Ojeda Collado, Héctor P. (2014) Efectos de impurezas, desorden y localización en grafeno-bicapa / Effects of impurities, disorder and localization in graphene-bilayer. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 2935Kb |
Resumen en español
En este trabajo se analizan las propiedades electrónicas del grafeno bicapa en su fase apilamiento de Bernal con impurezas de flúor a bajas concentraciones. Se considera el caso donde todas las impurezas se adsorben solamente en la capa superior suponiendo que el BLG se encuentra encima de un sustrato. Se estudian impurezas no magnéticas que por simplicidad modelamos con un solo orbital hibridizado con los estados p_z del átomo de carbono más cercano. Se analiza el efecto de las impurezas en la densidad de estados con y sin campo eléctrico aplicado perpendicular a las capas así como la localización de Anderson en diferentes regímenes estimando la longitud de localización en cada caso. El campo eléctrico abre un gap que se llena parcialmente con estados de impurezas fuertemente localizados lo cual permite ajustar el tamaño del gap y con ello controlar las propiedades electrónicas de nuestro sistema. La estructura, distribución y longitud de localización de estos estados depende de la polaridad del campo.
Resumen en inglés
We analyze the electronic properties of bilayer graphene with Bernal stacking and a low concentration of adatoms. Assuming that the host bilayer lies on top of a substrate, we consider the case where impurities are adsorbed only on the upper layer. We describe non-magnetic impurities as a single orbital hybridized with carbon’s p_z states. The effect of impurity doping on the local density of states with and without a gated electric field perpendicular to the layers is analyzed. We look for Anderson localization in the different regimes and estimate the localization length. In the biased system, the field induced gap is partially filled by strongly localized impurity states. This allows us to adjust the size of the gap and thereby control the electronic properties of our system. Interestingly, the structure, distribution and localization length of these states depend on the field polarization.
Tipo de objeto: | Tesis (Maestría en Ciencias Físicas) |
---|---|
Palabras Clave: | Impurities; Impurezas; Graphene; Grafeno; [Anderson localization; Localización de Anderson; Bilayer graphene; Grafeno bicapa] |
Referencias: | [1] Novoselov, K. S., et al. Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666, 2004. 1 [2] Berger, C., et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B., 108, 19912, 2004. 1 [3] Castro Neto, A. H., Guinea, F., Peres, N. M., Novoselov, K. S., Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys., 81, 109, 2009. 1 [4] Das Sarma, S., Adam, S., Hwang, E. H., Rossi, E. Electronic transport in twodimensional graphene. Rev. Mod. Phys., 83, 407, 2011. [5] Beenakker, C. W. J. Colloquium: Andreev reflection and Klein tunneling in graphene. Rev. Mod. Phys., 80, 1337, 2008. 1 [6] Castro, E. V., et al. Biased Bilayer Graphene: Semiconductor with a Gap Tunable by the Electric Field Effect. Phys. Rev. Lett., 99, 216802, 2007. 2 [7] McCann, E. Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B., 74, 161403, 2006. [8] Min, H., Sahu, B., Banerjee, S. K., MacDonald, A. H. Ab initio theory of gate induced gaps in graphene bilayers. Phys. Rev. B., 75, 155115, 2007. [9] Taychatanapat, T., Jarillo-Herrero, P. Electronic transport in dual-gated bilayer graphene at large displacement elds. Phys. Rev. Lett., 105, 166601, 2010. 2, 5, 6, 39 [10] F., E., Mirlin, A. Anderson transitions. Rev. Mod. Phys., 80, 1355, 2008. 2 [11] Chan, K. T., Neaton, J. B., Cohen, M. L. First-principles study of metal adatom adsorption on graphene. Phys. Rev. B., 77, 235430, 2008. [12] Wehling, T. O., Katsnelson, M. I., Lichtenstein, A. I. Impurities on graphene: Midgap states and migration barriers. Phys. Rev. B., 80, 085428, 2009. [13] Wehling, T. O., Balatsky, A. V., Katsnelson, M. I., Lichtenstein, A. I., Rosch, A. Orbitally controlled Kondo effect of Co adatoms on graphene. Phys. Rev. B., 81, 115427, 2010. [14] Sofo, J., et al. Magnetic structure of hydrogen-induced defects on graphene. Phys. Rev. B., 85, 115405, 2012. [15] Roche, S., et al. Quantum transport in disordered graphene: A theoretical perspective. Solid State Comm., 152, 1404, 2012. [16] Matis, B., et al. Giant negative magnetoresistance and a transition from strong to weak localization in hydrogenated graphene. Phys. Rev. B., 85, 195437, 2012. [17] Guillemette, J., et al. Quantum Hall Effect in Hydrogenated Graphene. Phys. Rev. Lett., 110, 176801, 2013. [18] Hong, X., Cheng, S. H., Herding, C., Zhu, J. Colossal negative magnetoresistance in dilute fluorinated graphene. Phys. Rev. B., 83, 085410, 2011. 2 [19] Aleiner, I. L., Efetov, K. B. Effect of Disorder on Transport in Graphene. Phys. Rev. Lett., 97, 236801, 2006. 2 [20] Ostrovsky, P. M., Gornyi, I. V., Mirlin, A. D. Electron transport in disordered graphene. Phys. Rev. B., 74, 235443, 2006. [21] Mirlin, A. D., Evers, F., Gornyi, I. V., Ostrovsky, P. M. Anderson transitions: criticality, symmetries and topologies. Int. J. of Mod. Phys. B., 24, 1577, 2010. [22] Konig, E. J., Ostrovsky, P. M., Protopopov, I. V., Mirlin, A. D. Metal-insulator transition in two-dimensional random fermion systems of chiral symmetry classes. Phys. Rev. B., 85, 195130, 2012. [23] Gattenloehner, S., et al. Quantum Hall Criticality and Localization in Graphene with Short-Range Impurities at the Dirac Point. Phys. Rev. Lett., 112, 026802, 2014. [24] Cresti, A., Ortmann, F., Louvet, T., Van Tuan, D., Roche, S. Broken Symmetries, Zero-Energy Modes, and Quantum Transport in Disordered Graphene: From Supermetallic to Insulating Regimes. Phys. Rev. Lett., 110, 196601, 2013. [25] Usaj, G., Cornaglia, P. S., Balseiro, C. A. Partial preservation of chiral symmetry and colossal magnetoresistance in adatom-doped graphene. Phys. Rev. B., 89, 085405, 2014. 2, 21, 29, 35, 36 [26] Mkhitaryan, V. V., Mishchenko, E. G. Localized States due to Expulsion of Resonant Impurity Levels from the Continuum in Bilayer Graphene. Phys. Rev. Lett., 110, 086805, 2013. 2, 16, 41 [27] Zhu, J. Comunicación privada. 2, 36, 38, 39 [28] Castro, E. V. Electronic properties of a biased graphene bilayer. J. Phys.: Condens. Matter, 22, 175503, 2010. 4, 6, 8, 9, 19 [29] Oostinga, J., Heersche, H., Liu, X., Morpurgo, A. Gate-induced insulating state in bilayer graphene devices. Nature Mater., 7, 151, 2008. 5 [30] Taychatanapat, T. From Hopping to Ballistic Transport in Graphene-Based Electronic Devices. Tesis presentada para obtener el grado de Doctor en Física en la Universidad de Harvard, 2013. 6, 39 [31] Parhizgar, F., Sherafati, M., Asgari, R., Satpathy, S. Ruderman-Kittel-Kasuya- Yosida interaction in biased bilayer graphene. Phy. Rev. B., 87, 165429, 2013. 11, 48 [32] Uchoa, B., Kotov, V. N., Peres, N. M. R., H., C. N. A. Localized Magnetic States in graphene. Phy. Rev. Lett., 101, 026805, 2008. 15 [33] Ducastelle, F. Electronic structure of vacancy resonant states in graphene: A critical review of the single-vacancy case. Phy. Rev. B., 88, 075413, 2013. 16 [34] Pereira, V. M., Lopes dos Santos, J. M. B., Castro Neto, A. H. Modeling disorder in graphene. Phy. Rev. B., 77, 115109, 2008. 16, 22 [35] Guzmán Arellano, R. M. Comunicación privada. 17 [36] Weie, A., Wellein, G., Alvermann, A., Fehske, H. The kernel polynomial method. Rev. Mod. Phys., 78, 275, 2006. 21, 49, 50, 52 [37] Covaci, L., Peeters, F., Berciu, M. Efficient Numerical Approach to Inhomogeneous Superconductivity: The Chebyshev-Bogoliubov-de Gennes Method. Phys. Rev. Lett., 105, 167006, 2010. [38] Yuan, S., De Raedt, H., Katsnelson, M. I. Modeling electronic structure and transport properties of graphene with resonant scattering centers. Phys. Rev. B., 82, 115448, 2010. 21 [39] Cheianov, V. V., Syljuasen, O., Altshuler, B. L., Fal'ko, V. I. Sublattice ordering in a dilute ensemble of monovalent adatoms on graphene. Europhysics Letters, 89, 56003, 2010. 22 [40] Abanin, D. A., Shytov, A. V., Levitov, L. S. Peierls-Type Instability and Tunable Band Gap in Functionalized Graphene. Phys. Rev. Lett., 105, 086802, 2010. 22 [41] Mkhitaryan, V. V., Raikh, M. E. Disorder-induced tail states in gapped bilayer graphene. Phys. Rev. B., 78, 195409, 2008. 23 [42] Sofo, J. O., et al. Electrical control of the chemical bonding of fluorine on graphene. Phys. Rev. B., 83, 081411(R), 2011. 24 [43] Schubert, G., Weie, A., Fehske, H. Localization eects in quantum percolation. Phys. Rev. B., 71, 045126, 2005. 31 [44] Schubert, G., Schleede, J., Byczuk, K., Fehske, H., Vollhardt, D. Distribution of the local density of states as a criterion for Anderson localization: Numerically exact results for various lattices in two and three dimensions. Phys. Rev. B., 81, 155106, 2010. [45] García, J. H., Uchoa, B., Covaci, L., Rappoport, T. G. Adatoms and Anderson localization in graphene. Phys. Rev. B., 90, 085425, 2014. 31 [46] Mirlin, A. D. Statistics of energy levels and eigenfunctions in disordered systems. Phys. Reports., 326, 259, 2000. 32 [47] Li, Q., Thouless, D. Localization and hopping conductivity in the quantum Hall regime. Phys. Rev. B., 40, 9738, 1989. 34 |
Materias: | Física |
Divisiones: | Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Materia condensada > Teoría de sólidos |
Código ID: | 1102 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 12 Sep 2022 10:45 |
Última Modificación: | 12 Sep 2022 10:52 |
Personal del repositorio solamente: página de control del documento