Simulación de radiocirugía craneal estereotáctica guiada por resonancia magnética funcional / Simulation of stereotactic cranial radiosurgery guide by functional magnetic resonance

Ancari Iñiguez, Luis A. (2022) Simulación de radiocirugía craneal estereotáctica guiada por resonancia magnética funcional / Simulation of stereotactic cranial radiosurgery guide by functional magnetic resonance. Maestría en Física Médica, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
15Mb

Resumen en español

El objetivo de este trabajo fue reconocer e incorporar redes neuronales en estado de reposo (RSN) a los sistemas de planificación a partir de estudios rs-fMRI y simular planes de tratamientos de radiocirugía craneal estereotáctica (SRS) con la información anatómica tradicional y la información funcional de las RSN. La SRS es una técnica no invasiva utilizada para tratar lesiones intracraneales a través de múltiples haces que entregan altas dosis al objetivo en pocas fracciones. Las dosis recibidas por las regiones funcionales pueden ser reducidas a través su incorporación como órganos en riesgo (OAR) en el proceso de planificación de radioterapia. Se utilizaron tres pacientes con tumores cerebrales para el desarrollo de los planes de tratamiento, contaban con estudios 3DGRE-T1, rs-fMRI y CT. Para encontrar las redes neuronales en estado de reposo RSN se realizó un análisis bidimensional de componentes independientes (ICA) con la función MELODIC, seguido de un proceso semiautomático de clasificación combinando FIX y la clasificación manual. Posteriormente se seleccionaron las redes visual, motora y DMN para ser incorporadas al TPS, para ello se desarrolló un programa en Python que permite la conversión de archivos NIfTI a DICOM, el programa consideró la integridad de los datos, adaptación del marco de referencia NIfTI al sistema DICOM y la asignación de UID. El procedimiento semiautomático para clasificar y reconocer las RSN demostró una eficiencia comparable a la clasificación manual, con una reducción considerable del tiempo requerido en esta tarea. Se convirtió y adecuó satisfactoriamente las RSN Nifti al formato DICOM, siendo reconocidos y asignados correctamente a los pacientes en el TPS. Al incorporar las redes visual, motor y DMN como fOAR en los planes de tratamiento utilizando técnicas de VMAT coplanar y no-coplanar, se pudo reducir con éxito las dosis de la red visual en 15 % y 18 % aproximadamente, sin comprometer la dosis del objetivo ni superar los límites de los OAR convencionales. Este estudio demostró la factibilidad de incorporar RSNs en los planes de tratamiento en RT con una posible aplicación clínica.

Resumen en inglés

The aim of this work was to recognize and incorporate resting-state neural networks (RSNs) into planning systems from rs-fMRI studies and simulate stereotactic cranial radiosurgery (SRS) treatment plans with traditional anatomical and rs-fMRI information. SRS is a non-invasive technique used to treat intracranial lesions through multiple beams that deliver high doses to the target in few fractions. The doses received by the functional regions can be reduced through their incorporation as organs at risk (OAR) in the radiotherapy planning process. Three patients with brain tumors were used for the development of treatment plans, they had 3DGRE-T1, rs-fMRI and CT studies. To find the RSN resting-state neural networks, a two-dimensional independent component analysis (ICA) was performed with the MELODIC function, followed by a semi-automatic classification process combining FIX and manual classification. Subsequently, the visual, motor and DMN networks were selected to be incorporated into the TPS, for this a program was developed in Python that allows the conversion of NIfTI files to DICOM, the program considered the integrity of the data, adaptation of the NIfTI reference framework to the DICOM system and UID assignment. The semi-automated procedure to classify and recognize RSNs demonstrated an efficiency comparable to manual classification, with a considerable reduction in the time required for this task. The Nifti RSNs were successfully converted and adapted to the DICOM format, being recognized and correctly assigned to patients in the TPS. By incorporating the visual, motor and DMN networks as fOAR in the treatment plans using coplanar and non-coplanar VMAT techniques, it was possible to successfully reduce the visual network doses by approximately 15% and 18%, without compromising the target dose or exceed the limits of conventional OARs. This study demonstrated the feasibility of incorporating RSNs into RT treatment plans with possible clinical application.

Tipo de objeto:Tesis (Maestría en Física Médica)
Palabras Clave:Magnetic resonance, Resonancia magnética; Neural networks; Redes neuronales; [ Stereotactic radiosurgery; Radiocirugía estereotáctica; Resting state functional; Funcional en estado de reposo; Independent component analysis; Análisis de competentes independientes; Multilevel classifier; Clasificador multinivel; Volumetric modulated arc therapy; Arco terapia volumétrica modulada]
Referencias:[1] Priyanka A. Abhang, Bharti W. Gawali, and Suresh C. Mehrotra. Introduction to emotion, electroencephalography, and speech processing. In Introduction to EEGand Speech-Based Emotion Recognition, pages 1–17. Elsevier, 2016. [2] Thankamma Ajithkumar, Stephen Price, Gail Horan, Amos Burke, and Sarah Jefferies. Prevention of radiotherapy-induced neurocognitive dysfunction in survivors of paediatric brain tumours: the potential role of modern imaging and radiotherapy techniques. The Lancet Oncology, 18(2):e91–e100, 2017. [3] Alireza Montazerabadi Arman Boroun and Seyed Hadi Molanao. Optimizing the radiation treatment planning of brain tumors by integration of functional mri and white matter tractography. 27(2):200–206, June 2022. [4] Bradley R. Buchbinder. Functional magnetic resonance imaging. In Handbook of Clinical Neurology, pages 61–92. Elsevier, 2016. [5] Lisazo Clara. Protocolo para el procesamiento conjunto de resonancia magnética y electroencefalografía en pacientes con epilepsia refractaria. Universidad de Mendoza, 2021. [6] COIR. URL: https://www.coir.org.ar/?page_id=2734. Último acceso: oct. 2022. [7] Alfredo Conti, Antonio Pontoriero, Giuseppe K. Ricciardi, Francesca Granata, Sergio Vinci, Filippo F. Angileri, Stefano Pergolizzi, Concetta Alafaci, Vincenzo Rizzo, Angelo Quartarone, Antonino Germanò, Roberto Israel Foroni, Costantino De Renzis, and Francesco Tomasello. Integration of functional neuroimaging in cyberknife radiosurgery: feasibility and dosimetric results. Neurosurgical Focus FOC, 34(4):E5, 2013. [8] Bob Cox. Nifti-1 header file. URL: https://nifti.nimh.nih.gov/pub/dist/src/niftilib/nifti1.h. Último acceso: oct. 2022. [9] DICyT. URL: https://www.mendoza.gov.ar/salud/dependencias/dicyt/. Último acceso: oct. 2022. [10] Hamed Ekhtiari, Padideh Nasseri, Fatemeh Yavari, Azarkhsh Mokri, and John Monterosso. Neuroscience of drug craving for addiction medicine. In Progress in Brain Research, pages 115–141. Elsevier, 2016. [11] Amelia Rivera Cruz Fidel Ramón Romero, Armando Mansilla Olivares. Neurofisiologia para estudiantes de medicina. URL: http://www.facmed.unam.mx/Libro-NeuroFisio/, 2022. Último acceso: oct. 2022. [12] PT flashcards. URL: https://twitter.com/ptflashcards/status/1335761235061530624. Último acceso: oct. 2022. [13] FMRIB. Fsl course: Resting state (ica). URL: https://open.win.ox.ac.uk/pages/fslcourse/website/online_materials.html, 2020. Último acceso: oct. 2022. [14] Flavio Fröhlich. Imaging functional networks with MRI. In Network Neuroscience, pages 177–185. Elsevier, 2016. [15] Michel Habib. Developmental dyslexia: A new look at clinical features and brain mechanisms. In Neurocognitive Development: Disorders and Disabilities, pages 47–59. Elsevier, 2020. [16] M. A. Hayat. Brain Metastases from Primary Tumors, Volume 3. 04 2016. [17] Innolitics. Dicom standard browser. URL: https://dicom.innolitics.com/ciods, 2020. Último acceso: Nov. 2022. [18] Árpád Kovács, Lilla Tóth, Csaba Glavák, Gábor Liposits, Janaki Hadjiev, Gergely Antal, Miklós Emri, Csaba Vandulek, and Imre Repa. Integrating functional MRI information into conventional 3d radiotherapy planning of CNS tumors. is it worth it? Journal of Neuro-Oncology, 105(3):629–637, July 2011. [19] Michele Larobina and Loredana Murino. Medical image file formats. Journal of Digital Imaging, 27(2):200–206, December 2013. [20] Xiangrui Li, Paul S. Morgan, John Ashburner, Jolinda Smith, and Christopher Rorden. The first step for neuroimaging data analysis: DICOM to NIfTI conversion. Journal of Neuroscience Methods, 264:47–56, May 2016. [21] Frédérique Liégeois and Rachael Elward. Functional magnetic resonance imaging. In Neurocognitive Development: Disorders and Disabilities, pages 265–275. Elsevier, 2020. [22] Griffanti Ludovica. Melodic. URL: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC, 2019. Último acceso: oct. 2022. [23] Kevin J. Manning and David C. Steffens. Systems neuroscience in late-life depression. In Systems Neuroscience in Depression, pages 325–340. Elsevier, 2016. [24] Webster Matthew. Fix: Overview - fmrib’s ica-based xnoiseifier. URL: https://fsl. fmrib.ox.ac.uk/fsl/fslwiki/FIX, 2020. Último acceso: oct. 2022. [25] Webster Matthew. Ica practical. URL: https://fsl.fmrib.ox.ac.uk/fslcourse/graduate/lectures/practicals/ica/, 2020. Último acceso: oct. 2022. [26] Robert A. McArthur. Translational Neuroimaging. Elsevier, 2013. [27] Aileen McGonigal, Arjun Sahgal, Antonio De Salles, Motohiro Hayashi, Marc Levivier, Lijun Ma, Roberto Martinez, Ian Paddick, Samuel Ryu, Ben J. Slotman, and Jean Régis. Radiosurgery for epilepsy: Systematic review and international stereotactic radiosurgery society (ISRS) practice guideline. Epilepsy Research, 137:123–131, November 2017. [28] Michael T. Milano, Kenneth Y. Usuki, Kevin A.Walter, Douglas Clark, and Michael C. Schell. Stereotactic radiosurgery and hypofractionated stereotactic radiotherapy: Normal tissue dose constraints of the central nervous system. Cancer Treatment Reviews, 37(7):567–578, November 2011. [29] Peter C. Mulders, Philip F. van Eijndhoven, and Christian F. Beckmann. Identifying large-scale neural networks using fMRI. In Systems Neuroscience in Depression, pages 209–237. Elsevier, 2016. [30] NEMA. Dicom standard: Dicom ps3.5 2022d - data structures and encoding. URL: https://dicom.nema.org/dicom/2013/output/chtml/part05/chapter_9.html, 2020. Último acceso: Nov. 2022. [31] NITRC. Mricrogl. URL: https://www.nitrc.org/projects/mricrogl/, 2014. Último acceso: oct. 2022. [32] Erin E. O'Connor and Thomas A. Zeffiro. Why is clinical fMRI in a resting state? Frontiers in Neurology, 10, April 2019. [33] Linda Pang. Hallucinations experienced by visually impaired: Charles bonnet syndrome. Optometry and Vision Science, 93(12):1466, 2016. [34] Evaggelos Pantelis, Nikolaos Papadakis, Kosmas Verigos, Irene Stathochristopoulou, Christos Antypas, Leonidas Lekas, Argyrios Tzouras, Evangelos Georgiou, and Nikolaos Salvaras. Integration of functional MRI and white matter tractography in stereotactic radiosurgery clinical practice. International Journal of Radiation Oncology Biology Physics, 78(1):257–267, September 2010. [35] Kinjal Jethwa y Simmi Mehra Pradip Chauhan, Ashish Rathawa. The anatomy of the cerebral cortex. In Cerebral Ischemia, pages 1–16. Exon, 2021. [36] Chandler Sours Rhodes, Hao Zhang, Kruti Patel, Nilesh Mistry, Young Kwok, Warren D. D'Souza, William F. Regine, and Rao P. Gullapalli. The feasibility of integrating resting-state fMRI networks into radiotherapy treatment planning. Journal of Medical Imaging and Radiation Sciences, 50(1):119–128, March 2019. [37] Gholamreza Salimi-Khorshidi, Gwenaëlle Douaud, Christian F. Beckmann, Matthew F. Glasser, Ludovica Griffanti, and Stephen M. Smith. Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers. NeuroImage, 90:449–468, April 2014. [38] CLAUDIA SCARINGI, LINDA AGOLLI, and GIUSEPPE MINNITI. Technical advances in radiation therapy for brain tumors. Anticancer Research, 38(11):6041–6045, November 2018. [39] Alexander L. Shifrin. Advances in Treatment and Management in Surgical Endocrinology. 06 2019. [40] Steve Smith. Flirt: Fmrib’s linear image registration tool. URL: https://fsl.fmrib.ox. ac.uk/fsl/fslwiki/FLIRT, 2013. Último acceso: oct. 2022. [41] KA Smitha, K Akhil Raja, KM Arun, PG Rajesh, Bejoy Thomas, TR Kapilamoorthy, and Chandrasekharan Kesavadas. Resting state fmri: A review on methods in resting state connectivity analysis and resting state networks. The Neuroradiology Journal, 30(4):305–317, 2017. PMID: 28353416. [42] E.J.W. Van Someren, Y.D. Van Der Werf, P.R. Roelfsema, H.D. Mansvelder, and F.H. Lopes da Silva. Slow brain oscillations of sleep, resting state, and vigilance. In Slow Brain Oscillations of Sleep, Resting State and Vigilance, pages 3–15. Elsevier, 2011. [43] Lu Sun, Baolin Qu, JinyuanWang, Zhongjian Ju, Zizhong Zhang, Zhiqiang Cui, Yang Jack, Zhipei Ling, Xinguang Yu, and Longsheng Pan. Integration of functional MRI and white matter tractography in CyberKnife radiosurgery. Technology in Cancer Research & Treatment, 16(6):850–856, April 2017. [44] Trevor Huff; Navid Mahabadi; Prasanna Tadi. Neuroanatomy, visual cortex. URL: https://doi.org/10.36255/exonpublications.cerebralischemia.2021. cerebralcortex, 2021. Último acceso: oct. 2022. [45] M. Thompson, E. Haacke, and R. Brown. Magnetic Resonance Imaging, Physical principles and sequence design. John Wiley & Sons, 1999. [46] Ophthalmology Training. Visual cortex. URL: https://www.ophthalmologytraining. com/core-principles/ocular-anatomy/visual-pathway/visual-cortex, 2022. Último acceso: oct. 2022. [47] Daniel Fino V. Notas de clase: Resonancia magnética, February 2021.
Materias:Medicina > Radiocirugía estereotáctica
Medicina > Imágenes funcionales
Divisiones:FUESMEN
Código ID:1136
Depositado Por:Tamara Cárcamo
Depositado En:10 Aug 2023 12:01
Última Modificación:10 Aug 2023 12:01

Personal del repositorio solamente: página de control del documento