Carraro Haddad, Ignacio (2022) Acoplamiento y optomecánica de condensados de polaritones excitónicos fuera de equilibrio / Coupling and optomechanics of non-equilibrium polariton-exciton condensates. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 8Mb |
Resumen en español
En esta tesis desarrollamos las bases teóricas y experimentales del problema de dos condensados de polaritones excitónicos acoplados, los cuales se ven sometidos a efectos optomecánicos que alteran fuertemente su dinámica. Si bien el acoplamiento de dos estados cuánticos macroscópicos se ha explorado en otras plataforma, como es el caso de las junturas Josephson superconductoras y los pares de condensados de Bose- Einstein de átomos fríos, los condensados de polaritones excitónicos representan, a diferencia de los dos últimos sistemas, un ejemplo de un sistema forzado-disipativo (driven-dissipative), lo cual abre todo un espectro de problemas no-Hermıticos con características cualitativamente diferentes. Además, estos sistemas de polaritones acoplados han evidenciado fenómenos de auto-oscilación mecánica lo cual genera un puente con la optomecánica en cavidades. Aprovechando este fenómeno, desarrollamos cómo el acoplamiento optomecánico provee una manera novedosa de modular de manera armónica y auto-consistente la energía de acoplamiento, J(t), entre dos condensados de polaritones. Estudiamos este problema en dos contextos diferentes, el primero se trata de la interacción entre las dos proyecciones de pseudoespın de un condensado. Observamos experimentalmente un desdoblamiento del estado fundamental de una trampa aislada en dos líneas de emisión con polarizaciones diferentes, cuya separación es igual a la energía del fanón fundamental de la cavidad (ν_0 ∼ 20 GHz). Proponemos así un mecanismo de acoplamiento optomec´anico entre ambas proyecciones de pseudoespın que resulta en una energía de acoplamiento efectiva J(t) ∝ cos (2πν_0t), la cual puede dar una explicación plausible a por qué se fija la energía relativa entre ambos estados a la energía del fanón. Además, mediante mediciones de interferometría resuelta espectralmente, observamos una dinámica temporal oscilatoria entre las ocupaciones de cada estado de pseudoespin inducido por la onda mecánica. De esta manera, la observación del desoblamiento en pseudoespın a 20 GHz es una manifestación de que el sistema de polaritones evoluciona forzando una auto-oscilación mecánica coherente. El segundo caso de estudio es el de un par de trampas que se acoplan vía tuneleo de partículas entre ellas. Realizamos dos experimentos diferentes, en el primero estudiamos dos trampas de 2 μm de lado separadas 2 μm, para el cual estimamos que la frecuencia de tuneleo es bastante menor a la frecuencia de los fonones (J ≪ hν_0). Observamos que los modos fundamentales de ambas trampas, bajos ciertas condiciones, entran en un estado de locking optomec´anico donde se fija su energía relativa a la energía de la modulación inducida por el acoplamiento optomec´anico en J(t). Entendemos a este proceso como uno de segundo orden de fonones, donde los polaritones transicionan de una trampa a la otra emitiendo un fanón fundamental y otro del segundo armónico. También demostramos que la energía de locking se renormaliza al aumentar la potencia de excitación en el sistema. En el segundo experimento, estudiamos dos trampas de 4 μm de lado separadas 1 μm, para el cual estimamos que la frecuencia de tuneleo directo entre trampas es del orden de la frecuencia de los fonones (J ∼ hν_0). Vemos que cuando la energía entre los estados fundamentales de ambas trampas se aproxima a la energía del fanón de cavidad, hay un crecimiento drástico en la corriente de polaritones desde la trampa de mayor energía a la de menor energía, como sucede en las resonancias de Shapiro cuando se irradian junturas Josephson con radiofrecuencias. Además de esto, también observamos locking optomec´anico pero a través de un proceso de primer orden de fonones en vez de segundo, debido al mayor solapamiento entre los estados de trampa respecto al experimento anterior.
Resumen en inglés
In this thesis we develop the theoretical and experimental bases of the problem of two coupled excitonic polariton condensates, which are subjected to optomechanical effects that strongly alter their dynamics. Although the coupling of two macroscopic quantum states has been explored on other platforms, such as superconducting Josephson junctions and Bose Einstein condensate pairs of cold atoms, polariton condensates, unlike the last two systems, represent an example of a driven-dissipative system, which opens up a whole spectrum of non-Hermitian problems with qualitatively different characteristics. In addition, these coupled polariton systems have evidenced phenomena of mechanical self-oscillation which generates a bridge with optomechanics in cavities. Taking advantage of this phenomenon, we develop how optomechanical coupling provides a novel way to harmonically and self-consistently modulate the coupling energy, J(t), between two polariton condensates. We study this problem in two different contexts, the first one deals with the interaction between the two pseudospin projections of a condensate. We experimentally observed a splitting of the ground state of a single trap into two emission lines with different polarizations, whose separation is equal to the energy of the ground state cavity phonon (ν_0 ∼ 20 GHz). We thus propose an optomechanical coupling mechanism between both pseudospin projections that results in an effective coupling energy J(t) ∝ cos (2πν_0t), which can give a plausible explanation for why the relative energy between both pseudospin states sets to the phonon energy. In addition, by means of spectrally resolved interferometry measurements, we observed an oscillatory temporal dynamics between the occupations of each pseudospin state induced by the mechanical wave. Thus, the observation of pseudospin unfolding at 20 GHz is a manifestation that the polariton system evolves forcing a coherent mechanical self-oscillation. The second case study is that of a pair of traps that are coupled via particle tunneling between them. We perform two different experiments, in the first we estimate that the tunneling energy is much lower than the phonon energy. We observe that the ground states of both traps, under certain conditions, enter an optomechanical locked state where their relative energy equals the energy of the modulation induced by the optomechanical coupling to J(t). We understand this as a second-order phonon process, where the polaritons transition from one trap to the other, emitting one ground state phonon and one phonon from the second harmonic. We also show that the locked energy is renormalized by increasing the excitation power. In the second experiment, we estimate that the direct tunneling energy between traps is of the same order of magnitude as the phonon energy. We see that when the energy between the ground states of both traps approaches the energy of the cavity phonon, there is a drastic growth in the current of polaritons from the higher energy trap to the lower energy one, as happens in the Shapiro resonances when Josephson junctions are irradiated by radio frequencies. In addition to this, we also observe optomechanical locking but through a first-order phonon process instead of a second-order one, due to the greater overlap between the trapped states compared to the previous experiment.
Tipo de objeto: | Tesis (Maestría en Ciencias Físicas) |
---|---|
Palabras Clave: | Polaritons; Polaritones; Synchronization; Sincronización; Josephson junctions; Uniones de Josephson; [Shapiro resonance; Resonancia de Shapiro] |
Referencias: | [1] Chafatinos, D. Optomecanico de un condensado de bose-einstein de polaritones en microcavidades ópticas. Master’s Thesis, 2019. vii, 6, 7, 8, 9, 77 [2] Chafatinos, D. L., Kuznetsov, A. S., Sesin, P., Papuccio, I., Reynoso, A. A., Bruchhausen, A. E., et al. Metamaterials of fluids of light and sound, 2021. URL https://arxiv.org/abs/2112.00458. viii, viii, 13, 14, 15, 19, 28, 29, 54, 77 [3] Fainstein, A., Lanzillotti-Kimura, N. D., Jusserand, B., Perrin, B. Strong opticalmechanical coupling in a vertical gaas/alas microcavity for subterahertz phonons and near-infrared light. Phys. Rev. Lett., 110, 037403, Jan 2013. URL https://link.aps.org/doi/10.1103/PhysRevLett.110.037403. viii, 14, 15, 17 [4] Grond, J., Betz, T., Hohenester, U., Mauser, N. J., Schmiedmayer, J., Schumm, T. The Shapiro effect in atomchip-based bosonic Josephson junctions. New Journal of Physics, 13 (6), 065026, jun 2011. URL https://dx.doi.org/10.1088/ 1367-2630/13/6/065026. ix, xiv, xiv, 3, 32, 33, 74, 75, 78 [5] Ohadi, H., Dreismann, A., Rubo, Y. G., Pinsker, F., del Valle-Inclan Redondo, Y., Tsintzos, S. I., et al. Spontaneous spin bifurcations and ferromagnetic phase transitions in a spinor exciton-polariton condensate. Phys. Rev. X, 5, 031002, Jul 2015. URL https://link.aps.org/doi/10.1103/PhysRevX.5.031002. x, 3, 19, 34, 36, 37, 39, 78 [6] Wouters, M. Synchronized and desynchronized phases of coupled nonequilibrium exciton-polariton condensates. Phys. Rev. B, 77, 121302, Mar 2008. URL https://link.aps.org/doi/10.1103/PhysRevB.77.121302. xi, 2, 19, 20, 25, 26, 27, 28, 30, 47, 48, 70, 78 [7] Deng, H., Haug, H., Yamamoto, Y. Exciton-polariton bose-einstein condensation. Rev. Mod. Phys., 82, 1489–1537, May 2010. URL https://link.aps.org/doi/10.1103/RevModPhys.82.1489. 1 [8] Kuznetsov, A. S., Helgers, P. L. J., Biermann, K., Santos, P. V. Quantum confinement of exciton-polaritons in a structured (al,ga)as microcavity. Phys. Rev. B, 97, 195309, May 2018. URL https://link.aps.org/doi/10.1103/PhysRevB.97.195309. 1 [9] Fainstein, A., Lanzillotti-Kimura, N. D., Jusserand, B., Perrin, B. Strong opticalmechanical coupling in a vertical gaas/alas microcavity for subterahertz phonons and near-infrared light. Phys. Rev. Lett., 110, 037403, Jan 2013. URL https: //link.aps.org/doi/10.1103/PhysRevLett.110.037403. 1 [10] Madsen, L., Laudenbach, F., Askarani, M. t. Quantum computational advantage with a programmable photonic processor. Nature, 606, 75–81, Jun 2022. URL https://doi.org/10.1038/s41586-022-04725-x. 1 [11] Raghavan, S., Smerzi, A., Fantoni, S., Shenoy, S. R. Coherent oscillations between two weakly coupled bose-einstein condensates: Josephson effects, π oscillations, and macroscopic quantum self-trapping. Phys. Rev. A, 59, 620–633, Jan 1999. URL https://link.aps.org/doi/10.1103/PhysRevA.59.620. 3, 32, 33, 75, 78 [12] Antonio Barone, G. P. Physics and Applications of the Josephson Effect. John Wiley and Sons, Ltd, 1982. 3, 17, 32 [13] Bruchhausen, A. Raman amplification en nanostructurted sistems. PhD Thesis, 2008. 6, 7 [14] Cardona, M., Peter, Y., Y. Springer, 2005. 7, 8, 9 [15] Bastard, G., Mendez, E. E., Chang, L. L., Esaki, L. Exciton binding energy in quantum wells. Phys. Rev. B, 26, 1974–1979, Aug 1982. URL https://link. aps.org/doi/10.1103/PhysRevB.26.1974. 9 [16] Weisbuch, C., Nishioka, M., Ishikawa, A., Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett., 69, 3314–3317, Dec 1992. URL https://link.aps.org/doi/10.1103/ PhysRevLett.69.3314. 9 [17] Hopfield, J. J. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev., 112, 1555–1567, Dec 1958. URL https://link.aps.org/doi/10.1103/PhysRev.112.1555. 10 [18] Kuznetsov, A. S., Machado, D. H. O., Biermann, K., Santos, P. V. Electrically driven microcavity exciton-polariton optomechanics at 20 ghz. Phys. Rev. X, 11, 021020, Apr 2021. URL https://link.aps.org/doi/10.1103/PhysRevX.11.021020. 11, 28 [19] Madsen, L. S., Laudenbach, F., Askarani, M. F., Rortais, F., Vincent, T., Bulmer, J. F. F., et al. Quantum computational advantage with a programmable photonic processor. Nature, 606 (7912), 75–81, Jun 2022. URL https://doi.org/10.1038/s41586-022-04725-x. 14 [20] Schneider, C., Winkler, K., Fraser, M. D., Kamp, M., Yamamoto, Y., Ostrovskaya, E. A., et al. Exciton-polariton trapping and potential landscape engineering. Reports on Progress in Physics, 80 (1), 016503, nov 2016. URL https://dx.doi.org/10.1088/0034-4885/80/1/016503. 14 [21] del Valle-Inclan Redondo, Y., Sigurdsson, H., Ohadi, H., Shelykh, I. A., Rubo, Y. G., Hatzopoulos, Z., et al. Observation of inversion, hysteresis, and collapse of spin in optically trapped polariton condensates. Phys. Rev. B, 99, 165311, Apr 2019. URL https://link.aps.org/doi/10.1103/PhysRevB.99.165311. 14 [22] Trigo, M., Bruchhausen, A., Fainstein, A., Jusserand, B., Thierry-Mieg, V. Confinement of acoustical vibrations in a semiconductor planar phonon cavity. Phys. Rev. Lett., 89, 227402, Nov 2002. URL https://link.aps.org/doi/10.1103/PhysRevLett.89.227402. 14 [23] Kippenberg, T. J., Rokhsari, H., Carmon, T., Scherer, A., Vahala, K. J. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett., 95, 033901, Jul 2005. URL https://link.aps.org/doi/10.1103/PhysRevLett.95.033901. 16 [24] Grudinin, I. S., Lee, H., Painter, O., Vahala, K. J. Phonon laser action in a tunable two-level system. Phys. Rev. Lett., 104, 083901, Feb 2010. URL https: //link.aps.org/doi/10.1103/PhysRevLett.104.083901. 16, 28 [25] O’Connell, A. D., Hofheinz, M., Ansmann, M., Bialczak, R. C., Lenander, M., Lucero, E., et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature, 464 (7289), 697–703, Apr 2010. URL https://doi.org/10.1038/nature08967. 16 [26] Teufel, J., Donner, T., Li, D., Harlow, J., Allman, M., Cicak, K., et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature, 475 (7356), 359—363, July 2011. URL https://doi.org/10.1038/nature10261. [27] Chan, J., Alegre, T. P. M., Safavi-Naeini, A. H., Hill, J. T., Krause, A., Groblacher, S., et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 478 (7367), 89–92, Oct 2011. URL https://doi.org/10.1038/nature10461. [28] Verhagen, E., Deleglise, S., Weis, S., Schliesser, A., Kippenberg, T. J. Quantumcoherent coupling of a mechanical oscillator to an optical cavity mode. Nature, 482 (7383), 63–67, Feb 2012. URL https://doi.org/10.1038/nature10787. 16 [29] Bochmann, J., Vainsencher, A., Awschalom, D. D., Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nature Physics, 9 (11), 712–716, Nov 2013. URL https://doi.org/10.1038/nphys2748. 16 [30] Bagci, T., Simonsen, A., Schmid, S., Villanueva, L., Zeuthen, E., Appel, J., et al. Optical detection of radio waves through a nanomechanical transducer. Nature, 507 (7490), 81—85, March 2014. URL https://doi.org/10.1038/nature13029. [31] Safavi-Naeini, A. H., Painter, O. Proposal for an optomechanical traveling wave phonon–photon translator. New Journal of Physics, 13 (1), 013017, jan 2011.URL https://dx.doi.org/10.1088/1367-2630/13/1/013017. 16 [32] Andrews, R. W., Peterson, R. W., Purdy, T. P., Cicak, K., Simmonds, R. W., Regal, C. A., et al. Bidirectional and efficient conversion between microwave and optical light. Nature Physics, 10 (4), 321–326, Apr 2014. URL https://doi.org/10.1038/nphys2911. 16 [33] Kyriienko, O., Liew, T. C. H., Shelykh, I. A. Optomechanics with cavity polaritons: Dissipative coupling and unconventional bistability. Phys. Rev. Lett., 112, 076402, Feb 2014. URL https://link.aps.org/doi/10.1103/PhysRevLett.112.076402. 16 [34] Carlon Zambon, N., Denis, Z., De Oliveira, R., Ravets, S., Ciuti, C., Favero, I.,et al. Enhanced cavity optomechanics with quantum-well exciton polaritons. Phys. Rev. Lett., 129, 093603, Aug 2022. URL https://link.aps.org/doi/10.1103/PhysRevLett.129.093603. 16 [35] Restrepo, J., Ciuti, C., Favero, I. Single-polariton optomechanics. Phys. Rev. Lett., 112, 013601, Jan 2014. URL https://link.aps.org/doi/10.1103/PhysRevLett.112.013601. 16 [36] Rozas, G., Bruchhausen, A. E., Fainstein, A., Jusserand, B., Lemaıtre, A. Polariton path to fully resonant dispersive coupling in optomechanical resonators. Phys. Rev. B, 90, 201302, Nov 2014. URL https://link.aps.org/doi/10.1103/PhysRevB.90.201302. 16 [37] Aspelmeyer, M., Kippenberg, T. J., Marquardt, F. Cavity optomechanics. Rev. Mod. Phys., 86, 1391–1452, Dec 2014. URL https://link.aps.org/doi/10.1103/RevModPhys.86.1391. 16 [38] Jusserand, B., Poddubny, A. N., Poshakinskiy, A. V., Fainstein, A., Lemaitre, A. Polariton resonances for ultrastrong coupling cavity optomechanics in GaAs/AlAs multiple quantum wells. Phys. Rev. Lett., 115, 267402, Dec 2015. URL https: //link.aps.org/doi/10.1103/PhysRevLett.115.267402. 17 [39] Anguiano, S., Bruchhausen, A. E., Jusserand, B., Favero, I., Lamberti, F. R., Lanco, L., et al. Micropillar resonators for optomechanics in the extremely high 19–95-ghz frequency range. Phys. Rev. Lett., 118, 263901, Jun 2017. URL https: //link.aps.org/doi/10.1103/PhysRevLett.118.263901. 17 [40] Chafatinos, D., Kuznetsov, A., Anguiano, S. t. Polariton-driven phonon laser. Nature Phys., 11, 4552, Sep 2020. URL https://doi.org/10.1038/s41467-020-18358-z. 17, 19, 28, 54, 77 [41] Reynoso, A. A., Usaj, G., Chafatinos, D. L., Mangussi, F., Bruchhausen, A. E., Kuznetsov, A. S., et al. Optomechanical parametric oscillation of a quantum lightfluid lattice. Phys. Rev. B, 105, 195310, May 2022. URL https://link.aps.org/doi/10.1103/PhysRevB.105.195310. 17, 19, 28, 29, 30, 54, 55, 56, 64, 77 [42] Williams, J. M., Janssen, T. J. B. M., Palafox, L., Humphreys, D. A., Behr, R., Kohlmann, J., et al. The simulation and measurement of the response of josephson junctions to optoelectronically generated short pulses. Superconductor Science and Technology, 17 (6), 815, apr 2004. URL https://dx.doi.org/10.1088/0953-2048/17/6/014. 17 [43] Josephson, B. Possible new effects in superconductive tunnelling. Physics Letters, 1 (7), 251–253, 1962. URL https://www.sciencedirect.com/science/article/pii/0031916362913690. [44] Josephson, B. D. The discovery of tunnelling supercurrents. Rev. Mod. Phys., 46, 251–254, Apr 1974. URL https://link.aps.org/doi/10.1103/RevModPhys.46.251. [45] Shapiro, S., Janus, A. R., Holly, S. Effect of microwaves on josephson currents in superconducting tunneling. Rev. Mod. Phys., 36, 223–225, Jan 1964. URL https://link.aps.org/doi/10.1103/RevModPhys.36.223. 17, 32, 54 [46] Smerzi, A., Fantoni, S., Giovanazzi, S., Shenoy, S. R. Quantum coherent atomic tunneling between two trapped bose-einstein condensates. Phys. Rev. Lett., 79, 4950–4953, Dec 1997. URL https://link.aps.org/doi/10.1103/PhysRevLett. 79.4950. 18, 22, 23, 24 [47] Levy, S., Lahoud, E., Shomroni, I., Steinhauer, J. The a.c. and d.c. josephson effects in a bose-einstein condensate. Nature, 449 (7162), 579—583, October 2007. URL https://doi.org/10.1038/nature06186. [48] Kwon, W. J., Pace, G. D., Panza, R., Inguscio, M., Zwerger, W., Zaccanti, M., et al. Strongly correlated superfluid order parameters from dc josephson supercurrents. Science, 369 (6499), 84–88, 2020. URL https://www.science.org/doi/abs/10.1126/science.aaz2463. 18 [49] Abbarchi, M., Amo, A., Sala, V. G., Solnyshkov, D. D., Flayac, H., Ferrier, L., et al. Macroscopic quantum self-trapping and josephson oscillations of exciton polaritons. Nature Physics, 9 (5), 275–279, May 2013. URL https://doi.org/10.1038/nphys2609. 18, 24, 31, 54 [50] Adiyatullin, A. F., Anderson, M. D., Flayac, H., Portella-Oberli, M. T., Jabeen, F., Ouellet-Plamondon, C., et al. Periodic squeezing in a polariton josephson junction. Nature Communications, 8 (1), 1329, Nov 2017. URL https://doi.org/10.1038/s41467-017-01331-8. 18 [51] Gu, J., Walther, V., Waldecker, L., Rhodes, D., Raja, A., Hone, J. C., et al. Enhanced nonlinear interaction of polaritons via excitonic rydberg states in monolayer wse2. Nature Communications, 12 (1), 2269, Apr 2021. URL https: //doi.org/10.1038/s41467-021-22537-x. 19 [52] Liu, X., Yi, J., Li, Q., Yang, S., Bao, W., Ropp, C., et al. Nonlinear optics at excited states of exciton polaritons in two-dimensional atomic crystals. Nano Letters, 20 (3), 1676–1685, Mar 2020. URL https://doi.org/10.1021/acs.nanolett.9b04811. 19 [53] Teklu, B., Solnyshkov, D., Malpuech, G. Non-equilibrium condensation in periodic polariton lattices. Superlattices and Microstructures, 100, 09 2015. 19 [54] Pieczarka, M., Estrecho, E., Boozarjmehr, M., Bleu, O., Steger, M., West, K., et al. Observation of quantum depletion in a non-equilibrium exciton–polariton condensate. Nature Communications, 11 (1), 429, Jan 2020. URL https://doi.org/10.1038/s41467-019-14243-6. 19 [55] Gargoubi, H., Guillet, T., Jaziri, S., Balti, J., Guizal, B. Polariton condensation threshold investigation through the numerical resolution of the generalized grosspitaevskii equation. Phys. Rev. E, 94, 043310, Oct 2016. URL https://link.aps.org/doi/10.1103/PhysRevE.94.043310. 21 [56] Eastham, P. R. Mode locking and mode competition in a nonequilibrium solidstate condensate. Phys. Rev. B, 78, 035319, Jul 2008. URL https://link.aps.org/doi/10.1103/PhysRevB.78.035319. 21 [57] Strogatz, S. H. Nonlinear Dynamics and Chaos. AddisonWesley, 1994. 22 [58] Zibold, T., Nicklas, E., Gross, C., Oberthaler, M. K. Classical bifurcation at the transition from rabi to josephson dynamics. Phys. Rev. Lett., 105, 204101, Nov 2010. URL https://link.aps.org/doi/10.1103/PhysRevLett.105.204101.23, 24 [59] Lagoudakis, K. G., Pietka, B.,Wouters, M., Andr´e, R., Deveaud-Pl´edran, B. Coherent oscillations in an exciton-polariton josephson junction. Phys. Rev. Lett., 105, 120403, Sep 2010. URL https://link.aps.org/doi/10.1103/PhysRevLett.105.120403. 24, 31 [60] Crespo-Poveda, A., Kuznetsov, A. S., Hern´andez-M´ınguez, A., Tahraoui, A., Biermann, K., Santos, P. V. Ghz guided optomechanics in planar semiconductor microcavities. Optica, 9 (2), 160–169, Feb 2022. URL https://opg.optica.org/ optica/abstract.cfm?URI=optica-9-2-160. 28 [61] Mangussi, F. Din´amica de polaritones en microcavidades ´opticas. PhD’s Thesis, 2019. 30, 59, 67 [62] Baas, A., Lagoudakis, K. G., Richard, M., Andr´e, R., Dang, L. S., Deveaud- Pledran, B. Synchronized and desynchronized phases of exciton-polariton condensates in the presence of disorder. Phys. Rev. Lett., 100, 170401, Apr 2008. URL https://link.aps.org/doi/10.1103/PhysRevLett.100.170401. 31, 78 [63] Kohler, S., Sols, F. Chemical potential standard for atomic bose–einstein condensates. New Journal of Physics, 5 (1), 94, jul 2003. URL https://dx.doi.org/10.1088/1367-2630/5/1/394. 32 [64] Shelykh, I. A., Rubo, Y. G., Malpuech, G., Solnyshkov, D. D., Kavokin, A. Polarization and propagation of polariton condensates. Phys. Rev. Lett., 97, 066402, Aug 2006. URL https://link.aps.org/doi/10.1103/PhysRevLett.97.066402. 34 [65] Deng, H., Weihs, G., Santori, C., Bloch, J., Yamamoto, Y. Condensation of semiconductor microcavity exciton polaritons. Science, 298 (5591), 199–202, 2002. URL https://www.science.org/doi/abs/10.1126/science.1074464. 34 [66] Kasprzak, J., Richard, M., Kundermann, S., Baas, A., Jeambrun, P., Keeling, J. M. J., et al. Bose–einstein condensation of exciton polaritons. Nature, 443 (7110), 409–414, Sep 2006. URL https://doi.org/10.1038/nature05131. 34 [67] Roumpos, G., Lai, C.-W., Liew, T. C. H., Rubo, Y. G., Kavokin, A. V., Yamamoto, Y. Signature of the microcavity exciton–polariton relaxation mechanism in the polarization of emitted light. Phys. Rev. B, 79, 195310, May 2009. URL https: //link.aps.org/doi/10.1103/PhysRevB.79.195310. 34 [68] Panzarini, G., Andreani, L. C., Armitage, A., Baxter, D., Skolnick, M. S., Astratov, V. N., et al. Exciton-light coupling in single and coupled semiconductor microcavities: Polariton dispersion and polarization splitting. Phys. Rev. B, 59, 5082–5089, Feb 1999. URL https://link.aps.org/doi/10.1103/PhysRevB.59.5082. 34 [69] Anisiu, M.-C. Lotka, volterra and their model. Didáctica mathematica, 32, 9–17, 2014. 35 [70] Kuznetsov, A. S., Biermann, K., Reynoso, A., Fainstein, A., Santos, P. V. Microcavity phonoritons – a coherent optical-to-microwave interface, 2022. URL https://arxiv.org/abs/2210.14331. 38, 39, 78 [71] Evrard, B., Qu, A., Jim´enez-Garc´ıa, K., Dalibard, J., Gerbier, F. Relaxation and hysteresis near shapiro resonances in a driven spinor condensate. Phys. Rev. A, 100, 023604, Aug 2019. URL https://link.aps.org/doi/10.1103/PhysRevA.100.023604. 39 [72] Giacomo, P. The michelson interferometer. Microchimica Acta, 93 (1), 19–31, Jan 1987. URL https://doi.org/10.1007/BF01201680. 46 [73] Thomas, J. I. The classical double slit experiment–a study of the distribution of interference fringes formed on distant screens of varied shapes. European Journal of Physics, 41 (5), 055305, aug 2020. URL https://dx.doi.org/10.1088/1361-6404/ab9afd. 49 [74] Gamow, G. Zur quantentheorie des atomkernes. Zeitschrift f¨ur Physik, 51 (3), 204–212, Mar 1928. URL https://doi.org/10.1007/BF01343196. 53 [75] Jang, J. K., Klenner, A., Ji, X., Okawachi, Y., Lipson, M., Gaeta, A. L. Synchronization of coupled optical microresonators. Nature Photonics, 12 (11), 688–693, Nov 2018. URL https://doi.org/10.1038/s41566-018-0261-x. 55 [76] Doppler, J. F., Amador, A., Goller, F., Mindlin, G. B. Dynamics behind rough sounds in the song of the pitangus sulphuratus. Phys. Rev. E, 102, 062415, Dec 2020. URL https://link.aps.org/doi/10.1103/PhysRevE.102.062415. 55 [77] Chang, R. Physical Chemistry for the Biosciences. University Science Books, 2005. 60 [78] Topfer, J. D., Sigurdsson, H., Alyatkin, S., Lagoudakis, P. G. Lotka-volterra population dynamics in coherent and tunable oscillators of trapped polariton condensates. Phys. Rev. B, 102, 195428, Nov 2020. URL https://link.aps.org/doi/10.1103/PhysRevB.102.195428. 71 |
Materias: | Física > Optoelectrónica Física > Optomecánica en resonadores semiconductores |
Divisiones: | Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Materia condensada > Laboratorio de fotónica y optoelectrónica |
Código ID: | 1160 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 24 Jul 2023 12:43 |
Última Modificación: | 24 Jul 2023 12:43 |
Personal del repositorio solamente: página de control del documento