Simulaciones masivamente paralelas de modelos de propagación epidemias e incendios / Massively parallel simulations of fire and epidemic propagation models

Zagarra Saez, Renzo (2022) Simulaciones masivamente paralelas de modelos de propagación epidemias e incendios / Massively parallel simulations of fire and epidemic propagation models. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
17Mb

Resumen en español

Se estudió la propagación de frentes de onda gobernados por ecuaciones de reaccióndifusión en el marco del modelo SIR espacial. Dichos frentes de onda podrían utilizarse para caracterizar frentes de infección en una problemática epidemiológica o bien orientarse a una problemática completamente diferente como la de frentes de incendios. Se definió una metodología estadística para la caracterización de los frentes de onda a partir de la cual se obtuvieron resultados cuantitativos respecto de la velocidad, la amplitud media, las propiedades geométricas e incluso la nocividad de los frentes sobre diferentes medios homogéneos y heterogéneos. La heterogeneidad se introdujo en el modelo por medio de una tasa de transmisión espacialmente dependiente. En particular, se exploraron heterogeneidades desordenadas y correlacionadas a partir de lo cual pudo describirse cuantitativamente el efecto que tenía cada uno de ellas sobre las características del frente de infección. Se realizaron simulaciones numéricas masivas para resolver el sistema de ecuaciones de reacción-difusión involucrado en la dinámica. Estas se implementaron de manera eficiente utilizando computación acelerada a través de programación en paralelo sobre procesadores gráficos. De esta manera fue posible obtener resultados sobre sistemas a gran escala en tiempos razonables. Encontramos una dependencia no trivial del umbral de propagación y la velocidad del frente con el desorden y observamos diferencias dependiendo del tipo de desorden involucrado. Estudiamos la dinámica de la rugosidad del frente de infección y determinamos que la misma cae en la clase de universalidad de KPZ (Kardar-Parisi-Zhang) de origen cinético.

Resumen en inglés

The propagation of wave fronts governed by reaction-diffusion equations was studied within the framework of the spatial SIR model. These wave fronts could be used to characterize infection fronts in an epidemiological problem or be oriented to a completely different problem such as forest fire fronts. A statistical methodology was defined for the characterization of the wave fronts from which quantitative results were obtained regarding the speed, the mean amplitude, the geometric properties and even the harmfulness of the fronts on different homogeneous and heterogeneous media. Heterogeneity was introduced into the model by means of a spatially dependent transmission rate. In particular, disordered and correlated heterogeneities were explored, from which it was possible to quantitatively describe the effect that each of them had on the characteristics of the wavefront. Massive numerical simulations were performed to solve the system of reactiondiffusion equations involved in the dynamics. These were efficiently implemented using accelerated computing through parallel programming on graphics processors. In this way it was possible to obtain results on large-scale systems in reasonable times. We find a non-trivial dependence of the propagation threshold and the front velocity with disorder and observe differences depending on the type of disorder involved. We study the dynamics of the roughness of the front and determine that it could be explained by the KPZ (Kardar-Parisi-Zhang) universality class of kinetic origin.

Tipo de objeto:Tesis (Maestría en Ciencias Físicas)
Palabras Clave:Scaling laws; Leyes de la semejanza; [Dynamic systems; Sistemas dinámicos; Disordered media reaction-diffusion; Medios desordenados reacción-difusión; Equations SIR; SIR Ecuaciones; Scale Invariance KPZ; Invariancia de escala KPZ; Complex systems; Sistemas complejos; Disordered media; Medios desordenados; Reaction-diffusion equations; Ecuaciones de reacción-difusión]
Referencias:[1] Riley, S., Eames, K., Isham, V., Mollison, D., Trapman, P. Five challenges for spatial epidemic models. Epidemics, 10, 68–71, 2015. Challenges in Modelling Infectious Disease Dynamics. [2] Barabási, A.-L., Stanley, H. E., et al. Fractal concepts in surface growth. Cambridge university press, 1995. [3] Zhang, J., Zhang, Y.-C., Alstrøm, P., Levinsen, M. Modeling forest fire by a paperburning experiment, a realization of the interface growth mechanism. Physica A: Statistical Mechanics and its Applications, 189 (3-4), 383–389, 1992. [4] Provatas, N., Ala-Nissila, T., Grant, M., Elder, K., Piché, L. Scaling, propagation, and kinetic roughening of flame fronts in random media. Journal of statistical physics, 81 (3), 737–759, 1995. [5] Maunuksela, J., Myllys, M., Kähkönen, O.-P., Timonen, J., Provatas, N., Alava, M. J., et al. Kinetic Roughening in Slow Combustion of Paper. Phys. Rev. Lett., 79, 1515–1518, Aug 1997. [6] Jullien, R., Kertész, J., Meakin, P., Wolf, D. E. Surface disordering : growth, roughening, and phase transitions. 1992. [7] Yunker, P. J., Lohr, M. A., Still, T., Borodin, A., Durian, D. J., Yodh, A. G. Effects of Particle Shape on Growth Dynamics at Edges of Evaporating Drops of Colloidal Suspensions. Phys. Rev. Lett., 110, 035501, Jan 2013. [8] Kastberger, G., Hoetzl, T., Maurer, M., Kranner, I.,Weiss, S.,Weihmann, F. Speeding up social waves. Propagation mechanisms of shimmering in giant honeybees. PloS one, 9 (1), e86315, 2014. [9] Kastberger, G., Weihmann, F., Hoetzl, T. Social waves in giant honeybees (Apis dorsata) elicit nest vibrations. Naturwissenschaften, 100 (7), 595–609, 2013. [10] Kastberger, G., Schmelzer, E., Kranner, I. Social waves in giant honeybees repel hornets. PLoS One, 3 (9), e3141, 2008. [11] Farkas, I., Helbing, D., Vicsek, T. Mexican waves in an excitable medium. Nature, 419 (6903), 131–132, 2002. [12] Farkas, I., Helbing, D., Vicsek, T. Human waves in stadiums. Physica A: statistical mechanics and its applications, 330 (1-2), 18–24, 2003. [13] ViralHog. Honeybees Mesmerizing Defensive Wave. Youtube, 2019. [14] Matsushita, M., Fujikawa, H. Diffusion-limited growth in bacterial colony formation. Physica A: Statistical Mechanics and its Applications, 168 (1), 498–506, 1990. [15] Bhattacharjee, T., Amchin, D. B., Alert, R., Ott, J. A., Datta, S. S. Chemotactic smoothing of collective migration. Elife, 11, e71226, 2022. [16] Abramson, G. Tópicos de Biología Matemática. págs. 203–208, 2018. [17] Barbieri, R., Texier, G., Keller, C., Drancourt, M. Soil salinity and aridity specify plague foci in the United States of America. Scientific reports, 10 (1), 1–9, 2020. [18] Stenseth, N. C., Atshabar, B. B., Begon, M., Belmain, S. R., Bertherat, E., Carniel, E., et al. Plague: past, present, and future. PLoS medicine, 5 (1), e3, 2008. [19] Kolton, A. B., Laneri, K. Rough infection fronts in a random medium. The European Physical Journal B, 92 (6), Jun 2019. [20] Farahzadi, A. Systematic studies on structural and optical properties of organic thin films on inorganic substrates. Tesis Doctoral, Aachen, Techn. Hochsch., Diss., 2007, 2008. [21] Family, F., Vicsek, T. Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model. Journal of Physics A: Mathematical and General, 18 (2), L75, feb 1985. [22] Bustingorry, S., Guyonnet, J., Paruch, P., Agoritsas, E. A numerical study of the statistics of roughness parameters for fluctuating interfaces. Journal of Physics: Condensed Matter, 33, 06 2021. [23] Family, F. Scaling of rough surfaces: effects of surface diffusion. Journal of Physics A: Mathematical and General, 19 (8), L441, jun 1986. [24] Kardar, M., Parisi, G., Zhang, Y.-C. Dynamic Scaling of Growing Interfaces. Phys. Rev. Lett., 56, 889–892, Mar 1986. [25] Lam, F., Mi, X., Higgins, A. J. Front roughening of flames in discrete media. Phys. Rev. E, 96, 013107, Jul 2017. [26] O’Malley, L., Kozma, B., Korniss, G., Rácz, Z., Caraco, T. Fisher waves and front roughening in a two-species invasion model with preemptive competition. Phys. Rev. E, 74, 041116, Oct 2006. [27] Glatter, K. A., Finkelman, P. History of the plague: An ancient pandemic for the age of COVID-19. The American journal of medicine, 134 (2), 176–181, 2021. [28] Cesana, D., Benedictow, O., Bianucci, R. The origin and early spread of Black Death in Italy: first evidence of plague victims from 14th century Liguria (Northern Italy). Anthropological Science (Japanese Series), 125, 03 2017. [29] Christakos, G., Olea, R. A., Serre, M. L., Wang, L.-L., Yu, H.-L. Interdisciplinary public health reasoning and epidemic modelling: the case of black death. Springer, 2005. [30] Murray, J. D. Mathematical Biology II: Spatial Models and Biomedical Applications, tomo 18 de Interdisciplinary Applied Mathematics. Springer New York, 2003. [31] Taubenberger, J. K. The origin and virulence of the 1918 “Spanish” influenza virus. Proceedings of the American Philosophical Society, 150 (1), 86, 2006. [32] Worobey, M., Han, G.-Z., Rambaut, A. Genesis and pathogenesis of the 1918 pandemic H1N1 influenza A virus. Proceedings of the National Academy of Sciences, 111 (22), 8107–8112, 2014. [33] Mills, C. E., Robins, J. M., Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature, 432 (7019), 904–906, 2004. [34] Kermack, W. O., McKendrick, A. G., Walker, G. T. A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 115 (772), 700–721, 1927. [35] Keeling, M. J., Rohani, P. Modeling Infectious Diseases in Humans and Animals. págs. 15–26. Princeton University Press, 2008. [36] Harko, T., Lobo, F. S., Mak, M. Exact analytical solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and birth rates. Applied Mathematics and Computation, 236, 184–194, 2014. [37] Provatas, N., Ala-Nissila, T., Grant, M., Elder, K., Piché, L. Flame propagation in random media. Physical Review E, 51 (5), 4232, 1995. [38] Ipsen, M., Kramer, L., Sørensen, P. G. Amplitude equations for description of chemical reaction–diffusion systems. Physics Reports, 337 (1-2), 193–235, 2000. [39] Field, R. J. Oscillations and traveling waves in chemical systems. Wiley, 1985. [40] Horváth, D., Petrov, V., Scott, S. K., Showalter, K. Instabilities in propagating reaction-diffusion fronts. The Journal of chemical physics, 98 (8), 6332–6343, 1993. [41] Murray, J. D. Mathematical Biology I. An Introduction, tomo 17 de Interdisciplinary Applied Mathematics. New York: Springer, 2002. [42] Crank, J. The mathematics of diffusion. Oxford university press, 1979. [43] Turing, A. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society B, 237, 37–72, 1952. [44] NVIDIA, Vingelmann, P., Fitzek, F. H. CUDA, release: 10.2.89, 2020. [45] Van Rossum, G., Drake, F. L. Python 3 Reference Manual. Scotts Valley, CA: CreateSpace, 2009. [46] Okuta, R., Unno, Y., Nishino, D., Hido, S., Loomis, C. CuPy: A NumPy-Compatible Library for NVIDIA GPU Calculations. En: Proceedings of Workshop on Machine Learning Systems (LearningSys) in The Thirty-first Annual Conference on Neural Information Processing Systems (NIPS). 2017. [47] Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., et al. Array programming with NumPy. Nature, 585 (7825), 357–362, sep. 2020. [48] Lam, S. K., Pitrou, A., Seibert, S. Numba: A llvm-based python jit compiler. En: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, págs. 1–6. 2015. [49] Lattner, C., Adve, V. LLVM: A Compilation Framework for Lifelong Program Analysis and Transformation. págs. 75–88. San Jose, CA, USA, 2004. [50] Kertesz, J., Wolf, D. E. Noise reduction in Eden models: II. Surface structure and intrinsic width. Journal of Physics A: Mathematical and General, 21 (3), 747, 1988. [51] Wolf, D., Kertesz, J. Surface width exponents for three-and four-dimensional eden growth. EPL (Europhysics Letters), 4 (6), 651, 1987. [52] Krug, J., Spohn, H. Mechanism for rough-to-rough transitions in surface growth. Physical review letters, 64 (19), 2332, 1990.
Materias:Física > Física estadística
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Materia condensada > Teoría de sólidos
Código ID:1156
Depositado Por:Tamara Cárcamo
Depositado En:08 Aug 2023 12:32
Última Modificación:08 Aug 2023 12:32

Personal del repositorio solamente: página de control del documento