Desarrollo de esponjas con memoria de forma por métodos de pulvimetalurgia / Development of shape memory sponges by powder metallurgy methods

Gómez, Andrea P. (2022) Desarrollo de esponjas con memoria de forma por métodos de pulvimetalurgia / Development of shape memory sponges by powder metallurgy methods. Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
36Mb

Resumen en español

Se desarrolló un método para fabricar por pulvimetalurgia metales porosos de aleación de CuAlNi con memoria de forma. Se utilizaron diversas técnicas para caracterizar el material. Las muestras fueron fabricadas por pulvimetalurgia con espaciadores. Se partió de los polvos puros de cobre, aluminio y níquel, mezclándolos con bicarbonato de amonio, material utilizado para la formación de poros. Se fabricaron muestras de distintas porosidades variando la cantidad de espaciador utilizado. Se utilizaron las siguientes técnicas de caracterización de materiales: difracción de rayos X, microscopía electrónica de barrido (SEM), calorimetría diferencial de barrido (DSC), microtomografía de rayos X y ensayos mecánicos en compresión uniaxial a diversas temperaturas. A partir de los difractogramas de rayos X se determinó que las muestran presentan las fases martensíticas 2H y 18R a temperatura ambiente. Con las imágenes de SEM se midió el tamaño de grano, se determinó la morfología de la microestructura, y se realizaron análisis EDS para determinar la composición. Esto permitió determinar la morfología optima de los polvos metálicos para la obtención de la fase deseada. Las temperaturas de transformación austenita - martensita directa e inversa fueron medidas con DSC. El análisis de imágenes tomográficas permitió determinar la porosidad total e interconectada de las muestras, además del tamaño y distribución de poros. En los ensayos mecánicos se vio que el material posee buenas propiedades de memoria de forma, y se midió la recuperación de altura luego de un tratamiento térmico. Además se estudió el efecto de la porosidad en las curvas tensión - deformación. En los ensayos mecánicos a alta temperatura se observó el comportamiento pseudoelástico. Las muestras presentan buenas propiedades de absorción de energía.

Resumen en inglés

We developed a method to manufacture porous CuAlNi shape memory alloy by a powder metallurgy route. Various techniques were used to characterize the material. The samples were manufactured by powder metallurgy with spacers. Samples of different porosities were made by varying the amount of spacer used. The following characterization techniques were used: X-ray diffraction, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray microtomography and mechanical tests in uniaxial compression at various temperatures. From the X-ray diffractograms it was determined that the martensitic phases 2H and 18R were present in samples at room temperature. With the SEM images, the grain size was measured, the morphology of the microstructure was determined, and EDS analyzes were performed to determine the composition. This allowed us to determine the optimal morphology of the metal powders to obtain the desired phase. The forward and reverse austenite-martensite transformation temperatures were measured with DSC. The analysis of tomographic images allowed us to determine the total and interconnected porosity of the samples, as well as the size and distribution of pores. We conducted mechanical tests, we observed that the material has good shape memory properties, and the height recovery after a heat treatment was measured. In addition, the effect of porosity on stress-strain curves was studied. During mechanical tests at high temperature, the pseudoelastic behavior was observed. The samples have good energy absorption properties.

Tipo de objeto:Tesis (Maestría en Ingeniería)
Palabras Clave:Power metallurgy; Metalurgia de polvos, [Porous metals; Metales porosos; Shape memory alloys; Aleaciones con memoria de forma; Metallic sponges; Esponjas metálicas]
Referencias:[1] Lagoudas, D. Shape Memory Alloys. Springer, Boston, MA, 2008. ix, ix, ix, ix, ix, ix, ix, x, 1, 2, 3, 4, 5, 7, 32, 34 [2] Huang, W. On the selection of shape memory alloys for actuators. Materials and Design, 23 (1), 11-19, 2002. URL https://www.sciencedirect.com/science/article/pii/S0261306901000395. ix, 5, 6 [3] Ma, J., Karaman, I., Noebe, R. D. High temperature shape memory alloys. In- ternational Materials Reviews, 55 (5), 257-315, 2010. ix, 7, 8, 9 [4] Rao, A., Srinivasa, A., Reddy, J. Design of Shape Memory Alloy(SMA) Actuators. Springer International, 2015. ix, 8 [5] Gall, K., Sehitoglu, H., Chumlyakov, Y., Kireeva, I. Tension-compression asymmetry of the stress-strain response in aged single crystal and polycrystalline niti. Acta Materialia, 47 (4), 1203-1217, 1999. URL https://www.sciencedirect.com/science/article/pii/S1359645498004327. ix, 9 [6] German, R. M. Powder metallurgy and particulate materials processing: the processes, materials, products, properties and applications. ix, 11, 47 [7] Chang, I., Zhao, Y. Advances in powder metallurgy. Woodhead Publishing Limited, 2013. ix, 12, 13 [8] Miyazaki, S., Otsuka, K. Development of shape memory alloys. ISIJ International, 29, 353-377, 01 1989. ix, 13, 14 [9] Recarte, V., Perez-Saez, R., Bocanegra, E., No, M., San Juan, J. Dependence of the martensitic transformation characteristics on concentration in cu-al-ni shape memory alloys. Materials Science & Engineering A, 273-275, 380-384, 1999. ix, ix, 14, 15, 42 [10] Friend, C., Ortin, J., Planes, A., Mañosa, L., Yoshikawa, M. A calorimetric investigation of the 1 and 1 martensitic transformations in cu al ni single crystals. Scripta Metallurgica et Materialia, 24 (9), 1641-1645, 1990. ix, 15 [11] Vasilenko, A., Sal'nikov, V. Composition effects on the regions of thermoelastic stability in cu-al-ni single crystals. Phys. Met.(USSR), 4 (4), 694-701, 1982. ix, 15 [12] Sakamoto, H., Yoshikawa, M., Shimizu, K. Effect of ni concentration on transformation pseudoelasticity in cu-al-ni alloy single crystals. Materials Transactions, JIM, 31 (10), 848-854, 1990. ix, 15 [13] Rajak, D., Gupta, M. An Insight Into Metal Based Foams: Processing, Properties and Applications. Advanced structured materials. Springer Singapore, 2020. URL https://books.google.com.ar/books?id=7zMLEAAAQBAJ. x, 16 [14] Ashby, M., Evans, A., Fleck, N., Gibson, L., Hutchinson, J., Wadley, H. Metal Foams. Burlington: Butterworth-Heineman, 2000. x, x, x, xiii, xv, 17, 18, 20, 21, 69, 70 [15] Gibson, L., Ashby, M. Cellular Solids: Structure and Properties. Cambridge Solid State Science Series, 2a ed. Cambridge University Press, 1997. x, x, x, 16, 18, 19 [16] Landis, E. N., Keane, D. T. X-ray microtomography. Materials Characterization, 61 (12), 1305-1316, 2010. URL https://www.sciencedirect.com/science/article/pii/S1044580310002706. x, 27 [17] Zheng, T., Duan, Z., Wang, J., Lu, G., Li, S., Yu, Z. Research on distance transform and neural network lidar information sampling classication-based semantic segmentation of 2d indoor room maps. Sensors, 21 (4), 2021. URL https://www.mdpi.com/1424-8220/21/4/1365. x, 30 [18] Brandon, D., Kaplan, W. Microestructural characterization of materials. Australia: Wiley, 2008. xi, 35, 37 [19] Xie, J.-X., Liu, J.-L., Huang, H.-Y. Structure design of high-performance cu-based shape memory alloys. Rare Metals, 34 (9), 607-624, 2015. xii, 63 [20] Dar, R. D., Yan, H., Chen, Y. Grain boundary engineering of co-ni-al, cu-zn-al, and cu-al-ni shape memory alloys by intergranular precipitation of a ductile solid solution phase. Scripta Materialia, 115, 113-117, 2016. URL https: //www.sciencedirect.com/science/article/pii/S1359646216300136. xii, 63, 64 [21] Kohl, M., Bram, M., Moser, A., Buchkremer, H., Beck, T., Stover, D. Characterization of porous, net-shaped niti alloy regarding its damping and energy-absorbing capacity. Materials Science and Engineering: A, 528 (6), 2454-2462, mar. 2011. URL https://linkinghub.elsevier.com/retrieve/pii/S0921509310013420. xii, 22, 58, 66, 67, 69 [22] Bertolino, G., Gruttadauria, A., Arneodo Larochette, P., Castrodeza, E., Baruj, A., Troiani, H. Cyclic pseudoelastic behavior and energy dissipation in as-cast cu-zn-al foams of different densities. Intermetallics, 19 (4), 577-585, 2011. URL https://www.sciencedirect.com/science/article/pii/S0966979510005030. xiii, 21, 67, 69 [23] Itin, V., Gyunter, V., Shabalovskaya, S., Sachdeva, R. Mechanical properties and shape memory of porous nitinol. Materials Characterization, 32 (3), 179-187, 1994. URL https://www.sciencedirect.com/science/article/pii/ 1044580394900876, memory Metals. xiii, 71 [24] Bertolino, G., Larochette, P. A., Castrodeza, E., Mapelli, C., Baruj, A., Troiani, H. Mechanical properties of martensitic cu{zn{al foams in the pseudoelastic regime. Materials Letters, 64 (13), 1448-1450, 2010. xiii, 20, 21, 73, 74 [25] Bram, M., Kohl, M., Buchkremer, H. P., Stover, D. Mechanical Properties of Highly Porous NiTi Alloys. Journal of Materials Engineering and Performance, 20 (4-5), 522-528, jul. 2011. URL http://link.springer.com/10.1007/s11665-011-9854-y. xiii, 74, 75 [26] Agrawal, A., Dube, R. K. Methods of fabricating cu-al-ni shape memory alloys. Journal of Alloys and Compounds, 750, 235-247, 2018. URL https://www. sciencedirect.com/science/article/pii/S0925838818312623. xv, 14, 15 [27] Wu, M. H. Cu-based shape memory alloys. En: T. W. Duerig, K. N. Melton, D. Stockel, C. M. Wayman (eds.) Engineering Aspects of Shape Memory Alloys, pags. 69-88. Butterworth-Heinemann, 1990. URL https://www.sciencedirect.com/science/article/pii/B978075061009450010X. xv, 14, 16 [28] Pappucio, I., Malachevsky, M. Caracterización de espumas metálicas de Cu-Ni-Al manufacturadas por pulvimetalurgia. 2020. 1 [29] Novak, V., Sittner, P., Humbeeck, J. Martensitic transformations of cu-al-ni single crystals in tension/compression. Journal De Physique Iv - J PHYS IV, 11, 11 2001. 9 [30] Sakamoto, H., Shimizu, K. Effects of the sense of stress on martensitic transformations in monocrystalline cu-al-ni shape memory alloys. Materials Transactions Jim, 25, 845-854, 1984. 9 [31] Kang, S. Sintering. Elsevier, 2005. 10 [32] Munir, Z. A. Surface Oxides and Sintering of Metals. Powder Metallurgy, 24 (4), 177-180, ene. 1981. URL http://www.tandfonline.com/doi/full/10.1179/pom.1981.24.4.177. 11, 47 [33] Xie, G., Ohashi, O., Song, M., Furuya, K., Noda, T. Behavior of oxide lm at the interface between particles in sintered Al powders by pulse electric-current sintering. Metallurgical and Materials Transactions A, 34 (3), 699-703, mar. 2003. URL http://link.springer.com/10.1007/s11661-003-0104-2. 11 [34] Kalpakjian, S., Schmid, S. R. Manufacturing Engineering and Technology. Pearson Education, 2002. 11 [35] Rodriguez-Contreras, A., Punset, M., Calero, J. A., Gil, F. J., Ruperez, E., Manero, J. M. Powder metallurgy with space holder for porous titanium implants: A review. Journal of Materials Science & Technology, 76, 129-149, jun. 2021. URL https://linkinghub.elsevier.com/retrieve/pii/S1005030220309233. 12 [36] Huang, W., Ding, Z., Wang, C., Wei, J., Zhao, Y., Purnawali, H. Shape memory materials. Materials Today - MATER TODAY, 13, 54-61, 07 2010. 13 [37] Logen, G., Anzel, I. Microstructure of rapidly solidied cu-al-ni shape memory alloy ribbons. Journal of Materials Processing Technology, 2005. 14 [38] Saud, S. Cu-Based Shape Memory Alloys: Modied Structures and Their Related Properties. 2019. 14 [39] Yang, L., Jiang, X., Sun, H., Shao, Z., Fang, Y., Shu, R. Eects of alloying, heat treatment and nanoreinforcement on mechanical properties and damping performances of cu-al-based alloys: A review. Nanotechnology Reviews, 10 (1), 1560-1591, 2021. URL https://doi.org/10.1515/ntrev-2021-0101. 14 [40] Li, Z., Pan, Z., Tang, N., Jiang, Y., Liu, N., Fang, M., et al. Cu-al-ni-mn shape memory alloy processed by mechanical alloying and powder metallurgy. Materials Science and Engineering: A, 417 (1), 225-229, 2006. URL https: //www.sciencedirect.com/science/article/pii/S0921509305013729. 14 [41] Laper, M. L., Guimaraes, R., Barrioni, B. R., Silva, P. A., Houmard, M., Mazzer, E. M., et al. Fabrication of porous samples from a high-temperature Cu-Al-Ni-Mn-Nb shape memory alloy by freeze-drying and partial sintering. Journal of Materials Research and Technology, 9 (3), 3676-3685, mayo 2020. URL https://linkinghub.elsevier.com/retrieve/pii/S2238785420300260. 21 [42] Bansiddhi, A., Sargeant, T., Stupp, S., Dunand, D. Porous niti for bone implants: a review. Acta biomaterialia, 4 (4), 773-782, 2008. 21 [43] Pant, D. C., Pal, S. Phase transformation and energy dissipation of porous shape memory alloy structure under blast loading. Mechanics of Materials, 132, 31-46, 2019. URL https://www.sciencedirect.com/science/article/pii/S0167663618305684. 21 [44] Cao, S., Li, Y.-Y., Zeng, C.-Y., Zhang, X.-P. Porous ni-ti-nb shape memory alloys with tunable damping performance controlled by martensitic transformation. En: A. P. Stebner, G. B. Olson (eds.) Proceedings of the International Conference on Martensitic Transformations: Chicago, pags. 275-279. Cham: Springer International Publishing, 2018. 21 [45] Li, H., Yuan, B., Gao, Y. Achieving high oligocrystalline degree via strut architecture tailoring to increase the damping and mechanical properties of spherical porous CuAlMn SMAs. Journal of Alloys and Compounds, 767, 690-702, oct. 2018. URL https://linkinghub.elsevier.com/retrieve/pii/S0925838818326227. 21 [46] Yuan, B., Zheng, P., Gao, Y., Zhu, M., Dunand, D. C. Effect of directional solidification and porosity upon the superelasticity of cu-al-ni shape-memory alloys. Materials & Design, 80, 28-35, 2015. URL https://www.sciencedirect.com/science/article/pii/S0261306915002393. 21 [47] Wang, Q., Lu, D., Cui, C., Liu, W., Xu, M., Yang, J. Effects of aging on the structure and damping behaviors of a novel porous CuAlMn shape memory alloy fabricated by sintering-dissolution method. Materials Science and Engineering: A, 615, 278-282, oct. 2014. URL https://linkinghub.elsevier.com/retrieve/pii/S0921509314009472. 21, 22 [48] Gong, S., Li, Z., Xu, G., Liu, N., Zhao, Y., Liang, S. Fabrication, microstructure and property of cellular CuAlMn shape memory alloys produced by sintering-evaporation process. Journal of Alloys and Compounds, 509 (6), 2924-2928, feb. 2011. URL https://linkinghub.elsevier.com/retrieve/pii/S0925838810029208. 21 [49] Pant, D. C., Pal, S. Phase transformation and energy dissipation of porous shape memory alloy structure under blast loading. Mechanics of Materials, 132, 31-46, mayo 2019. URL https://linkinghub.elsevier.com/retrieve/pii/S0167663618305684. 22 [50] Sepe, V., Mara, S., Auricchio, F. Response of porous SMA: a micromechanical study. Frattura ed Integrita Strutturale, 8 (29), 85-96, jul. 2014. URL https://www.fracturae.com/index.php/fis/article/view/1241. 22 [51] Li, Y.-H., Rong, L.-J., Li, Y.-Y. Compressive property of porous NiTi alloy synthesized by combustion synthesis. Journal of Alloys and Compounds, 345 (1-2), 271-274, oct. 2002. URL https://linkinghub.elsevier.com/retrieve/pii/ S0925838802004127. 22 [52] Wang, Q., Han, F., Wu, J., Hao, G. Damping behavior of porous CuAlMn shape memory alloy. Materials Letters, 61 (11-12), 2598-2600, mayo 2007. URL https://linkinghub.elsevier.com/retrieve/pii/S0167577X06011888. 22 [53] Miyazaki, S., Otsuka, K., Sakamoto, H., Shimizu, K. The Fracture of Cu–Al–Ni Shape Memory Alloy. Transactions of the Japan Institute of Metals, 22 (4), 244-252, 1981. URL https://www.jstage.jst.go.jp/article/matertrans1960/22/4/22_4_244/_article. 22 [54] Yuan, B., Zheng, P., Gao, Y., Zhu, M., Dunand, D. C. Effect of directional solidification and porosity upon the superelasticity of Cu-Al-Ni shape-memory alloys. Materials & Design, 80, 28-35, sep. 2015. URL https://linkinghub.elsevier.com/retrieve/pii/S0261306915002393. 22 [55] Suryanarayana, C., M, N. Xray diffraction: a practical approach. New York: Springer, 1998. 26 [56] Turpeinen, T. Analysis of microtomographic images of porous heterogeneous materials. pag. 165, 2015. 28 [57] Lumley, R. N., Sercombe, T. B., Schaer, G. M. Surface oxide and the role of magnesium during the sintering of aluminum. Metallurgical and Materials Transactions A, 30 (2), 457-463, feb. 1999. URL http://link.springer.com/10.1007/s11661-999-0335-y. 47 [58] Chang, S. Influence of chemical composition on the damping characteristics of cu-al-ni shape memory alloys. Materials Chemistry and Physics - MATER CHEM PHYS, 125, 358-363, 02 2011. 50 [59] Shivanna, M., Vedamanickam, S. Influence of quaternary alloying additions on transformation temperatures and shape memory properties of cu-al-mn shape memory alloy. Journal of Alloys and Compounds, 469, 156-, 02 2009. 63 [60] Novak, V., Malimanek, J., Zarubova, N. Martensitic transformations in single crystals of cualni induced by tensile stress. Materials Science and Engineering A-structural Materials Properties Microstructure and Processing - MATER SCI ENG A-STRUCT MATER, 191, 193-201, 02 1995. 67 [61] Gao, P., Tian, B., Xu, J., Tong, Y., Chen, F., Li, L. Investigation on porous nimnga alloy and its composite with epoxy resin. Journal of Alloys and Compounds, 892, 162248, 2022. URL https://www.sciencedirect.com/science/article/pii/S0925838821036586. 78 [62] Ji, X., Wang, Q., Yin, F., Cui, C., Ji, P., Hao, G. Fabrication and properties of novel porous cualmn shape memory alloys and polymer/cualmn composites. Compo-sites Part A: Applied Science and Manufacturing, 107, 21-30, 2018. URL https: //www.sciencedirect.com/science/article/pii/S1359835X17304475. 78
Materias:Física > Física de metales
Divisiones:Investigación y aplicaciones no nucleares > Física > Física de metales
Código ID:1117
Depositado Por:Tamara Cárcamo
Depositado En:19 Sep 2022 16:03
Última Modificación:19 Sep 2022 16:03

Personal del repositorio solamente: página de control del documento