Implementación de transformaciones para optimizaciones al grupo de renormalización con matriz densidad / Implementation of transformations for optimizing the density matrix renormalization group

Lobato, José I. (2022) Implementación de transformaciones para optimizaciones al grupo de renormalización con matriz densidad / Implementation of transformations for optimizing the density matrix renormalization group. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
1307Kb

Resumen en español

El grupo de renormalización numérica con matriz densidad (DMRG) es una técnica variacional empleada para resolver sistemas interactuantes de muchos cuerpos. El método se basa en renormalizar el espacio de Hilbert utilizando los estados más relevantes de la matriz densidad pura del estado fundamental. La eficiencia de este método depende esencialmente de la base en la que se esté trabajando. En este trabajo se busca optimizar el método mediante diferentes transformaciones al hamiltoniano como ser la transformación al espacio de Wavelets, orbitales naturales y a la configuración tipo estrella. Se presentó el DMRG en su formulación MPS/MPO y se presentaron las transformaciones de operadores de una y dos partículas. Se analizó la eficiencia del algoritmo en el modelo de Hubbard unidimensional y bidimensional analizando las bases de Wavelets y de orbitales naturales. Se obtuvo que las transformaciones eran ineficientes en cuanto al uso de recursos computacionales ya que involucraban términos de cuatro operadores. Se analizó el modelo de Anderson, donde una impureza se acopla con un baño, transformando solamente los sitios del baño evitando así transformar términos de cuatro operadores. Se transformó a configuración tipo estrella y a la base de orbitales naturales. Se encontró que la transformación de orbitales naturales es la más eficiente de todas. Se presentaron las transformaciones sucesivas de orbitales naturales, las cuales permiten obtener una mayor eficiencia en el método. Finalmente, se aplicó la transformación a orbitales naturales al DMRG en la teoría de campo medio dinámico (DMFT) y se obtuvo una convergencía más rápida en la base de orbitales naturales. Siendo el DMFT uno de los métodos más usados para el cálculo de propiedades cuánticas de sistemas correlacionados, pero que depende fundamentalmente de la posibilidad de la resolución de una impureza efectiva, esta mejora puede ser relevante para el estudio de sistemas cuánticos más complejos que los estudiados hasta el momento.

Resumen en inglés

The density matrix numerical renormalization group (DMRG) is a variational technique used to solve interacting systems of many bodies. The method is based on renormalizing the Hilbert space using the most relevant states of the pure density matrix of the ground state. The efficiency of this method depends essentially on the basis on which you are working. This paper seeks to optimize the method through different transformations to the Hamiltonian such as the transformation to space of Wavelets, natural orbitals and the star-like configuration. The DMRG was presented in its MPS/MPO formulation and the transformations of one- and two-particle operators were presented. The efficiency of the algorithm in the one-dimensional and two-dimensional Hubbard model was analyzed by analyzing the bases of Waveletsand natural orbitals. It was obtained that the transformations were inefficient in terms of the use of computational resources since they involved terms of four operators. Anderson's model was analyzed, where an impurity is coupled with a bathroom, transforming only the sites of the bathroom, thus avoiding transforming terms of four operators. It was transformed into a star-like configuration and the base of natural orbitals. The transformation of natural orbitals was found to be the most efficient of all. The successive transformations of natural orbitals were presented, which allow obtaining greater efficiency in the method. Finally, the transformation to natural orbitals to DMRG was applied in the dynamic mean field theory (DMFT) and a faster convergence was obtained at the base of natural orbitals. Since DMFT is one of the most used methods for calculating the quantum properties of correlated systems, but which depends fundamentally on the possibility of resolving an effective impurity, this improvement may be relevant for the study of quantum systems more complex than those studied so far.

Tipo de objeto:Tesis (Maestría en Ciencias Físicas)
Palabras Clave:Transformations; Transformaciones; [Many body; Muchos cuerpos; Natural orbitals; Orbitales naturales; Wavelets]
Referencias:[1] Wilson, K. G. The renormalization group: Critical phenomena and the Kondo problem. Reviews of Modern Physics, 47 (4), 773–840, oct. 1975. URL https://doi.org/10.1103/revmodphys.47.773. 1, 29, 45 [2] Hallberg, K. A. New trends in density matrix renormalization. Advances in Physics, 55 (5-6), 477–526, jul. 2006. URL https://doi.org/10.1080/00018730600766432. 1, 23 [3] Peschel, I., Kaulke, M., Wang, X., Hallberg, K. (eds.) Density-Matrix Renormalization. Springer Berlin Heidelberg, 1999. URL https://doi.org/10.1007/bfb0106062. 3, 29, 45 [4] Schollwöck, U. The density-matrix renormalization group. Reviews of Modern Physics, 77 (1), 259–315, abr. 2005. URL https://doi.org/10.1103/revmodphys.77.259. 1 [5] White, S. R. Density matrix formulation for quantum renormalization groups. Physical Review Letters, 69 (19), 2863–2866, nov. 1992. URL https://doi.org/10.1103/physrevlett.69.2863. 1, 3 [6] White, S. R. Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B, 48, 10345–10356, Oct 1993. URL https://link.aps.org/doi/10.1103/PhysRevB.48.10345. 1 [7] Schollwoeck, U. The density-matrix renormalization group in the age of matrix product states, 2010. URL https://arxiv.org/abs/1008.3477. 1, 3, 4, 6, 7, 9 [8] Orus, R. A practical introduction to tensor networks: Matrix product states and projected entangled pair states, 2013. URL https://arxiv.org/abs/1306.2164.1, 4, 6 [9] Lobato, J. I. Implementación de la transformación de wavelets al grupo de renormalización con matriz densidad, dic. 2021. 1, 29, 30, 33 [10] Daubechies, I., Jaffard, S., Journé, J.-L. A Simple Wilson Orthonormal Basis with Exponential Decay. SIAM Journal on Mathematical Analysis, 22 (2), 554–573, mar. 1991. URL https://doi.org/10.1137/0522035. 2 [11] Beylkin, G., Coifman, R., Rokhlin, V. Fast wavelet transforms and numerical algorithms i. Communications on Pure and Applied Mathematics, 44 (2), 141–183, mar. 1991. URL https://doi.org/10.1002/cpa.3160440202. 2 [12] Brennen, G. K., Rohde, P., Sanders, B. C., Singh, S. Multiscale quantum simulation of quantum field theory using wavelets. Physical Review A, 92 (3), sep. 2015. URL https://doi.org/10.1103/physreva.92.032315. 2 [13] Fishman, M. T., White, S. R. Compression of correlation matrices and an efficient method for forming matrix product states of fermionic gaussian states. Phys. Rev. B, 92, 075132, Aug 2015. URL https://link.aps.org/doi/10.1103/PhysRevB.92.075132. 2 [14] Yang, C., Feiguin, A. E. Unveiling the internal entanglement structure of the Kondo singlet, 2017. URL https://arxiv.org/abs/1703.02383. 2, 21, 35, 37 [15] Flores, D. Optimización de la renormalización numérica utilizando información cuántica: aplicación a modelos de una impureza interactuante. Proyecto Fin de Carrera, Instituto Balseiro, dic. 2016. 2, 21, 29, 32, 33 [16] Baiardi, A., Reiher, M. The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges. The Journal of Chemical Physics, 152 (4), 040903, ene. 2020. URL https://doi.org/10.1063/1.5129672. 3 [17] White, S. R., Martin, R. L. Ab initio quantum chemistry using the density matrix renormalization group. The Journal of Chemical Physics, 110 (9), 4127–4130, mar. 1999. URL https://doi.org/10.1063/1.478295. [18] Chan, G. K.-L., Head-Gordon, M. Highly correlated calculations with a polynomial cost algorithm: A study of the density matrix renormalization group. The Journal of Chemical Physics, 116 (11), 4462–4476, mar. 2002. URL https://doi.org/ 10.1063/1.1449459. 3 [19] Martín-Delgado, M. A., Rodriguez-Laguna, J., Sierra, G. Density-matrix renormalization-group study of excitons in dendrimers. Phys. Rev. B, 65 (15), abr. 2002. URL https://doi.org/10.1103/physrevb.65.155116. 3 [20] Martín-Delgado, M. A., Sierra, G. Density matrix renormalization group approach to an asymptotically free model with bound states. Phys. Rev. Lett., 83 (8), 1514–1517, ago. 1999. URL https://doi.org/10.1103/physrevlett.83.1514.3 [21] Dukelsky, J., Pittel, S. New approach to large-scale nuclear structure calculations. Phys. Rev. C, 63, 061303, May 2001. URL https://link.aps.org/doi/10.1103/PhysRevC.63.061303. 3 [22] Dukelsky, J., Pittel, S. The density matrix renormalization group for finite fermi systems. Reports on Progress in Physics, 67 (4), 513, mar 2004. URL https://dx.doi.org/10.1088/0034-4885/67/4/R02. 3 [23] Osborne, T. J., Nielsen, M. A. Entanglement, Quantum Phase Transitions, and Density Matrix Renormalization. Quantum Information Processing, 1 (1/2), 45–53, 2002. URL https://doi.org/10.1023/a:1019601218492. 8 [24] Fernández, Y. N. Desarrollo y aplicación de métodos computacionales de avanzada para el cálculo de propiedades electrónicas de materiales correlacionados. Tesis Doctoral, Instituto Balseiro, 2018. 14, 18, 40 [25] Hubbard, J. Electron correlations in narrow energy bands. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 276 (1365), 238–257, nov. 1963. URL https://doi.org/10.1098/rspa.1963.0204. 17 [26] Wietek, A., Rossi, R., Šimkovic, F., Klett, M., Hansmann, P., Ferrero, M., et al. Mott insulating states with competing orders in the triangular lattice Hubbard model. Phys. Rev. X, 11, 041013, Oct 2021. URL https://link.aps.org/doi/10.1103/PhysRevX.11.041013. 17 [27] Carmelo, J. M. P., Horsch, P., Campbell, D. K., Neto, A. H. C. Magnetic effects, dynamical form factors, and electronic instabilities in the Hubbard chain. Physical Review B, 48 (6), 4200–4203, ago. 1993. URL https://doi.org/10.1103/physrevb.48.4200. 17 [28] Tocchio, L. F., Becca, F., Montorsi, A. Superconductivity in the Hubbard model: a hidden-order diagnostics from the Luther-Emery phase on ladders. SciPost Phys., 6, 018, 2019. URL https://scipost.org/10.21468/SciPostPhys.6.2.018. 17 [29] Macedo, C., Souza, A. Magnetic properties of nanotube structures. Physica B: Condensed Matter, 354 (1-4), 290–292, dic. 2004. URL https://doi.org/10.1016/j.physb.2004.09.069. 17 [30] Rosner, H., Eschrig, H., Hayn, R., Drechsler, S.-L., Málek, J. Electronic structure and magnetic properties of the linear chain cuprates sr2cuo3and ca2cuo3. Phys. Rev. B, 56, 3402–3412, Aug 1997. URL https://link.aps.org/doi/10.1103/PhysRevB.56.3402. 17 [31] Pairault, S., Sénéchal, D., Tremblay, A.-M. S. Strong-coupling expansion for the Hubbard model. Phys. Rev. Lett., 80, 5389–5392, Jun 1998. URL https://link.aps.org/doi/10.1103/PhysRevLett.80.5389. 17 [32] Shastry, B. S. Mott transition in the Hubbard model. Modern Physics Letters B, 06 (23), 1427–1438, oct. 1992. URL https://doi.org/10.1142/s0217984992001137. 17 [33] He, R.-Q., Lu, Z.-Y. Quantum renormalization groups based on natural orbitals. Physical Review B, 89 (8), feb. 2014. URL https://doi.org/10.1103/physrevb.89.085108. 20 [34] Barthel, T., Kasztelan, C., McCulloch, I. P., Schollwöck, U. Magnetism, coherent many-particle dynamics, and relaxation with ultracold bosons in optical superlattices. Physical Review A, 79 (5), mayo 2009. URL https://doi.org/10.1103/physreva.79.053627. 23 [35] Anderson, P. W. Localized magnetic states in metals. Phys. Rev., 124, 41–53, Oct 1961. URL https://link.aps.org/doi/10.1103/PhysRev.124.41. 29 [36] Kondo, J. Resistance minimum in dilute magnetic alloys. Progress of Theoretical Physics, 32 (1), 37–49, jul. 1964. URL https://doi.org/10.1143/ptp.32.37. [37] Krishna-murthy, H. R., Wilson, K. G., Wilkins, J. W. Temperature-dependent susceptibility of the symmetric anderson model: Connection to the Kondo model. Phys. Rev. Lett., 35, 1101–1104, Oct 1975. URL https://link.aps.org/doi/10.1103/PhysRevLett.35.1101. 29 [38] Holzner, A., Weichselbaum, A., von Delft, J. Matrix product state approach for a two-lead multilevel Anderson impurity model. Phys. Rev. B, 81, 125126, Mar 2010. URL https://link.aps.org/doi/10.1103/PhysRevB.81.125126. 32 [39] Georges, A., Kotliar, G., Krauth, W., Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys., 68, 13–125, Jan 1996. URL https://link.aps.org/doi/10.1103/RevModPhys.68.13. 39, 40 [40] Kotliar, G., Savrasov, S. Y., Haule, K., Oudovenko, V. S., Parcollet, O., Marianetti, C. A. Electronic structure calculations with dynamical mean-field theory. Reviews of Modern Physics, 78 (3), 865–951, ago. 2006. URL https://doi.org/10.1103/revmodphys.78.865. 39, 46 [41] Ramasesha, S., Pati, S. K., Krishnamurthy, H. R., Shuai, Z., Bredas, J. L. Low-lying electronic excitations and nonlinear optic properties of polymers via symmetrized density matrix renormalization group method, 1996. URL https://arxiv.org/abs/cond-mat/9609164. 39 [42] Hestenes, M., Stiefel, E. Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 49 (6), 409, dic. 1952. URL https://doi.org/10.6028/jres.049.044. 40 [43] García, H. F. Estudio numérico de excitaciones electrónicas en sistemas unidimensionales multiorbitales correlacionados. Proyecto Fin de Carrera, Instituto Balseiro, mar. 2021. 40 [44] Ronca, E., Li, Z., Jimenez-Hoyos, C. A., Chan, G. K.-L. Time-step targeting timedependent and dynamical density matrix renormalization group algorithms with ab initio hamiltonians. Journal of Chemical Theory and Computation, 13 (11), 5560–5571, oct. 2017. URL https://doi.org/10.1021/acs.jctc.7b00682. 40 [45] Fernández, Y. N., Hallberg, K. Solving the multi-site and multi-orbital dynamical mean field theory using density matrix renormalization. Frontiers in Physics, 6, feb. 2018. URL https://doi.org/10.3389/fphy.2018.00013. 46 [46] Lanczos, C. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. Journal of Research of the National Bureau of Standards, 45 (4), 255, oct. 1950. URL https://doi.org/10.6028/jres.045.026. 47 [47] Cullum, J. K., Willoughby, R. A. Lanczos Algorithms for Large Symmetric Eigenvalue Computations. Society for Industrial and Applied Mathematics, 2002. URL https://doi.org/10.1137/1.9780898719192. 47 [48] Sanderson, C., Curtin, R. Armadillo: a template-based c++ library for linear algebra. Journal of Open Source Software, 1 (2), 26, 2016. URL https://doi.org/10.21105/joss.00026. 48, 53 [49] Heil, C. E., Walnut, D. F. Continuous and discrete wavelet transforms. SIAM Review, 31 (4), 628–666, dic. 1989. URL https://doi.org/10.1137/1031129.51 [50] Daubechies, I. Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, 1992. URL https://doi.org/10.1137/1.9781611970104. 52 [51] Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P. Numerical Recipes in C. 2a edón. Cambridge, USA: Cambridge University Press, 1992. 52
Materias:Física > Materia condensada
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Materia condensada > Teoría de sólidos
Código ID:1152
Depositado Por:Tamara Cárcamo
Depositado En:07 Aug 2023 12:10
Última Modificación:07 Aug 2023 12:10

Personal del repositorio solamente: página de control del documento