Ramos Villalobos, Kelvin J. (2022) Desarrollo de un detector de fotones basados en resonadores superconductores de alta inductancia cinética / Development of a photon detector based on superconducting resonators with high kinetic inductance. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 5Mb |
Resumen en español
El propósito de este trabajo es implementar un detector de fotones fabricado con un material superconductor de alta inductancia cinética y diseñado con 16 resonadores microondas de alto factor de calidad acoplados capacitivamente a una única línea de transmisión. Este tipo de detectores se denominan MKIDs. En una primera etapa estudiamos un modelo que describe a un resonador microondas λ/4 acoplado con una línea de transmisión para determinar los parámetros relevantes del diseño. Como un primer resultado, determinamos que los resonadores deben ser de alto factor de calidad y volumen pequeño, fabricados con un superconductor adecuado para aumentar la contribución de la inductancia cinética a la inductancia total del resonador. Esto optimiza la responsividad del detector. Como un primer avance en la implementación, estudiamos la teoría sobre líneas de transmisión y determinamos los parámetros geométricos de la línea que optimizan la transmisión completa de una señal. Trabajamos con líneas que tienen dimensiones de w = 20 μm y s = 11 μm, accesibles en una etapa inicial de fabricación. Generamos resonadores λ/4 para que tengan su frecuencia en el rango de las microondas formados por líneas de transmisión con uno de sus extremos en cortocircuito. Diseñé y realicé simulaciones de un MKID con frecuencia en 5.93 GHz y factor de calidad de 4×10"3, en dos programas Sonnet y Qiskit-Metal. De manera general, simulamos resonadores λ/4 con distintas longitudes y acoplamientos para determinar su dependencia con la frecuencia de resonancia y factor de calidad. Obtuve las curvas necesarias para el diseño general (elección de la frecuencia y el acoplamiento) y comparaciones entre los dos programas. Finalmente, diseñamos un arreglo de 16 MKIDs con resonancias entre 6.5 GHz y 8.5 GHz y un factor de calidad de acoplamiento de 30×10"3. Realicé avances en la fabricación de estos resonadores haciendo pruebas con máscaras hechas por litografía láser. Como se discute en la tesis, si bien estos resultados no son satisfactorios en términos de las necesidades de precisión de los dispositivos, esto me permitió aprender las técnicas de micro-estructuración en sala limpia necesarias para una implementación futura. Finalmente, uno de los aspectos que más me interesó del proyecto es la lectura del arreglo de píxeles. Esto se discute en la ultima parte de la tesis. Siguiendo la técnica de multiplexación por división de frecuencia (FDM) implementé una electrónica para generar señales en fase y cuadratura a baja frecuencia y con fases de Newman. Comencé también a trabajar con una FPGA Red Pitaya para implementar la excitación de los MKIDs.
Resumen en inglés
The purpose of this work is to implement a photon detector made of a high kinetic inductance superconductor material and designed with 16 high quality factor microwave resonators capacitively coupled to a single transmission line. This type of detectors is called MKIDs. In a first stage, we study a model that describes a λ/4 microwave resonator coupled with a transmission line to determine the relevant design parameters. As a first result, we determined that the resonators must be of high quality factor and small volume, made with a suitable superconductor to increase the contribution of kinetic inductance to the total inductance of the resonator. This optimizes the detector’s responsivity. As a first step in the implementation, we studied the theory on transmission lines and determined the geometric parameters of the line that optimize the complete transmission of a signal. We worked with lines that have dimensions of w = 20 μm and s = 11 μm, accessible in an initial stage of accessible in an initial stage of fabrication. We generated λ/4 resonators so that they have their frequency in the range of microwaves formed by transmission lines with one of its ends in short circuit. I designed and performed simulations of an MKID with a frequency of 5.93 GHz and a quality factor of 4×10"3, in two programs Sonnet and Qiskit-Metal. In general, we simulated λ/4 resonators with different lengths and couplings to determine their dependence on the resonance frequency and quality factor. I obtained the necessary curves for the general design (choice of frequency and coupling) and comparisons between the two programs. Finally, we designed an array of 16 MKIDs with resonances between 6.5 GHz and 8.5 GHz and a coupling quality factor of 30×10"3. I advanced in the fabrication of these resonators by testing with masks made by laser lithography. As discussed in the thesis, while these results are not satisfactory in terms of the precision requirements of the devices, this allowed me to learn the micro-structuring techniques in a clean room necessary for future implementation. Finally, one of the aspects that interested me the most about the project is the reading of the pixel array. This is discussed in the last part of the thesis. Following the frequency division multiplexing (FDM) technique, I implemented electronics to generate low-frequency in-phase and quadrature signals with Newman phases. I also began working with a Red Pitaya FPGA to implement the excitation of the MKIDs.
Tipo de objeto: | Tesis (Maestría en Ciencias Físicas) |
---|---|
Palabras Clave: | [MKIDs; Kinetic inductance; Inductancia cinética; Microware resonators; Resonadores microondas; Superconductor material; Material superconductor] |
Referencias: | [1] Enss, C., Mccammon, D. Physical principles of low temperature detectors: ultimate performance limits and current detector capabilities. Journal of Low Temperature Physics, 151 (1), 5–24, 2008. 1 [2] Hubmayr, J., Austermann, J. E., Beall, J. A., Becker, D. T., Dober, B., Duff, S. M., et al. Low-temperature detectors for cmb imaging arrays. Journal of Low Temperature Physics, 193 (3), 633–647, 2018. 1 [3] Mauskopf, P. Transition edge sensors and kinetic inductance detectors in astronomical instruments. Publications of the Astronomical Society of the Pacific, 130 (990), 082001, 2018. 1, 14 [4] Day, P. K., LeDuc, H. G., Mazin, B. A., Vayonakis, A., Zmuidzinas, J. A broadband superconducting detector suitable for use in large arrays. Nature, 425 (6960), 817–821, 2003. 1, 2, 8, 12, 13, 19 [5] Holland, W. S., Robson, E., Gear, W. K., Cunningham, C. R., Lightfoot, J. F., Jenness, T., et al. Scuba: a common-user submillimetre camera operating on the james clerk maxwell telescope. Monthly Notices of the Royal Astronomical Society, 303 (4), 659–672, 1999. 1 [6] Irwin, K. D., Hilton, G. C. Transition-edge sensors. En: Cryogenic particle detection, p´ags. 63–150. Springer, 2005. 1 [7] Mazin, B. A. Microwave kinetic inductance detectors. PhD thesis. California Institute of Technology, 2004. 1, 8, 18, 63, 66 [8] Cecil, T., Miceli, A., Gades, L., Datesman, A., Quaranta, O., Yefremenko, V., et al. Kinetic inductance detectors for x-ray spectroscopy. Physics Procedia, 37, 697–702, 2012. 2, 40 [9] Aja, B., de Ory, M. C., de la Fuente, L., Artal, E., Pascual, J. P., Magaz, M. T., et al. Analysis and performance of lumped-element kinetic inductance detectors for w-band. IEEE Transactions on Microwave Theory and Techniques, 69 (1), 578–589, 2020. 2 [10] Tinkham, M. Introduction to superconductivity. Courier Corporation, 2004. 3 [11] Mattis, D. C., Bardeen, J. Theory of the anomalous skin effect in normal and superconducting metals. Physical Review, 111 (2), 412, 1958. 4 [12] Gao, J., Zmuidzinas, J., Vayonakis, A., Day, P., Mazin, B., Leduc, H. Equivalence of the effects on the complex conductivity of superconductor due to temperature change and external pair breaking. Journal of Low Temperature Physics, 151 (1), 557–563, 2008. 4, 63 [13] Zmuidzinas, J. Superconducting microresonators: Physics and applications. Annu. Rev. Condens. Matter Phys., 3 (1), 169–214, 2012. 5 [14] Pozar, D. M. Microwave and RF design of wireless systems. John Wiley & Sons, 2000. 13, 23 [15] Tosi, L., Vion, D., Le Sueur, H. Design of a cooper-pair box electrometer for application to solid-state and astroparticle physics. Physical Review Applied, 11 (5), 054072, 2019. 14 [16] Mazin, B. A. Microwave kinetic inductance detectors: The first decade. En: AIP Conference Proceedings, tomo 1185, págs.. 135–142. American Institute of Physics, 2009. 20 [17] McHugh, S., Mazin, B. A., Serfass, B., Meeker, S., O’Brien, K., Duan, R., et al. A readout for large arrays of microwave kinetic inductance detectors. Review of Scientific Instruments, 83 (4), 044702, 2012. 21 [18] Simons, R. N. Coplanar waveguide circuits, components, and systems. John Wiley & Sons, 2004. 26, 35 [19] Gao, J. The physics of superconducting microwave resonators. PhD thesis. California Institute of Technology, 2008. 33, 63 [20] Qiskit quantum device design. URL https://www.sonnetsoftware.com/. 35 [21] Sonnet software. URL https://qiskit.org/metal/. 35 [22] Ansys. URL https://www.ansys.com/products/electronics/ansys-hfss. 37 [23] Grunhaupt, L., Spiecker, M., Gusenkova, D., Maleeva, N., Skacel, S. T., Takmakov, I., et al. Granular aluminium as a superconducting material for high-impedance quantum circuits. Nature materials, 18 (8), 816–819, 2019. 45 [24] Microsystems, M. URL https://mutech.com.ar/. 49 [25] Arnaldi, L. H. Técnicas avanzadas de procesamiento digital con aplicaciones en microresonadores superconductores multipíxeles . PhD thesis. Instituto Balseiro, Comisión Nacional de Energía Atómica, 2021. 54, 58 [26] STEMLab RedPitaya. RedPitaya Open Source Instrument. URL http://www. redpitaya.com/. 57, 58 [27] Xilinx Inc. Vivado Design Suite. URL https://www.xilinx.com/products/ design-tools/vivado.html. 58 [28] Tomita, N., Jeong, H., Choi, J., Ishitsuka, H., Mima, S., Nagasaki, T., et al. World’s cheapest readout electronics for kinetic inductance detector by using redpitaya. Journal of Low Temperature Physics, 184 (1), 443–448, 2016. 58 |
Materias: | Física > Materia condensada |
Divisiones: | Gcia. de área de Investigación y aplicaciones no nucleares > Instituto de Nanociencia y Nanotecnología (INN) > Dispositivos y Sensores |
Código ID: | 1137 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 19 Jul 2023 13:40 |
Última Modificación: | 19 Jul 2023 13:40 |
Personal del repositorio solamente: página de control del documento