Comunicaciones ópticas entre satélites LEO y GEO / Optical communications between LEO and GEO satellite

Palacio Romeu, Armando (2022) Comunicaciones ópticas entre satélites LEO y GEO / Optical communications between LEO and GEO satellite. Proyecto Integrador Ingeniería en Telecomunicaciones, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
26Mb

Resumen en español

Las comunicaciones ópticas prometen ser un nuevo paradigma en aplicaciones satelitales debido a sus claras ventajas respecto a las comunicaciones convencionales de radiofrecuencia. En esta tesis se estudiará la implementación de un enlace óptico de comunicaciones entre satélites de orbita baja (LEO) y geoestacionaria (GEO), enfocándose en el uso de modulaciones de intensidad como OOK y M-PPM. Para la decodificación de M-PPM se estudian los casos de decisión dura y blanda. Se desarrolla un simulador del enlace en el lenguaje de programación Python y se obtienen las curvas de desempeño del sistema en función de parámetros esenciales como ancho de banda del receptor, tasa de transmisión de bits y potencia media recibida. Estas curvas son comparadas con modelos teóricos desarrollados y se realizan observaciones respecto de las ventajas y desventajas de ambos formatos de modulación. Por último, se muestran los resultados obtenidos a partir de la implementación de un demostrador tecnológico del enlace óptico de comunicaciones en el laboratorio.

Resumen en inglés

Optical communications promise to be a new paradigm in satellite applications due to their clear advantages over conventional radio-frequency communications. This thesis will study the implementation of an optical communications link between low Earth orbit (LEO) and geostationary orbit (GEO) satellites, focusing on the use of intensity modulations such as OOK and M-PPM. For M-PPM decoding, hard and soft decision cases are studied. A communications link simulator is developed in the Python programming language and system performance curves are obtained as a function of essential parameters such as receiver bandwidth, bit transmission rate and average received power. These curves are compared with theoretical models and observations are made regarding the advantages and disadvantages of both modulation formats. Finally, the results obtained from the implementation of a technological demonstrator of the optical communications link in the laboratory are shown.

Tipo de objeto:Tesis (Proyecto Integrador Ingeniería en Telecomunicaciones)
Palabras Clave:Satellites; Satélites; [Optical communications; Comunicaciones ópticas; Satellite communications; Comunicaciones satelitales; OOK modulation; Modulación OOK; PPM modulation; Modulación PPM; Digital receiver; Receptor digital]
Referencias:[1] Kaushal, H., Jain, V. K., Kar, S. Free space optical communication. Optical Networks, 1a edón. New Delhi, India: Springer, 2017. 1, 7, 23, 25 [2] Hemmati, H. Near-earth laser communications, second edition. Optical Science and Engineering, 2a ed. New York, NY: Productivity Press, 2020. 1 [3] Saleh, B. E. A., Teich, M. C. Fundamentals of Photonics. Wiley Series in Pure and Applied Optics, 2a edón. Chichester, England: Wiley-Blackwell, 2007. 5 [4] Desurvire, E. Erbium-doped fiber amplifiers. Wiley Series in Telecommunications and Signal Processing. Nashville, TN: John Wiley & Sons, 2002. 6, 10, 13 [5] Polishuk, A., Arnon, S. Optimization of a laser satellite communication system with an optical preamplifier. J. Opt. Soc. Am. A Opt. Image Sci. Vis., 21 (7), 1307–1315, jul. 2004. 7 [6] Arnon, S. Performance of a laser μsatellite network with an optical preamplifier. J. Opt. Soc. Am. A Opt. Image Sci. Vis., 22 (4), 708, abr. 2005. 7 [7] Ippolito, L. J. Satellite communications systems engineering. 2a edón. Nashville, TN: John Wiley & Sons, 2017. 7 [8] Rosen, J., Gothard, L. Encyclopedia of Physical Science. Facts on File Science Library. Facts On File, Incorporated, 2009. URL https://books.google.com.ar/books?id=avyQ64LIJa0C. 8 [9] Agrawal, G. P. Lightwave Technology. Chichester, England: Wiley-Blackwell, 2005. 10, 17, 29, 44 [10] Ghassemlooy, Z., Popoola, W., Rajbhandari, S. Indoor system performance analysis. En: Optical Wireless Communications, págs. 229–300. Second edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, 2018.: CRC Press, 2019. 20 [11] Muhammad, S. S., Javornik, T., JelovcÌan, I., Ghassemlooy, Z., Leitgeb, E. Comparison of harddecision and soft-decision channel codedm-ary PPM performance over free space optical links. Eur. trans. telecommun., 20 (8), 746–757, dic. 2009. 22 [12] Kachelmyer, A. L. Soft decision capacity of m-ary PPM with photon counting in the presence of timing jitter spillover. En: W. Becker (ed.) Advanced Photon Counting Techniques II. SPIE, 2007. 25 [13] Mecherle, G. S. Detection alternatives for pulse position modulation (PPM) optical communication. En: K. B. Bhasin (ed.) Optical Technologies for Communication Satellite Applications. SPIE, 1986. 25 [14] Oppenheim, A. V., Willsky, A. S. Signals and Systems. 2a edón. Upper Saddle River, NJ: Pearson, 1996. 29 [15] Jargon, J. A., Wang, C. M. J., Hale, P. D. A robust algorithm for eye-diagram analysis. J. Lightwave Technol., 26 (21), 3592–3600, nov. 2008. 31
Materias:Ingeniería en telecomunicaciones > Telecomunicaciones
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Laboratorio de investigación aplicada en Telecomunicaciones
Código ID:1143
Depositado Por:Tamara Cárcamo
Depositado En:09 Aug 2023 14:56
Última Modificación:09 Aug 2023 14:56

Personal del repositorio solamente: página de control del documento