E. Buckingham, Notes on the method of dimensions, Philosophical Magazine 42 (1921) 696-719, https://doi.org/10.1080/14786442108633812 [169] Y.-T. Cheng, C.-M. Cheng, Relationships between hardness, elastic modulus, and the work of indentation, Applied Physics Letters 73 (1998) 614-616, https://doi.org/10.1063/1.121873 [170] J. Chen, S. J. Bull, Relation between the ratio of elastic work to the total work of indentation and the ratio of hardness to Young’s modulus for a perfect conical tip, Journal of Materials Research 24 (2009) 590-598, https://doi.org/10.1557/jmr.2009.0086 [171] R. Yang, T. H. Zhang, P. Jiang, Y. L. Bai, Experimental verification and theoretical analysis of the relationships between hardness, elastic modulus, and the work of indentation, Applied Physics Letters 92 (2008) 231906, https://doi.org/10.1063/1.2944138 [172] R. Yang, T. Zhang, Y. Feng, Theoretical analysis of the relationships between hardness, elastic modulus, and the work of indentation for work-hardening materials, Journal of Materials Research 25 (2010) 2072-2077, https://doi.org/10.1557/jmr.2010.0267 [173] J. Alkorta, J. M. Martinez-Esnaola, J. G. Sevillano, Comments on “Comment on the determination of mechanical properties from the energy dissipated during indentation” by J. Malzbender [Journal of Materials Research 20 (2005) 1090-1092], Journal of Materials Research 21 (2006) 302-305, https://doi.org/10.1557/jmr.2006.0009 [174] J. Malzbender, Reply to the comments on “Comment on the determination of mechanical properties from the energy dissipated during indentation” by J. Malzbender [Journal of Materials Research 20 (2005) 1090-1092], Journal of Materials Research 21 (2006) 306, https://doi.org/10.1557/jmr.2006.0010 [175] S. Fristoe, T. Rogul, Theoretical (ultimate) hardness, Powder Metallurgy Progress 7 (2007) 61-65. [176] X.-L. Gao, An expanding cavity model incorporating strain-hardening and indentation size effects, International Journal of Solids and Structures 43 (2006) 6615-6629, https://doi.org/10.1016/j.ijsolstr.2006.01.008 [177] K. L. Johnson, The correlation of indentation experiments, Journal of the Mechanics and Physics of Solids 18 (1970) 115-126, https://doi.org/10.1016/0022-5096(70)90029-3 [178] S. Kuznetsov, Fundamental and singular solutions of Lame equations for media with arbitrary elastic anisotropy, Quarterly of Applied Mathematics 63 (2005) 455-467. [179] N. I. Ostrosablin, General Solution for the Two-Dimensional System of Static Lame’s Equations with an Asymmetric Elasticity Matrix, Journal of Applied and Industrial Mathematics 12 (2018) 126-135, https://doi.org/10.1134/S1990478918010118 [180] Y. Feng, T. Zhang, R. Yang, A Work Approach to Determine Vickers Indentation Fracture Toughness, Journal of the American Ceramic Society 94 (2011) 332-335, https://doi.org/10.1111/j.1551-2916.2010.04289.x [181] C. Yu, R. Yang, Y. Feng, Y. Huan, G. Peng, T. Zhang, Relationships between the work recovery ratio of indentation and plastic parameters for instrumented spherical indentation, MRS Communications 5 (2015) 88-94, https://doi.org/10.1557/mrc.2015.10 [182] D. Fang, H. Zhang, H. Xu, Z. Yu, Y. Pei, F. Li, Deformation and Fracture of Electromagnetic Thin Films and Laminates under Multi-field Loading, Procedia IUTAM 20 (2017) 2-9, https://doi.org/10.1016/j.piutam.2017.03.002 [183] S. Berczyński, D. Grochała, Z. Grządziel, Simulation of the Process of Metal Hardness Measurement by the Rockwell Method, New Trends in Production Engineering 1 (2018) 647-654, https://doi.org/10.2478/ntpe-2018-0081 [184] J. Reiner, R. Vaziri, 8.4 Structural Analysis of Composites With Finite Element Codes: An Overview of Commonly Used Computational Methods, Comprehensive Composite Materials II 8 (2018) 61-84, https://doi.org/10.1016/B978-0-12-803581-8.10050-5 [185] J. H. Hollomon, Tensile Deformation, Transactions of the Metallurgical Society of AIME 162 (1945) 268-290. [186] S. Roa, M. Sirena, Elastic behavior analysis of multilayers by finite element method, Engineering Research Express 3 (2021) 022002, https://doi.org/10.1088/2631-8695/abfd48 [187] Y.-T. Cheng, C.-M. Cheng, Scaling approach to conical indentation in elastic-plastic solids with work hardening, Journal of Applied Physics 84 (1998) 1284-1291, https://doi.org/10.1063/1.368196 [188] Y.-T. Cheng, C.-M. Cheng, Scaling, dimensional analysis, and indentation measurements, Materials Science and Engineering R 44 (2004) 91–149, https://doi.org/10.1016/j.mser.2004.05.001 [189] Z. Zhang, W. Zhao, Q. Sun, C. Li, Theoretical calculation of the strain-hardening exponent and the strength coefficient of metallic materials, Journal of Materials Engineering and Performance 15 (2006) 19-22, https://doi.org/10.1361/10599490524057 [190] A. P. Kren, V. A. Rudnitskii, Determination of the Strain-Hardening Exponent of a Metallic Material by Low-Speed Impact Indentation, Russian Metallurgy 2019 (2019) 478-483, https://doi.org/10.1134/S0036029519040220 [191] H. Gercek, Poisson’s ratio values for rocks, International Journal of Rock Mechanics and Mining Sciences 44 (2007) 1-13, https://doi.org/10.1016/j.ijrmms.2006.04.011 [192] S. V. Hainsworth, H. W. Chandler, T. F. Page, Analysis of nanoindentation load-displacement loading curves, Journal of Materials Research 11 (1996) 1987-1995, https://doi.org/10.1557/JMR.1996.0250 [193] J. Thurn, D. Morris, R. F. Cook, Depth-sensing indentation at macroscopic dimensions, Journal of Materials Research 17 (2002) 2679-2690, https://doi.org/10.1557/jmr.2002.0388 [194] K. O. Kese, Z. C. Li, B. Bergman, Influence of residual stress on elastic modulus and hardness of soda-lime glass measured by nanoindentation, Journal of Materials Research 19 (2004) 3109-3119, https://doi.org/10.1557/jmr.2004.0404 [195] A. Chorfa, A. Madjoubi, H. Mohamed, N. Bouras, Glass hardness and elastic modulus determination by nanoindentation using displacement and energy methods, Ceramics Silikaty 54 (2010) 225-234. [196] AZO Materials data base, Supplier Data - Germanium (Ge) (Goodfellow), 2003, https://www.azom.com/properties.aspx?ArticleID=309 accessed 16 November 2020. [197] AZO Materials data base, Nickel - Properties, Fabrication and Applications of Commercially Pure Nickel, 2003, https://www.azom.com/properties.aspx?ArticleID=2193 accessed 16 November 2020. [198] AZO Materials data base, Tungsten, 2001, https://www.azom.com/properties.aspx?ArticleID=614 accessed 16 November 2020. [199] AZO Materials data base, An Introduction to Cobalt, 2001, https://www.azom.com/properties.aspx?ArticleID=596 accessed 16 November 2020. [200] AZO Materials data base, Aluminium – The Resource, 2001, https://www.azom.com/properties.aspx?ArticleID=309 accessed 16 November 2020. [201] AZO Materials data base, An Introduction to Copper, 2001, https://www.azom.com/properties.aspx?ArticleID=597 accessed 16 November 2020. [202] R. M. Pothapragada, R. A. Mirshams, S. Vadlakonda, Effect of Pile-up in Nanoindentation of Micro and Nano crystalline Ni using FEM, MRS Online Proceedings Library 880 (2005) 79, https://doi.org/10.1557/PROC-880-BB7.9 [203] A. A. Elmustafaa, D. S. Stone, Nanoindentation and the indentation size effect: Kinetics of deformation and strain gradient plasticity, Journal of the Mechanics and Physics of Solids 51 (2003) 357 – 381, https://doi.org/10.1016/S0022-5096(02)00033-9 [204] G. M. Pharr, E. G. Herbert, Y. Gao, The Indentation Size Effect: A Critical Examination of Experimental Observations and Mechanistic Interpretations, Annual Review of Materials Research 40 (2010) 271-292, https://doi.org/10.1146/annurev-matsci-070909-104456 [205] L. Lu, M. Dao, P. Kumar, U. Ramamurty, G. Em Karniadakis, S. Suresh, Extraction of mechanical properties of materials through deep learning from instrumented indentation, Proceedings of the National Academy of Sciences 117 (2020) 7052-7062, https://doi.org/10.1073/pnas.1922210117 [206] J. R. Cahoon, W. H. Broughton, A. R. Kutzak, The determination of yield strength from hardness measurements, Metallurgical Transactions 2 (1971) 1979–1983, https://doi.org/10.1007/BF02913433 [207] A. S. Alaboodi, Z. Hussain, Finite element modeling of nano-indentation technique to characterize thin film coatings, Journal of King Saud University - Engineering Sciences 31 (2019) 61-69, https://doi.org/10.1016/j.jksues.2017.02.001 [208] N. Chakroun, A. Tekaya, H. Belhadjsalah, T. Benameur, Mechanical Characterization of Coating Materials Based on Nanoindentation Technique, Advances in Mechanical Engineering and Mechanics (2019) 47-53, https://doi.org/10.1007/978-3-030-19781-0_6 [209] J. Hay, B. Crawford, Measuring substrate-independent modulus of thin films, Journal of Materials Research 26 (2011) 727-738, https://doi.org/10.1557/jmr.2011.8 [210] J. E. Greene, Tracing the recorded history of thin-film sputter deposition: From the 1800s to 2017, Journal of Vaccum Science & Technology A 35 (2017) 05C204, https://doi.org/10.1116/1.4998940 [211] J. T. Gudmundsson, Physics and technology of magnetron sputtering discharges, Plasma Sources Science and Technology 29 (2020) 113001, https://doi.org/10.1088/1361-6595/abb7bd [212] W. D. Gill, E. Kay, Efficient Low Pressure Sputtering in a Large Inverted Magnetron Suitable for Film Synthesis, Review of Scientific Instruments 36 (1965) 277, https://doi.org/10.1063/1.1719553 [213] K. Wasa, S. Hayakawa, Low Pressure Sputtering System of the Magnetron Type, Review of Scientific Instruments 40 (1969) 693, https://doi.org/10.1063/1.1684039 [214] J. S. Chapin, The Planar Magnetron, Research Development 25 (1974) 37-40. [215] R. K. Waits, Planar magnetron sputtering, Journal of Vacuum Science and Technology 15 (1978) 179, https://doi.org/10.1116/1.569451 [216] J. Horvath, R. Birringer, H. Gleiter, Diffusion in nanocrystalline material, Solid State Communications 62 (1987) 319-322, https://doi.org/10.1016/0038-1098(87)90989-6 [217] L. Lu, N. R. Tao, L. B. Wang, B. Z. Ding, K. Lu, Grain growth and strain release in nanocrystalline copper, Journal of Applied Physics 89 (2001) 6408-6414, https://doi.org/10.1063/1.1367401 [218] R. W. Siegel, S. Ramasamy, H. Hahn, L. Zongquan, L. Ting, R. Gronsky, Synthesis, characterization, and properties of nanophase TiO2, Journal of Materials Research 3 (1988) 1367-1372, https://doi.org/10.1557/JMR.1988.1367 [219] E. S. Ameh, A review of basic crystallography and x-ray diffraction applications, The International Journal of Advanced Manufacturing Technology 105 (2019) 3289-3302, https://doi.org/10.1007/s00170-019-04508-1 [220] M. Kaliva, M. Vamvakaki, Polymer Science and Nanotechnology: Fundamentals and Applications, Elsevier Inc., 2020, pp. 401-433, https://doi.org/10.1016/B978-0-12-816806-6.00017-0 [221] G. Williamson, W. H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metallurgica 1 (1953) 22-31, 10.1016/0001-6160(53)90006-6 [222] J.-il Jang, B.-G. Yoo, J.-Y. Kim, Rate-dependent inhomogeneous-to-homogeneous transition of plastic flows during nanoindentation of bulk metallic glasses: Fact or artifact?, Applied Physics Letters 90 (2007) 211906, https://doi.org/10.1063/1.2742286 [223] C. A. Schuh, A. C. Lund, Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation, Journal of Materials Research 19 (2004) 2152-2158, https://doi.org/10.1557/JMR.2004.0276 [224] T. G. Nieh, C. Schuh, J. Wadsworth, Y. Li, Strain rate-dependent deformation in bulk metallic glasses, Intermetallics 10 (2002) 1177-1182, https://doi.org/10.1016/S0966-9795(02)00146-2 [225] K. B. Yeap, E. Zschech, U. D. Hangen, T. Wyrobek, Elastic anisotropy of Cu and its impact on stress management for 3D IC: Nanoindentation and TCAD simulation study, Journal of Materials Research 27 (2012) 339-348, https://doi.org/10.1557/jmr.2011.323 [226] D. Armstrong, A. Wilkinson, S. Roberts, Measuring anisotropy in Young’s modulus of copper using microcantilever testing, Journal of Materials Research 24 (2009) 3268–3276, https://doi.org/10.1557/jmr.2009.0396 [227] M. R. Stoudt and R. E. Ricker, The relationship between grain size and the surface roughening behavior of Al-Mg alloys, Metallurgical and Materials Transactions A 33 (2002) 2883-2889, https://doi.org/10.1007/s11661-002-0273-4 [228] L. L. Melo, A. R. Vaz, M. C. Salvadori, M. Cattani, Grain Sizes and Surface Roughness in Platinum and Gold Thin Films, Journal of Metastable and Nanocrystalline Materials 20 (2004) 623-628, https://doi.org/10.4028/www.scientific.net/JMNM.20-21.623 [229] M. Y. Ghotbi, Z. Rahmati, Nanostructured copper and copper oxide thin films fabricated by hydrothermal treatment of copper hydroxide nitrate, Materials & Design 85 (2015) 719-723, https://doi.org/10.1016/j.matdes.2015.07.081 [230] K. J. Kim, J. H. Kim, J. H. Kan, Structural and optical characterization of Cu3N films prepared by reactive RF magnetron sputtering, Journal of Crystal Growth 222 (2001) 767-772, https://doi.org/10.1016/S0022-0248(00)00968-4 [231] T. S. Cale, T. P. Merchant, L. J. Borucki, A. H. Labun, Topography simulation for the virtual wafer fab, Thin Solid Films 365 (2000) 152-175, https://doi.org/10.1016/S0040-6090(00)00756-2 [232] R. A. Matula, Electrical resistivity of copper, gold, palladium, and silver, Journal of Physical and Chemical Reference Data 8 (1979) 1147, https://doi.org/10.1063/1.555614 [233] D. Gall, Electron mean free path in elemental metals, Journal of Applied Physics 119 (2016) 085101, https://doi.org/10.1063/1.4942216 [234] G. Eranna, Crystal Growth and Evaluation of Silicon for VLSI and ULSI, CRC Press, 2014, pp. 7. [235] S. M. Rossnagel, T. S. Kuan, Alteration of Cu conductivity in the size effect regime, Journal of Vacuum Science & Technology B 22 (2004) 240, https://doi.org/10.1116/1.1642639 [236] G. Ding, C. Clavero, D. Schweigert, M. Le, Thickness and microstructure effects in the optical and electrical properties of silver thin films, AIP Advances 5 (2015) 117234, https://doi.org/10.1063/1.4936637 [237] A. F. Mayadas, M. Shatzkes, Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces, Physical Review B 1 (1970) 1382-1389, https://doi.org/10.1103/PhysRevB.1.1382 [238] J. R. Shi, S. P. Lau, Z. Sun, X. Shi, B. K. Tay, H. S. Tan, Structural and electrical properties of copper thin films prepared by filtered cathodic vacuum arc technique, Surface and Coatings Technology 138 (2001) 250-255, https://doi.org/10.1016/S0257-8972(00)01159-2 [239] K. Khojier, H. Savaloni, A study on the dependence of DC electrical properties and nanostructure of Cu thin films on film thickness, International Journal of Nano Dimension 3 (2013) 217-226. [240] J. S. Field, M. V. Swain, A simple predictive model for spherical indentation, Journal of Materials Research 8 (1993) 297-306, https://doi.org/10.1557/JMR.1993.0297 [241] S. Bec, A. Tonck, J.-M. Georges, E. Georges, J.-L. Loubet, Improvements in the indentation method with a surface force apparatus, Philosophical Magazine A 74 (2006) 1061-1072, https://doi.org/10.1080/01418619608239707 [242] E. S. Puchi-Cabrera, M. H. Staia, A. Iost, A description of the composite elastic modulus of multilayer coated systems, Thin Solid Films 583 (2015) 177-193, https://doi.org/10.1016/j.tsf.2015.02.078 [243] D. Mercier, V. Mandrillon, M. Verdier, Y. Bréchet, Young’s modulus measurement of a thin film from experimental nanoindentation performed on multilayer systems, Matériaux & Techniques 99 (2011) 169-178, https://doi.org/10.1051/mattech/2011029 [244] K. Rahmoun, A. Iost, V. Keryvin, G. Guillemot, N. E. Chabane Sari, A multilayer model for describing hardness variations of aged porous silicon low-dielectric-constant thin films, Thin Solid Films 518 (2009) 213-221, https://doi.org/10.1016/j.tsf.2009.07.040 [245] L. Geyang, H. Zenghu, T. Jiawan, X. Junhua, G. Mingyuan, Alternating stress field and superhardness effect in TiN/NbN superlattice films, Journal of Vacuum Science & Technology A 20 (2002) 674-677, https://doi.org/10.1116/1.1460887 [246] P. M. Anderson, C. Li, Hall-Petch relations for multilayered materials, Nanostructured Materials 5 (1995) 349-362, https://doi.org/10.1016/0965-9773(95)00250-I [247] Y. P. Li, X. F. Zhu, G. P. Zhang, J. Tan, W. Wang, B. Wu, Investigation of deformation instability of Au/Cu multilayers by indentation, Philosophical Magazine 90 (2010) 3049-3067, https://doi.org/10.1080/14786431003776802 [248] J. W. Yan, G. P. Zhang, X. F. Zhu, H. S. Liu, C. Yan, Microstructures and strengthening mechanisms of Cu/Ni/W nanolayered composites, Philosophical Magazine 93 (2012) 434-448, https://doi.org/10.1080/14786435.2012.722233 [249] N.-K. Chang, Y.-S. Lin, Ch.-Y. Chen, Sh.-H. Chang, Size effect of indenter on determining modulus of nanowires using nanoindentation technique, Thin Solid Films 517 (2009) 3695–3697, https://doi.org/10.1016/j.tsf.2009.01.094 [250] X. Li, H. Gao, C. J. Murphy, K. K. Caswell, Nanoindentation of Silver Nanowires, Nano Letters 3 (2003) 1495-1498, https://doi.org/10.1021/nl034525b [251] Y.-S. Sohn, J. Park, G. Yoon, J. Song, S.-W. Jee, J.-Ho Lee, S. Na, T. Kwon, K. Eom, Mechanical Properties of Silicon Nanowires, Nanoscale Research Letters 5 (2010) 211-216, https://doi.org/10.1007/s11671-009-9467-7 [252] G. Feng, W. D. Nix, A study of the mechanical properties of nanowires using nanoindentation, Journal of Applied Physics 99 (2006) 074304, https://doi.org/10.1063/1.2189020 [253] L. Joly-Pottuz, E. Calvié, J. Réthoré, S. Meille, C. Esnouf, J. Chevalier, K. Masenelli‐Varlot, Mechanical Properties of Nanoparticles: Characterization by In situ Nanoindentation Inside a Transmission Electron Microscope, Handbook of Mechanical Nanostructuring, Wiley, 2015, pp. 163-180, https://doi.org/10.1002/9783527674947.ch8 [254] M. Zou, D. Yang, Nanoindentation of silica nanoparticles attached to a silicon substrate, Tribology Letters 22 (2006) 189–196, https://doi.org/10.1007/s11249-006-9079-7 [255] A. D. Pogrebnjak, V. I. Ivashchenko, P. L. Skrynskyy, O. V. Bondar, P. Konarski, K. Zaleski, S. Jurga, E. Coy, Experimental and theoretical studies of the physicochemical and mechanical properties of multi-layered TiN/SiC films: Temperature effects on the nanocomposite structure, Composites Part B: Engineering 142 (2018) 85-94, https://doi.org/10.1016/j.compositesb.2018.01.004 [256] A. D. Pogrebnjak, C.-H. Kong, R. F. Webster, R. D. Tilley, Y. Takeda, K. Oyoshi, O. V. Bondar, V. V. Buranich, S. V. Konstantinov, L. S. Baimoldanova, M. Opielak, P. Zukowski, P. Konarski, Antibacterial Effect of Au Implantation in Ductile Nanocomposite Multilayer (TiAlSiY)N/CrN Coatings, ACS Applied Materials & Interfaces 51 (2019) 48540-48550, https://doi.org/10.1021/acsami.9b16328 [257] S. Ito, T. Nakamura, M. Nakagawa, Organic–Inorganic Hybrid Replica Molds with High Mechanical Strength for Step-and-Repeat Ultraviolet Nanoimprinting, Bulletin of the Chemical Society of Japan 93 (2020) 862-869, https://doi.org/10.1246/bcsj.20200093 [258] A. Rao Kulkarni, A. Sahu, I. A. Palani, M. Jayaprakash, Parametric investigations in pulsed laser-assisted hatch patterning and nitriding of A356 cast aluminum alloy in liquid nitrogen environment for improving mechanical and tribological properties, Surfaces and Interfaces 27 (2021) 101557, https://doi.org/10.1016/j.surfin.2021.101557 [259] A. F. Lasagni, E. Beyer, Laser Surface Engineering, Woodhead Publishing Series in Electronic and Optical Materials, 2015, pp. 423-439, https://doi.org/10.1016/B978-1-78242-074-3.00017-9 [260] C. Lu, R. H. Lipson, Interference lithography: a powerful tool for fabricating periodic structures, Laser & Photonics Reviews 4 (2010) 568-580, https://doi.org/10.1002/lpor.200810061 [261] T. A. Savas, M. E. Walsh, T. B. O´Reilly, M. L. Schattenburg, H. I. Smith, Interference Lithography, MIT, National Science Foundation DMR-0210321, 1999. [262] K. J. Zeitsch, L. Properties of tetrahydrofurfuryl alcohol, Sugar Series 13 (2000) 250, https://doi.org/10.1016/S0167-7675(00)80045-7 [263] B. Mora, A. Perez-Valle, C. Redondo, M. D. Boyano, R. Morales, Cost-Effective Design of High-Magnetic Moment Nanostructures for Biotechnological Applications, Applied Materials and Interfaces 10 (2018) 8165-8172, https://doi.org/10.1021/acsami.7b16779 [264] A. H. Chokshi, A. Rosen, J. Karch, H. Gleiter, On the validity of the hall-petch relationship in nanocrystalline materials, Scripta Metallurgica 23 (1989) 1679-1683, https://doi.org/10.1016/0036-9748(89)90342-6 [265] AZO Materials, Silver – Applications and Properties of Silver, 2001, https://www.azom.com/properties.aspx?ArticleID=600 accessed 8 October 2021. [266] W.-W. Zhang, H. Yu, S.-Y. Lei, Q.-A. Huang, Modelling of the elastic properties of crystalline silicon using lattice dynamics, Journal of Physics D: Applied Physics 44 (2011) 335401, https://doi.org/10.1088/0022-3727/44/33/335401 [267] E. J. Boyd, Measurement of the Anisotropy of Young's Modulus in Single-Crystal Silicon, Journal of Microelectromechanical Systems 21 (2012) 243-249, https://doi.org/10.1109/JMEMS.2011.2174415 [268] Y. Li, A. J. Bushby, D. J. Dunstan, The Hall–Petch effect as a manifestation of the general size effect, Proceedings of the Royal Society A 472 (2016) 20150890, https://doi.org/10.1098/rspa.2015.0890
Materias:Física > Materia condensada
Divisiones:Investigación y aplicaciones no nucleares > Física > Resonancias magnéticas
Código ID:1092
Depositado Por:Tamara Cárcamo
Depositado En:25 Jul 2022 11:43
Última Modificación:28 Jul 2022 14:38

Personal del repositorio solamente: página de control del documento