Efectos no lineales de orden superior en guías de onda con perfiles de no linealidad dependientes de la frecuencia / Higher-order nonlinear effects on waveguides with frequency-dependent nonlinear profiles

Linale, Nicolás M. (2022) Efectos no lineales de orden superior en guías de onda con perfiles de no linealidad dependientes de la frecuencia / Higher-order nonlinear effects on waveguides with frequency-dependent nonlinear profiles. Tesis Doctoral en Ciencias de la Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
3022Kb

Resumen en español

En las ultimas décadas el campo de la óptica no lineal suscitó un marcado interés, tanto en la comunidad científica como en la industria, debido a las ventajas que presentan los dispositivos fotónicos frente a los electrónicos en términos de su enorme ancho de banda y de su potencial bajo consumo. Además de ser compatibles con la fabricación de semiconductores, la respuesta no lineal de estos dispositivos permite la generación de procesos ópticos de enorme relevancia tecnológica como la generación de supercontinuo, la generación de peines de frecuencia (Premio Nobel de Física 2005) o la generación de fotones únicos. Por estos motivos, cobra una gran relevancia el estudio de los medios y guías de onda no lineales y la propuesta de modelos para su análisis. En este sentido, la ecuación no lineal de Schrodinger (NLSE, por su sigla en inglés) ha sido utilizada durante décadas para el análisis de los mismos y está respaldada por una fuerte validación experimental, como así también la variante generalizada de la NLSE, la GNLSE, que se utiliza para modelar contribuciones no lineales de orden superior. Estos revisten especial interés en los procesos que impliquen la generación de espectros anchos, en los cuales la respuesta no lineal del medio depende de la frecuencia. No obstante, tanto la NLSE como la GNLSE resultan inadecuadas para representar estos procesos, ya que no garantizan la correcta descripción de magnitudes físicas elementales del campo electromagnético como la energía y número de fotones. En esta tesis se estudian dos efectos ópticos no lineales de orden superior, el selfsteepening y el scattering de Raman, en el contexto de dos ecuaciones que conservan el número de fotones en presencia de una respuesta no lineal con una dependencia arbitraria de esta con la frecuencia: la pcNLSE y la pcGNLSE, las cuales fueron derivadas en el ámbito de nuestro grupo de investigación. En el Capítulo 1 se introducen los conceptos básicos de la óptica no lineal y se explica la importancia de considerar la dependencia con la frecuencia del coeficiente de no linealidad de las guías de onda al modelar procesos de generación de espectros anchos. Luego, se detallan las limitaciones de la NLSE/GNLSE y se introducen las ecuaciones pcNLSE/pcGNLSE. En el Capítulo 2 se analiza la inestabilidad modulacional, un efecto que surge al aplicar campos electromagnéticos de intensidad constante (CW) a medios no lineales y dispersivos, y se estudia el impacto del parámetro de self-steepening, s, y de la contribución fraccional de Raman, fR. Posteriormente, en el Capítulo 3, se analiza el rol de ambos parámetros en la propagación de solitones con la pcNLSE/pcGNLSE. Luego, en el Capítulo 4, se proponen dos esquemas para la medición de s y fR, uno CW y otro pulsado; además, se propone un esquema para estimar el parámetro de self-steepening de segundo orden. En el Capítulo 5 se estudia la generación de supercontinuo en materiales de relevancia en óptica integrada, como lo son los nanowires recubiertos con medios bidimensionales, particularmente con grafeno u oxido de grafeno; también se analiza el rol del self-steepening en el proceso de generación de supercontinuo, encontrando que existe un valor optimo de s que maximiza el ancho de banda producido. Finalmente, en el Capítulo 6 se presentan las conclusiones y perspectivas.

Resumen en inglés

In the past decades, the field of nonlinear optics has attracted the attention of both the scientic community and the technology industry due to the potential advantages of photonic over electronic devices in terms of bandwidth and low-power consumption. In addition to the compatibility with semiconductor technologies, the nonlinear response of photonic devices allows for the generation of optical processes of utmost technological importance such as supercontinuum generation, optical frequency combs (Nobel Prize in Physics 2005), and heralded single-photon sources. Hence, the study of nonlinear media and waveguides and the derivation of suitable modeling frameworks become a necessity. The tried and trusted Nonlinear Schrodinger Equation (NLSE), and its generalized version used to model higher-order nonlinear effects, the GNLSE, have been used for decades for this purpose. However, both the NLSE and the GNLSE are rendered inadequate to model broadband processes when the nonlinear optical response is frequency dependent, as they fail to preserve physical magnitudes, such as the energy and photon number of the electric field. In this thesis two higher-order nonlinear effects, self-steepening and Raman scattering, are studied in the context of two equations that preserve the photon number for arbitrary frequency-dependent nonlinear proles: The pcNLSE and the pcGNLSE, which were derived in our Group. In Chapter 1 we introduce basic concepts of nonlinear optics and the importance of considering the frequency dependence of the nonlinear coefficient when modeling broadband processes. Then, we discuss limitations of the NLSE/GNLSE and introduce the pcNLSE/pcGNLSE. In Chapter 2 we analyze modulation instability, an effect that arises when applying a continuous-wave (CW) electromagnetic field to nonlinear and dispersive media, and we study the impact of the self-steepening parameter, s, and the fractional Raman contribution, fR. Next, in Chapter 3, we discuss the role of both parameters in the propagation of solitons modeled with the pcNLSE/pcGNLSE. In Chapter 4 we propose two experimental schemes to measure s and fR, a pulsed and a CW; furthermore another scheme is proposed to estimate the second-order self-steepening parameter. The generation of supercontinuum in relevant materials in integrated optics, such as nanowires covered with two-dimensional media, e.g. with graphene or graphene oxide, is studied in Chapter 5, where we analyze the role of the self-steepening parameter in the generation of supercontinuum. Finally, we present conclusions and perspectives in Chapter 6.

Tipo de objeto:Tesis (Tesis Doctoral en Ciencias de la Ingeniería)
Palabras Clave:Nonlinear optics; Óptica nolineal; [Self-steepening; Covered nanowires; Nanowires recubiertos; Supercontinuum generation; Generación de supercontinuo]
Referencias:[1] Maiman, T. H., et al. Stimulated optical radiation in ruby. London: MacMillan & Co, 1960. [2] Hecht, J. The breakthrough birth of low-loss ber optics. Optics and Photonics News, 31 (3), 26-33, 2020. [3] Takeshita, H., Sato, M., Inada, Y., de Gabory, E. L. T., Nakamura, Y. Past, current and future technologies for optical submarine cables. 2019 IEEE/ACM Workshop on Photonics-Optics Technology Oriented Networking, Information and Computing Systems (PHOTONICS), pags. 36-42, 2019. [4] Ramaswami, R., Sivarajan, K., Sasaki, G. Optical networks: a practical perspective. Morgan Kaufmann, 2009. [5] Agrawal, G. P. Nonlinear Fiber Optics. Academic Press, 2013. [6] Boyd, R. W. Nonlinear Optics, Third Edition. Academic Press, 2008. [7] Asobe, M., Suzuki, K., Kanamori, T., Kubodera, K. Nonlinear refractive index measurement in chalcogenide-glass bers by self-phase modulation. Applied Physics Letters, 60 (10), 1153-1154, 1992. [8] Sanghera, J. S., Shaw, L. B., Pureza, P., Nguyen, V. Q., Gibson, D., Busse, L., et al. Nonlinear properties of chalcogenide glass bers. International Journal of Applied Glass Science, 1 (3), 296-308, 2010. [9] Knight, J., Arriaga, J., Birks, T., Ortigosa-Blanch, A., Wadsworth, W., Russell, P. S. J. Anomalous dispersion in photonic crystal fiber. IEEE Photonics Technology Letters, 12 (7), 807-809, 2000. [10] Leuthold, J., Koos, C., Freude, W. Nonlinear silicon photonics. Nature Photonics, 4 (8), 535, 2010. [11] Kuyken, B., Ideguchi, T., Holzner, S., Yan, M., Hansch, T. W., Van Campenhout, J., et al. An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. Nature Communications, 6 (1), 1-6, 2015. [12] Soref, R. Mid-infrared photonics in silicon and germanium. Nature Photonics, 4 (8), 495-497, 2010. [13] Zhang, L., Agarwal, A. M., Kimerling, L. C., Michel, J. Nonlinear group iv photonics based on silicon and germanium: from near-infrared to mid-infrared. Nanophotonics, 3 (4-5), 247-268, 2014. [14] Hsieh, I.-W., Chen, X., Liu, X., Dadap, J. I., Panoiu, N. C., Chou, C.-Y., et al. Supercontinuum generation in silicon photonic wires. Optics Express, 15 (23), 15242-15249, 2007. [15] Singh, N., Hudson, D. D., Yu, Y., Grillet, C., Jackson, S. D., Casas-Bedoya, A., et al. Midinfrared supercontinuum generation from 2 to 6 m in a silicon nanowire. Optica, 2 (9), 797-802, 2015. [16] Singh, N., Xin, M., Vermeulen, D., Shtyrkova, K., Li, N., Callahan, P. T., et al. Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 m to beyond 2.4 m. Light: Science & Applications, 7 (1), 17131-17131, 2018. [17] Dudley, J. M., Genty, G., Coen, S. Supercontinuum generation in photonic crystal fiber. Reviews of Modern Physics, 78 (4), 1135, 2006. [18] Pfeie, J., Brasch, V., Lauermann, M., Yu, Y., Wegner, D., Herr, T., et al. Coherent terabit communications with microresonator kerr frequency combs. Nature Photonics, 8 (5), 375-380, 2014. [19] Grith, A. G., Lau, R. K., Cardenas, J., Okawachi, Y., Mohanty, A., Fain, R., et al. Silicon-chip mid-infrared frequency comb generation. Nature Communications, 6, 6299, 2015. [20] Kippenberg, T. J., Holzwarth, R., Diddams, S. A. Microresonator-based optical frequency combs. Science, 332 (6029), 555-559, 2011. [21] Nishizawa, N. Generation and application of high-quality supercontinuum sources. Optical Fiber Technology, 18 (5), 394-402, 2012. [22] Ranka, J. K., Gaeta, A. L. Breakdown of the slowly varying envelope approximation in the self-focusing of ultrashort pulses. Optics Letters, 23 (7), 534-536, 1998. [23] Blow, K. J., Wood, D. Theoretical description of transient stimulated Raman scattering in optical fibers. IEEE Journal of Quantum Electronics, 25 (12), 2665-2673, 1989. [24] Hult, J. A fourth-order Runge-Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers. Journal of Lightwave Technology, 25 (12), 3770-3775, 2007. [25] Anderson, D., Lisak, M. Nonlinear asymmetric self-phase modulation and selfsteepening of pulses in long optical waveguides. Physical Review A, 27 (3), 1393, 1983. [26] Zhang, L., Yan, Y., Yue, Y., Lin, Q., Painter, O., Beausoleil, R. G., et al. On-chip two-octave supercontinuum generation by enhancing self-steepening of optical pulses. Optics Express, 19 (12), 1158-11590, 2011. [27] Barviau, B., Kibler, B., Picozzi, A. Wave-turbulence approach of supercontinuum generation: Influence of self-steepening and higher-order dispersion. Physical Review A, 79 (6), 063840, 2009. [28] Kibler, B., Dudley, J., Coen, S. Supercontinuum generation and nonlinear pulse propagation in photonic crystal ber: influence of the frequency-dependent effective mode area. Applied Physics B, 81 (2-3), 337-342, 2005. [29] Mitschke, F. M., Mollenauer, L. F. Discovery of the soliton self-frequency shift. Optics Letters, 11 (10), 659-661, 1986. [30] Lin, Q., Agrawal, G. P. Raman response function for silica bers. Optics Letters, 31 (21), 3086-3088, 2006. [31] Liu, X., Xu, C., Knox, W., Chandalia, J., Eggleton, B. J., Kosinski, S. G., et al. Soliton self-frequency shift in a short tapered air-silica microstructure fiber. Optics Letters, 26 (6), 358-360, 2001. [32] Washburn, B. R., Ralph, S. E., Lacourt, P. A., Dudley, J. M., Rhodes, W. T., Windeler, R. S., et al. Tunable near-infrared femtosecond soliton generation in photonic crystal bres. Electronics Letters, 37 (25), 1510-1512, 2001. [33] Hernandez, S. M., Bonetti, J., Linale, N., Grosz, D. F., Fierens, P. I. Soliton solutions and self-steepening in the photon-conserving nonlinear schrodinger equation. Waves in Random and Complex Media, 0 (0), 1-17, 2020. [34] Lgsgaard, J. Mode prole dispersion in the generalized nonlinear schrodinger equation. Optics Express, 15 (24), 16110-16123, 2007. [35] Wen, S., Xiang, Y., Dai, X., Tang, Z., Su, W., Fan, D. Theoretical models for ultrashort electromagnetic pulse propagation in nonlinear metamaterials. Physical Review A, 75 (3), 033815, 2007. [36] Vanvincq, O., Travers, J. C., Kudlinski, A. Conservation of the photon number in the generalized nonlinear schrodinger equation in axially varying optical bers. Physical Review A, 84, 063820, 2011. [37] Sanchez, A. D., Fierens, P. I., Hernandez, S. M., Bonetti, J., Brambilla, G., Grosz, D. Anti-Stokes Raman gain enabled by modulation instability in mid-ir waveguides. Journal of the Optical Society of America B, 35 (11), 2828-2832, 2018. [38] Zheltikov, A. Optical shock wave and photon-number conservation. Physical Review A, 98 (4), 043833, 2018. [39] Mamyshev, P., Chernikov, S. V. Ultrashort-pulse propagation in optical bers. Optics Letters, 15 (19), 1076-1078, 1990. [40] Price, J. H., Monro, T. M., Ebendor-Heidepriem, H., Poletti, F., Finazzi, V., Leong, J. Y., et al. Non-silica microstructured optical fibers for mid-ir supercontinuum generation from 2 μm-5 μm. Fiber Lasers III: Technology, Systems, and Applications, 6102, 61020A, 2006. [41] Panoiu, N. C., Liu, X., Osgood, R. M. Nonlinear dispersion in silicon photonic wires. 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science, pags. 1-2, 2008. [42] Panoiu, N. C., Liu, X., Osgood Jr, R. M. Self-steepening of ultrashort pulses in silicon photonic nanowires. Optics Letters, 34 (7), 947-949, 2009. [43] Cheng, T., Gao, W., Xue, X., Suzuki, T., Ohishi, Y. Experimental investigation of multiple Raman peak properties in a hundred-meter tellurite ber. Optical Materials Express, 6 (11), 3438-3445, 2016. [44] Pendry, J. B., Smith, D. R. Reversing light with negative refraction. Physics Today, 57, 37-43, 2004. [45] Scalora, M., Syrchin, M. S., Akozbek, N., Poliakov, E. Y., D'Aguanno, G., Mattiucci, N., et al. Generalized nonlinear Schrodinger equation for dispersive susceptibility and permeability: application to negative index materials. Physical Review Letters, 95 (1), 013902, 2005. [46] Wen, S., Wang, Y., Su, W., Xiang, Y., Fu, X., Fan, D. Modulation instability in nonlinear negative-index material. Physical Review E, 73 (3), 036617, 2006. [47] Wen, S., Xiang, Y., Su, W., Hu, Y., Fu, X., Fan, D. Role of the anomalous self-steepening effect in modulation instability in negative-index material. Optics Express, 14 (4), 1568-1575, 2006. [48] Xiang, Y., Wen, S., Dai, X., Tang, Z., Su, W., Fan, D. Modulation instability induced by nonlinear dispersion in nonlinear metamaterials. Journal of the Optical Society of America B, 24 (12), 3058-3063, 2007. [49] Ishizawa, A., Kou, R., Goto, T., Tsuchizawa, T., Matsuda, N., Hitachi, K., et al. Optical nonlinearity enhancement with graphene-decorated silicon waveguides. Scientic Reports, 7, 45520, 2017. [50] Driben, R., Herrmann, J. Solitary pulse propagation and soliton-induced supercontinuum generation in silica glasses containing silver nanoparticles. Optics Letters, 35 (15), 2529-2531, 2010. [51] Bose, S., Sahoo, A., Chattopadhyay, R., Roy, S., Bhadra, S. K., Agrawal, G. P. Implications of a zero-nonlinearity wavelength in photonic crystal fibers doped with silver nanoparticles. Physical Review A, 94, 043835, 2016. [52] Linale, N., Bonetti, J., Sanchez, A. D., Hernandez, S., Fierens, P. I., Grosz, D. F. Modulation instability in waveguides with an arbitrary frequency-dependent nonlinear coefficient. Optics Letters, 45 (9), 2498-2501, 2020. [53] Arteaga-Sierra, F., Antikainen, A., Agrawal, G. P. Soliton dynamics in photoniccrystal fibers with frequency-dependent kerr nonlinearity. Physical Review A, 98 (1), 013830, 2018. [54] Bose, S., Sahoo, A., Chattopadhyay, R., Roy, S., Bhadra, S. K., Agrawal, G. P. Implications of a zero-nonlinearity wavelength in photonic crystal bers doped with silver nanoparticles. Physical Review A, 94 (4), 043835, 2016. [55] Arteaga-Sierra, F. R., Antikainen, A., Agrawal, G. P. Soliton mitosis across a zero-nonlinearity wavelength in photonic crystal fibers. Frontiers in Optics, pags. FTu5A-2, 2017. [56] Zhao, S., Sun, X. Soliton dynamics in an all-normal-dispersion photonic crystal fiber with frequency-dependent Kerr nonlinearity. Physical Review A, 102 (3), 033514, 2020. [57] Raineri, F., Karle, T., Roppo, V., Monnier, P., Raj, R. Time-domain mapping of nonlinear pulse propagation in photonic-crystal slow-light waveguides. Physical Review A, 87 (4), 041802, 2013. [58] Husko, C., Colman, P. Giant anomalous self-steepening in photonic crystal waveguides. Physical Review A, 92 (1), 013816, 2015. [59] Liao, J., Tan, Y., Gao, Y., Wang, Z., Sun, Y., Ma, L., et al. Giant anomalous self-steepening and temporal soliton compression in silicon photonic crystal waveguides. APL Photonics, 6 (8), 086107, 2021. [60] Sanchez, A. D., Linale, N., Bonetti, J., Grosz, D. F. Modulation instability in waveguides doped with anisotropic nanoparticles. Optics Letters, 45 (11), 3119- 3122, 2020. [61] Sanchez, A. D., Linale, N., Grosz, D. F. Simple model for the nonlinear optical response of dimer-doped waveguides. Journal of the Optical Society of America B, 38 (1), 17{23, 2021. [62] Bonetti, J., Linale, N., Sanchez, A. D., Hernandez, S. M., Fierens, P. I., Grosz, D. F. Photon-conserving generalized nonlinear Schrodinger equation for frequency-dependent nonlinearities. Journal of the Optical Society of America B, 37 (2), 445-450, 2020. [63] Bonetti, J., Linale, N., Sanchez, A. D., Hernandez, S. M., Fierens, P. I., Grosz, D. F. Modied nonlinear Schrodinger equation for frequency-dependent nonlinear proles of arbitrary sign. Journal of the Optical Society of America B, 36 (11), 3139-3144, 2019. [64] Linale, N., Bonetti, J., Fierens, P. I., Hernandez, S. M., Grosz, D. F. A direct method for the simultaneous estimation of self-steepening and the fractional raman contribution in ber optics. IEEE Journal of Quantum Electronics, 57 (3), 1-7, 2021. [65] Milam, D. Review and assessment of measured values of the nonlinear refractiveindex coefficient of fused silica. Applied Optics, 37 (3), 546-550, 1998. [66] Wong, W. S., Peng, X., McLaughlin, J. M., Dong, L. Breaking the limit of maximum effective area for robust single-mode propagation in optical bers. Optics Letters, 30 (21), 2855-2857, 2005. [67] Huy, M. C. P., Baron, A., Lebrun, S., Frey, R., Delaye, P. Characterization of selfphase modulation in liquid lfiled hollow core photonic bandgap bers. Journal of the Optical Society of America B, 27 (9), 1886-1893, 2010. [68] Huy, M. C. P., Baron, A., Lebrun, S., Frey, R., Delaye, P. Characterization of selfphase modulation in liquid filled hollow core photonic band gap bers: erratum. Journal of the Optical Society of America B, 30 (6), 1651-1651, 2013. [69] Monro, T. M., Richardson, D., Broderick, N., Bennett, P. Modeling large air fraction holey optical fibers. Journal of Lightwave Technology, 18 (1), 50, 2000. [70] Chang, G., Norris, T. B., Winful, H. G. Optimization of supercontinuum generation in photonic crystal fibers for pulse compression. Optics Letters, 28 (7), 546-548, 2003. [71] Mortensen, N. A. Effective area of photonic crystal fibers. Optics Express, 10 (7), 341-348, 2002. [72] Saitoh, K., Koshiba, M., Hasegawa, T., Sasaoka, E. Chromatic dispersion control in photonic crystal bers: application to ultra- attened dispersion. Optics Express, 11 (8), 843-852, 2003. [73] Razzak, S. A., Namihira, Y. Proposal for highly nonlinear dispersion-attened octagonal photonic crystal fibers. IEEE Photonics Technology Letters, 20 (4), 249-251, 2008. [74] Wang, Y., Zhang, X., Ren, X., Zheng, L., Liu, X., Huang, Y. Design and analysis of a dispersion attened and highly nonlinear photonic crystal ber with ultralow connement loss. Applied Optics, 49 (3), 292-297, 2010. [75] Chugh, S., Gulistan, A., Ghosh, S., Rahman, B. Machine learning approach for computing optical properties of a photonic crystal fiber. Optics Express, 27 (25), 36414-36425, 2019. [76] Streckert, J. New method for measuring the spot size of single-mode fibers. Optics Letters, 5 (12), 505-506, 1980. [77] Marcuse, D. Gaussian approximation of the fundamental modes of graded-index fibers. Journal of the Optical Society of America A, 68 (1), 103-109, 1978. [78] Koshiba, M., Saitoh, K. Structural dependence of effective area and mode field diameter for holey fibers. Optics Express, 11 (15), 1746-1756, 2003. [79] Hellwarth, R., Cherlow, J., Yang, T.-T. Origin and frequency dependence of nonlinear optical susceptibilities of glasses. Physical Review B, 11 (2), 964, 1975. [80] Stolen, R. H., Ippen, E. P. Raman gain in glass optical waveguides. Applied Physics Letters, 22 (6), 276-278, 1973. [81] Stolen, R. H., Gordon, J. P., Tomlinson, W., Haus, H. A. Raman response function of silica-core fibers. Journal of the Optical Society of America B, 6 (6), 1159-1166, 1989. [82] Hu, J., Menyuk, C. R., Shaw, L. B., Sanghera, J. S., Aggarwal, I. D. Raman response function and supercontinuum generation in chalcogenide ber. Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, pags. 1-2, 2008. [83] Hu, J., C.Menyuk, Shaw, L. B., Sanghera, J. S., Aggarwal, I. D. Maximizing the bandwidth of supercontinuum generation in As 2Se 3 chalcogenide bers. Optics Express, 18 (7), 6722, 2010. [84] Slusher, R. E., Lenz, G., Hodelin, J., Sanghera, J., Shaw, L. B., Aggarwal, I. D. Large Raman gain and nonlinear phase shifts in high-purity as2se3 chalcogenide bers. Journal of the Optical Society of America B, 21 (6), 1146-1155, 2004. [85] Xiong, C., Magi, E., Luan, F., Tuniz, A., Dekker, S., Sanghera, J. S., et al. Characterization of picosecond pulse nonlinear propagation in chalcogenide As2S3 fiber. Applied Optics, 48 (29), 5467-5474, 2009. [86] Hutchings, D., Van Stryland, E. W. Nondegenerate two-photon absorption in zinc blende semiconductors. Journal of the Optical Society of America B, 9 (11), 2065-2074, 1992. [87] Shen, Y.-R. The principles of nonlinear optics. New York, Wiley-Interscience, 1984. [88] Lin, Q., Painter, O. J., Agrawal, G. P. Nonlinear optical phenomena in silicon waveguides: modeling and applications. Optics Express, 15 (25), 16604-16644, 2007. [89] Liu, X., Osgood Jr, R. M., Vlasov, Y. A., Green, W. M. Mid-infrared optical parametric amplier using silicon nanophotonic waveguides. Nature Photonics, 4 (8), 557, 2010. [90] Poulvellarie, N., Ciret, C., Kuyken, B., Leo, F., Gorza, S.-P. Highly nondegenerate two-photon absorption in silicon wire waveguides. Physical Review Applied, 10 (2), 024033, 2018. [91] Koonath, P., Solli, D. R., Jalali, B. Limiting nature of continuum generation in silicon. Applied Physics Letters, 93 (9), 091114, 2008. [92] Hsieh, I.-W., Chen, X., Dadap, J. I., Panoiu, N. C., Osgood, R. M., McNab, S. J., et al. Ultrafast-pulse self-phase modulation and third-order dispersion in si photonic wire-waveguides. Optics Express, 14 (25), 12380-12387, 2006. [93] Yin, L., Lin, Q., Agrawal, G. P. Soliton fission and supercontinuum generation in silicon waveguides. Optics Letters, 32 (4), 391-393, 2007. [94] Dekker, R., Driessen, A., Wahlbrink, T., Moormann, C., Niehusmann, J., Forst, M. Ultrafast kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 m femtosecond pulses. Optics Express, 14 (18), 8336-8346, 2006. [95] Pauer, P. Pn butcher, d. cotter the elements of nonlinear optics. cambridge university press. cambridge 1990, xiv+ 344p. preis£ 30.00, isbn 0-521-34183-3. Crystal Research and Technology, 26 (6), 802-802, 1991. [96] Bechtel, J., Smith, W. L. Two-photon absorption in semiconductors with picosecond laser pulses. Physical Review B, 13 (8), 3515, 1976. [97] Linale, N., Bonetti, J., Sparapani, A., Sanchez, A. D., Grosz, D. F. Equation for modeling two-photon absorption in nonlinear waveguides. Journal of the Optical Society of America B, 37 (6), 1906-1910, 2020. [98] Linale, N., Bonetti, J., Sanchez, A. D., Fierens, P. I., Grosz, D. F. Model for frequency-dependent nonlinear propagation in 2D decorated nanowires. IEEE Journal of Quantum Electronics, 57 (4), 1-8, 2021. [99] Linale, N., Fierens, P., Hernandez, S., Bonetti, J., Grosz, D. Narrowband and ultra-wideband modulation instability in nonlinear metamaterial waveguides. Journal of the Optical Society of America B, 37 (11), 3194-3199, 2020. [100] Hasegawa, A., Brinkman, W. Tunable coherent ir and fir sources utilizing modulational instability. IEEE Journal of Quantum Electronics, 16 (7), 694-697, 1980. [101] Anderson, D., Lisak, M. Modulational instability of coherent optical-ber transmission signals. Optics Letters, 9 (10), 468-470, 1984. [102] Tai, K., Hasegawa, A., Tomita, A. Observation of modulational instability in optical fibers. Physical Review Letters, 56 (2), 135, 1986. [103] Potasek, M. Modulation instability in an extended nonlinear Schrodinger equation. Optics Letters, 12 (11), 921-923, 1987. [104] Seadawy, A. R. Modulation instability analysis for the generalized derivative higher order nonlinear Schrodinger equation and its the bright and dark soliton solutions. Journal of Electromagnetic Waves and Applications, 31 (14), 1353-1362, 2017. [105] Hernandez, S. M., Fierens, P. I., Bonetti, J., Sanchez, A. D., Grosz, D. F. A geometrical view of scalar modulation instability in optical bers. IEEE Photonics Journal, 9 (5), 1-8, 2017. [106] Bonetti, J., Hernandez, S. M., Fierens, P. I., Grosz, D. A higher-order perturbation analysis of the nonlinear Schrodinger equation. Communications in Nonlinear Science and Numerical Simulation, 72, 152-161, 2019. [107] Nakazawa, M., Suzuki, K., Kubota, H., Haus, H. A. High-order solitons and the modulational instability. Physical Review A, 39, 5768-5776, 1989. [108] Hasegawa, A., Brinkman, W. Tunable coherent IR and FIR sources utilizing modulational instability. IEEE Journal of Quantum Electronics, 16 (7), 694-697, 1980. [109] Grosz, D. F., Mazzali, C., Celaschi, S., Paradisi, A., Fragnito, H. Modulation instability induced resonant four-wave mixing in WDM systems. IEEE Photonics Technology Letters, 11 (3), 379{381, 1999. [110] Zakharov, V. E., Ostrovsky, L. Modulation instability: the beginning. Physica D, 238 (5), 540-548, 2009. [111] Saha, M., Sarma, A. K. Solitary wave solutions and modulation instability analysis of the nonlinear Schrodinger equation with higher order dispersion and nonlinear terms. Communications in Nonlinear Science and Numerical Simulation, 18 (9), 2420-2425, 2013. [112] Bejot, P., Kibler, B., Hertz, E., Lavorel, B., Faucher, O. General approach to spatiotemporal modulational instability processes. Physical Review A, 83, 013830, 2011. [113] Bonetti, J., Hernandez, S. M., Fierens, P. I., Grosz, D. F. Analytical study of coherence in seeded modulation instability. Physical Review A, 94, 033826, 2016. [114] Shukla, P. K., Rasmussen, J. J. Modulational instability of short pulses in long optical fibers. Optics Letters, 11 (3), 171-173, 1986. [115] Angelis, C. D., Nalesso, G., Santagiustina, M. Role of nonlinear dispersion in the dynamics of induced modulational instability in kerr media. Journal of the Optical Society of America B, 13 (5), 848-855, 1996. [116] Sanchez, A. D., Hernandez, S. M., Bonetti, J., Fierens, P. I., Grosz, D. F. Tunable Raman gain in mid-IR waveguides. Journal of the Optical Society of America B, 35 (1), 95-99, 2018. [117] Sanchez, A. D., Linale, N., Bonetti, J., Hernandez, S. M., Fierens, P. I., Brambilla, G., et al. Simple method for estimating the fractional raman contribution. Optics Letters, 44 (3), 538-541, 2019. [118] Sanchez, A. D. Efectos no lineales en guías de onda en la region del infrarrojo medio. Tesis Doctoral, Universidad Nacional de Cuyo, 2020. [119] Bonetti, J., Hernandez, S. M., Fierens, P. I., Grosz, D. F. Analytical study of coherence in seeded modulation instability. Physical Review A, 94, 033826, 2016. [120] Linale, N., Fierens, P. I., Grosz, D. F. Revisiting soliton dynamics in fiber optics under strict photon-number conservation. IEEE Journal of Quantum Electronics, 57 (2), 1-8, 2020. [121] Hasegawa, A., Tappert, F., Mollenauer, L. F., Stolen, R. H., Gordon, L. P. Experimental observation of pico second pulse narrowing and solitons in optical fiber. Applied Physics Letters, 23, 142, 1973. [122] Mollenauer, L. F., Stolen, R. H., Gordon, J. P. Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Physical Review Letters, 45 (13), 1095, 1980. [123] Ohkuma, K., Ichikawa, Y. H., Abe, Y. Soliton propagation along optical bers. Optics Letters, 12 (7), 516-518, 1987. [124] De Oliveira, J. R., de Moura, M. A., Hickmann, J. M., Gomes, A. S. L. Selfsteepening of optical pulses in dispersive media. Journal of the Optical Society of America B, 9 (11), 2025-2027, 1992. [125] Agrawal, G. P. Effect of intrapulse stimulated Raman scattering on soliton-effect pulse compression in optical fibers. Optics Letters, 15 (4), 224-226, 1990. [126] Masip, M. E., Rieznik, A. A., Konig, P. G., Grosz, D. F., Bragas, A. V., Martinez, O. E. Femtosecond soliton source with fast and broad spectral tunability. Optics Letters, 34 (6), 842-844, 2009. [127] Lee, J. H., van Howe, J., Xu, C., Liu, X. Soliton self-frequency shift: experimental demonstrations and applications. IEEE Journal of Selected Topics in Quantum Electronics, 14 (3), 713-723, 2008. [128] Satsuma, J., Yajima, N. B. initial value problems of one-dimensional selfmodulation of nonlinear waves in dispersive media. Progress of Theoretical Physics Supplement, 55, 284-306, 1974. [129] Marcuse, D. RMS width of pulses in nonlinear dispersive fibers. Journal of Lightwave Technology, 10 (1), 17-21, 1992. [130] Santhanam, J., Agrawal, G. P. Raman-induced spectral shifts in optical fibers: general theory based on the moment method. Optics Communications, 222 (1-6), 413-420, 2003. [131] Chen, Z., Taylor, A. J., Emov, A. Soliton dynamics in non-uniform fiber tapers: analytical description through an improved moment method. Journal of the Optical Society of America B, 27 (5), 1022-1030, 2010. [132] Linale, N., Fierens, P. I., Bonetti, J., Sanchez, A. D., Hernandez, S. M., Grosz, D. F. Measuring self-steepening with the photon-conserving nonlinear Schrodinger equation. Optics Letters, 45 (16), 4535-4538, 2020. [133] Akturk, S., Kimmel, M., O'Shea, P., Trebino, R. Extremely simple device for measuring 20-fs pulses. Optics Letters, 29 (9), 1025-1027, 2004. [134] Chen, J., Xia, W., Wang, M. Characteristic measurement for femtosecond laser pulses using a gaas pin photodiode as a two-photon photovoltaic receiver. Journal of Applied Physics, 121 (22), 223103, 2017. [135] Klimentov, D., Tolstik, N., Dvoyrin, V., Kalashnikov, V. L., Sorokina, I. T. Broadband dispersion measurement of ZBLAN, germanate and silica bers in MidIR. Journal of Lightwave Technology, 30 (12), 1943-1947, 2012. [136] Sanchez, A. D., Hernandez, S. M., Bonetti, J., Fierens, P. I., Grosz, D. F. Tunable Raman gain in mid-IR waveguides. Journal of the Optical Society of America B, 35 (1), 95-99, 2018. [137] Eggleton, B. J., Luther-Davies, B., Richardson, K. Chalcogenide photonics. Nature Photonics, 5 (3), 141-148, 2011. [138] Ung, B., Skorobogatiy, M. Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared. Optics Express, 18 (8), 8647-8659, 2010. [139] Granzow, N., Stark, S. P., Schmidt, M. A., Tverjanovich, A. S., Wondraczek, L., Russell, P. S. J. Supercontinuum generation in chalcogenide-silica step-index fibers. Optics Express, 19 (21), 21003-21010, 2011. [140] Sanghera, J. S., Aggarwal, I., Shaw, L., Floreaa, C., Pureza, P., Nguyen, V., et al. Nonlinear properties of chalcogenide glass bers. Journal of Optoelectronics and Advanced Materials, 8 (6), 2148-2155, 2006. [141] Saini, T. S., Kumar, A., Sinha, R. K. Broadband mid-infrared supercontinuum spectra spanning 2-15 μm using As2Se3 chalcogenide glass triangular-core graded-index photonic crystal ber. Journal of Lightwave Technology, 33 (18), 3914-3920, 2015. [142] Linale, N., Hernandez, S., Grosz, D. The role of self-steepening in supercontinuum generation in nanowires. En: Nonlinear Optics, pags. NTh3A-15. Optical Society of America, 2021. [143] Castro Neto, A. H., Guinea, F., Peres, N. M., Novoselov, K. S., Geim, A. K. The electronic properties of graphene. Reviews of Modern Physics, 81 (1), 109, 2009. [144] Geim, A. K., Novoselov, K. S. The rise of graphene. Nature Materials, 6, 183-191, 2007. [145] Novoselov, K. S., Fal, V., Colombo, L., Gellert, P., Schwab, M., Kim, K., et al. A roadmap for graphene. Nature, 490 (7419), 192-200, 2012. [146] Hendry, E., Hale, P. J., Moger, J., Savchenko, A., Mikhailov, S. A. Coherent nonlinear optical response of graphene. Physical Review Letters, 105 (9), 097401, 2010. [147] Chen, W., Wang, G., Qin, S., Wang, C., Fang, J., Qi, J., et al. The nonlinear optical properties of coupling and decoupling graphene layers. AIP Advances, 3 (4), 042123, 2013. [148] Demetriou, G., Bookey, H. T., Biancalana, F., Abraham, E., Wang, Y., Ji, W., et al. Nonlinear optical properties of multilayer graphene in the infrared. Optics Express, 24 (12), 13033-13043, 2016. [149] Yamashita, S. Nonlinear optics in carbon nanotube, graphene, and related 2d materials. APL Photonics, 4 (3), 034301, 2019. [150] Zhang, Z., Voss, P. L. Full-band quantum-dynamical theory of saturation and four-wave mixing in graphene. Optics Letters, 36 (23), 4569-4571, 2011. [151] Vermeulen, N., Castello-Lurbe, D., Cheng, J., Pasternak, I., Krajewska, A., Ciuk, T., et al. Negative kerr nonlinearity of graphene as seen via chirped-pulse-pumped self-phase modulation. Physical Review Applied, 6 (4), 044006, 2016. [152] Kim, K., Choi, J.-Y., Kim, T., Cho, S.-H., Chung, H.-J. A role for graphene in silicon-based semiconductor devices. Nature, 479 (7373), 338-344, 2011. [153] Akinwande, D., Huyghebaert, C., Wang, C.-H., Serna, M. I., Goossens, S., Li, L.- J., et al. Graphene and two-dimensional materials for silicon technology. Nature, 573 (7775), 507-518, 2019. [154] Qu, Y., Wu, J., Yang, Y., Zhang, Y., Liang, Y., El Dirani, H., et al. Enhanced four-wave mixing in silicon nitride waveguides integrated with 2d layered graphene oxide films. Advanced Optical Materials, pag. 2001048, 2020. [155] Bao, Q., Zhang, H., Wang, Y., Ni, Z., Yan, Y., Shen, Z. X., et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Advanced Functional Materials, 19 (19), 3077-3083, 2009. [156] Donarelli, M., Ottaviano, L. 2d materials for gas sensing applications: a review on graphene oxide, mos2, ws2 and phosphorene. Sensors, 18 (11), 3638, 2018. [157] Chen, J., Wu, X.-J., Gong, Y., Zhu, Y., Yang, Z., Li, B., et al. Edge epitaxy of two-dimensional mose2 and mos2 nanosheets on one-dimensional nanowires. Journal of the American Chemical Society, 139 (25), 8653-8660, 2017. [158] Qin, D., Yan, P., Ding, G., Ge, X., Song, H., Gao, G. Monolayer pdse2: A promising two-dimensional thermoelectric material. Scientic reports, 8 (1), 1-8, 2018. [159] Zhang, Y., Wu, J., Yang, Y., Qu, Y., Jia, L., Moein, T., et al. Enhanced kerr nonlinearity and nonlinear gure of merit in silicon nanowires integrated with 2d graphene oxide lms. ACS Applied Materials & Interfaces, 12 (29), 33094-33103, 2020. [160] Bonetti, J., Linale, N., Grosz, D. Heralded single-photon sources based on 2ddecorated nanowires. Physics Letters A, pag. 128018, 2022. [161] Yang, Y.,Wu, J., Xu, X., Liang, Y., Chu, S. T., Little, B. E., et al. Invited article: Enhanced four-wave mixing in waveguides integrated with graphene oxide. APL Photonics, 3 (12), 120803, 2018. [162] Oskooi, A. F., Roundy, D., Ibanescu, M., Bermel, P., Joannopoulos, J. D., Johnson, S. G. Meep: A flexible free-software package for electromagnetic simulations by the fdtd method. Computer Physics Communications, 181 (3), 687-702, 2010. [163] Van Stryland, E. W.,Woodall, M., Vanherzeele, H., Soileau, M. Energy band-gap dependence of two-photon absorption. Optics Letters, 10 (10), 490-492, 1985. [164] Pearl, S., Rotenberg, N., van Driel, H. M. Three photon absorption in silicon for 2300-3300 nm. Applied Physics Letters, 93 (13), 131102, 2008. [165] Leo, F., Gorza, S.-P., Saoui, J., Kockaert, P., Coen, S., Dave, U., et al. Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength. Optics Letters, 39 (12), 3623-3626, 2014. [166] Yeom, D.-I., Magi, E. C., Lamont, M. R., Roelens, M. A., Fu, L., Eggleton, B. J. Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires. Optics Letters, 33 (7), 660-662, 2008. [167] Al-kadry, A., Baker, C., El Amraoui, M., Messaddeq, Y., Rochette, M. Broadband supercontinuum generation in as 2 se 3 chalcogenide wires by avoiding the twophoton absorption effects. Optics Letters, 38 (7), 1185-1187, 2013. [168] Zhang, H., Virally, S., Bao, Q., Ping, L. K., Massar, S., Godbout, N., et al. Zscan measurement of the nonlinear refractive index of graphene. Optics Letters, 37 (11), 1856-1858, 2012. [169] Kitamura, R., Pilon, L., Jonasz, M. Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Applied optics, 46 (33), 8118-8133, 2007. [170] Cristiani, I., Tediosi, R., Tartara, L., Degiorgio, V. Dispersive wave generation by solitons in microstructured optical bers. Optics Express, 12 (1), 124-135, 2004. [171] Fernandez, G., Linale, N., Benítez, J., Grosz, D. Linear and nonlinear distributed stress sensing with graphene-decorated optical bers. En: Laser Science, pags. JTh5A-115. Optical Society of America, 2021. [172] Vermeulen, N., Castello-Lurbe, D., Khoder, M., Pasternak, I., Krajewska, A., Ciuk, T., et al. Graphene's nonlinear-optical physics revealed through exponentially growing self-phase modulation. Nature Communications, 9 (1), 1-9, 2018. [173] Linale, N., Fierens, P., Vermeulen, N., Grosz, D. A generic model for the study of supercontinuum generation in graphene-covered nanowires. Journal of Physics: Photonics, 4 (1), 015001, 2021. [174] Belanger, P.-A., Belanger, N. Rms characteristics of pulses in nonlinear dispersive lossy fibers. Optics Communications, 117 (1-2), 56-60, 1995.
Materias:Ingeniería en telecomunicaciones > Óptica no lineal
Divisiones:Gcia. de área Académica > Gcia. Instituto Balseiro > Grupo Comunicaciones Ópticas
Código ID:1127
Depositado Por:Tamara Cárcamo
Depositado En:11 Oct 2022 14:46
Última Modificación:25 Oct 2022 10:55

Personal del repositorio solamente: página de control del documento