Saidman, Ezequiel L. (2022) Filtros selectivos de dinámicas traslacionales en microestructuras de materia blanca con MRI / Selective filters of translational molecular diffusion dynamics in white matter microstructures with MRI. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Disponible bajo licencia Creative Commons: Reconocimiento - No comercial - Compartir igual. Español 6Mb |
Resumen en español
La resonancia magnética nuclear (NMR) es, al día de hoy, uno de los métodos más utilizados a la hora de obtener imágenes médicas de forma no invasiva. Sin embargo, los límites de resolución de las secuencias convencionales no permiten acceder a los procesos que suceden a escalas micro y sub-micrométricas, los cuales representan información de vital importancia tanto en el ámbito clínico como en el de investigación. Trabajos recientes sugieren que la secuencia NOGSE (Non-uniform Oscillating-Gradient Spin-Echo) es capaz de obtener información cuantitativa en estas escalas por medio de la difusión molecular, utilizando a los espines nucleares como sensores cuánticos que permiten extraer información sobre su entorno. Sin embargo, los modelos actuales para su respuesta no contemplan la variedad de procesos difusivos que suceden en tejidos biológicos como la materia blanca, lo que limita su capacidad de predicción cuantitativa. Por otra parte, trabajos anteriores han demostrado de forma teórica y experimental que es posible utilizar la secuencia NOGSE para filtrar la señal proveniente de procesos que suceden en escalas espaciales especificas. A partir de esto, en este trabajo implementamos la secuencia de modulación de gradiente NOGSE para filtrar selectivamente la señal proveniente de moléculas confinadas en microestructuras de tamaños específicos, con el objetivo de extraer información estructural de tejidos biológicos aún en presencia de dinámicas moleculares complejas. Para esto, se analizaron los datos correspondientes a experimentos de DWI realizados sobre un fantoma construido con el fin de emular los regímenes difusivos que tienen lugar en los espacios extra-axonales de la materia blanca. En una primer etapa de caracterización, se encontró evidencia consistente de la presencia de una dinámica traslacional compleja, conformada por un proceso de difusión confinada a tiempos cortos y un límite de tortuosidad a tiempos largos. Se observó que la secuencia es capaz de filtrar la señal y observar selectivamente la proveniente de moléculas confinadas a las restricciones de interés en un proceso que denominamos tortuosidad microscópica. A través de un modelo teórico de la señal, se demostró esta observación experimental y posibilitó la determinación de las formas óptimas de configuración de la secuencia para observar esta información cuantitativa. Estos resultados permitieron optimizar protocolos para generar imágenes cuantitativas de información microestructural en cerebro humano para el diseño de nuevas herramientas de diagnóstico médico.
Resumen en inglés
Nuclear magnetic resonance (NMR) is currently one of the most widely used methods for noninvasive medical imaging. However, the resolution limits of conventional sequences do not allow access to information of processes occurring at micro- and sub-micrometer scales, which represent vitally important information in both clinical and research settings. Recent work suggests that the NOGSE (Non-uniform Oscillating-Gradient Spin-Echo) sequence is capable of obtaining quantitative information at these scales through molecular diffusion, using nuclear spins as quantum sensors to extract information about their environment. However, current models for its response do not consider the variety of diffusive processes that occur in biological tissues such as white matter, which limits its quantitative prediction capability. On the other hand, previous work has shown theoretically and experimentally that it is possible to use the NOGSE sequence to filter the signal coming from processes occurring at specific spatial scales. Based on this, in this work we implemented the NOGSE gradient modulation sequence to selectively filter the signal coming from molecules confined in microstructures of specific sizes, with the aim of extracting structural information from biological tissues even in the presence of complex molecular dynamics. For this purpose, we analyzed data corresponding to DWI experiments. These experiments were performed on a phantom constructed to emulate the diffusive regimes that take place in the extra-axonal spaces of white matter. In a first stage of characterization, consistent evidence was found for the presence of complex translational dynamics, consisting of a confined diffusion process at short times and a tortuosity limit at long times. It was observed that the sequence is able to filter the signal and selectively observe the signal coming from molecules confined to the constraints of interest in a process that we call microscopic tortuosity. Through a theoretical model of the signal, this experimental observation was demonstrated. Theoretical modelling made possible the determination of the optimal forms of sequence configuration to observe this quantitative information. These results allowed optimizing protocols to generate quantitative images of microstructural information in the human brain for the design of new medical diagnostic tools.
Tipo de objeto: | Tesis (Maestría en Ciencias Físicas) |
---|---|
Palabras Clave: | Magnetic resonance; Resonancia magnética; Microstructure; Microestructura; [Medical imaging; Imágenes médicas; Molecular diffusion; Difusión molecular; Traslational dynamics; Dinámicas traslacionales; White matter; Materia blanca] |
Referencias: | [1] Smith, N., Webb, A. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications. Cambridge Texts in Biomedical Engineering. Cambridge University Press, 2010. URL https://books.google.com.ar/books?id=jtRjFXYR9J0C. 1 [2] Brown, R., Cheng, Y., Haacke, E., Thompson, M., Venkatesan, R. Magnetic Resonance Imaging: Physical Principles and Sequence Design. Wiley, 2014. URL https://books.google.com.ar/books?id=Z45SAwAAQBAJ. [3] Buzug, T. Computed Tomography: From Photon Statistics to Modern Coneeam CT. Springer Berlin Heidelberg, 2010. URL https://books.google.com.ar/books?id=Q8a1cQAACAAJ. 1 [4] Staudacher, T., Raatz, N., Pezzagna, S., Meijer, J., Reinhard, F., Meriles, C. A., et al. Probing molecular dynamics at the nanoscale via an individual paramagnetic centre. Nature communications, 6, 8527, 2015. 1 [5] Barry, J. F., Turner, M. J., Schloss, J. M., Glenn, D. R., Song, Y., Lukin, M. D., et al. Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proceedings of the National Academy of Sciences, 113 (49), 14133-14138, 2016. URL https://www.pnas.org/content/113/49/14133. [6] Wang, P., Chen, S., Guo, M., Peng, S., Wang, M., Chen, M., et al. Nanoscale magnetic imaging of ferritins in a single cell. Science Advances, 5 (4), eaau8038, 2019. URL https://www.science.org/doi/abs/10.1126/sciadv.aau8038. 1 [7] Liewald, D., Miller, R., Logothetis, N., Wagner, H.-J., Schüz, A. Distribution of axon diameters in cortical white matter: an electron-microscopic study on three human brains and a macaque. Biological cybernetics, 108 (5), 541-557, 2014. 2 [8] Bartzokis, G. Age-related myelin breakdown: a developmental model of cognitive decline and alzheimer's disease. Neurobiology of Aging, 25 (1), 5-18, 2004. URL https://www.sciencedirect.com/science/article/pii/S0197458003001647. 2 [9] Han, F., Perrin, R. J., Wang, Q., Wang, Y., Perlmutter, J. S., Morris, J. C., et al. Neuroinflammation and myelin status in alzheimer's disease, parkinson's disease, and normal aging brains: A small sample study. Parkinson's Disease, 2019, 2019. [10] Cotter, L., Özçelik, M., Jacob, C., Pereira, J. A., Locher, V., Baumann, R., et al. Dlg1-pten interaction regulates myelin thickness to prevent damaging peripheral nerve overmyelination. Science, 328 (5984), 1415-1418, 2010. URL https://www. science.org/doi/abs/10.1126/science.1187735. 2 [11] Bartzokis, G., Lu, P. H., Geschwind, D. H., Edwards, N., Mintz, J., Cummings, J. L. Apolipoprotein E Genotype and Age-Related Myelin Breakdown in Healthy Individuals: Implications for Cognitive Decline and Dementia. Archives of General Psychiatry, 63 (1), 63-72, 01 2006. URL https://doi.org/10.1001/archpsyc. 63.1.63. 2 [12] Duval T, C.-A. J., Stikov N. Modeling white matter microstructure. Funct Neurol., 31, 217-228, 2016. 2 [13] Drobnjak, I., Zhang, H., Ianu³, A., Kaden, E., Alexander, D. C. Pgse, ogse, and sensitivity to axon diameter in diffusion mri: Insight from a simulation study. Magnetic Resonance in Medicine, 75, 688-700, 2016. 2 [14] Shemesh, N., Alvarez, G. A., Frydman, L. Measuring small compartment dimensions by probing diffusion dynamics via non-uniform oscillating-gradient spin-echo (nogse) nmr. Journal of magnetic resonance, 237, 49-62, 2013. 2, 21, 32, 34 [15] Novikov, D. S., Fieremans, E., Jespersen, S. N., Kiselev, V. G. Quantifying brain microstructure with diffusion mri: Theory and parameter estimation. NMR in Biomedicine, 32 (4), e3998, 2019. URL https://analyticalsciencejournals. onlinelibrary.wiley.com/doi/abs/10.1002/nbm.3998, e3998 nbm.3998. [16] Álvarez, G. A., Shemesh, N., Frydman, L. Coherent dynamical recoupling of diffusion-driven decoherence in magnetic resonance. Phys. Rev. Lett., 111, 080404, Aug 2013. URL https://link.aps.org/doi/10.1103/PhysRevLett. 111.080404. 13, 18, 20, 21, 32, 34 [17] Shemesh, N., Alvarez, G., Frydman, L. Size distribution imaging by non-uniform oscillating-gradient spin echo (nogse) mri. PLoS ONE, 10, e0133201, 07 2015. 2, 3, 20, 32, 34 [18] Zwick, A., Suter, D., Kurizki, G., Álvarez, G. A. Precision limits of tissue microstructure characterization by magnetic resonance imaging. Phys. Rev.Applied, 14, 024088, Aug 2020. URL https://link.aps.org/doi/10.1103/PhysRevApplied.14.024088. 2, 24, 35, 37, 43 [19] Álvarez, G. A., Shemesh, N., Frydman, L. Coherent dynamical recoupling of diffusion-driven decoherence in magnetic resonance. Physical Review Letters, 111 (8), Aug 2013. URL http://dx.doi.org/10.1103/PhysRevLett.111.080404. 2 [20] Suter, D., Álvarez, G. A. Colloquium: Protecting quantum information against environmental noise. Rev. Mod. Phys., 88, 041001, Oct 2016. URL https://link.aps.org/doi/10.1103/RevModPhys.88.041001. 2, 21 [21] Álvarez, G. A., Suter, D. Measuring the spectrum of colored noise by dynamical decoupling. Phys. Rev. Lett., 107, 230501, Nov 2011. URL https://link.aps. org/doi/10.1103/PhysRevLett.107.230501. 2 [22] Zwick, A., Álvarez, G. A., Kurizki, G. Maximizing information on the environment by dynamically controlled qubit probes. Physical Review Applied, 5 (1), Jan 2016. URL http://dx.doi.org/10.1103/PhysRevApplied.5.014007. 43 [23] Souza, A., Alvarez, G., Suter, D. Robust dynamical decoupling for quantum computing and quantum memory. Physical Review Letters, 106, 240501, 06 2011. [24] Souza, A. M., Álvarez, G. A., Suter, D. Experimental protection of quantum gates against decoherence and control errors. Phys. Rev. A, 86, 050301, Nov 2012. URL https://link.aps.org/doi/10.1103/PhysRevA.86.050301. 2 [25] Capiglioni, M., Zwick, A., Jiménez, P., Álvarez, G. A. Noninvasive quantitative imaging of selective microstructure sizes via magnetic resonance. Phys. Rev. Applied, 15, 014045, Jan 2021. URL https://link.aps.org/doi/10.1103/PhysRevApplied.15.014045. 2, 3, 20, 24, 27, 34, 35, 37 [26] Aboitiz, F., Scheibel, A. B., Fisher, R. S., Zaidel, E. Fiber composition of the human corpus callosum. Brain Research, 598, 143-153, 1992. 3 [27] Assaf, Y., Freidlin, R. Z., Rohde, G. K., Basser, P. J. New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magnetic Resonance in Medicine, 52, 2004. 3, 63 [28] Sen, P., Basser, P. A model for diffusion in white matter in the brain. Biophysical journal, 89, 2927-38, 12 2005. 3, 63 [29] Rabi, I. I., Zacharias, J. R., Millman, S., Kusch, P. A new method of measuring nuclear magnetic moment. Phys. Rev., 53, 318-318, Feb 1938. URL https://link.aps.org/doi/10.1103/PhysRev.53.318. 5 [30] Callaghan, P. Translational Dynamics and Magnetic Resonance, Principles of Pulsed Gradient Spin Echo NMR. Oxford, 2011. 7, 9, 11, 16, 17, 20, 21 [31] Hahn, E. L. Spin echoes. Phys. Rev., 80, 580594, Nov 1950. URL https://link.aps.org/doi/10.1103/PhysRev.80.580. 9 [32] Einstein, A. Investigations on the Theory of the Brownian Movement. Dover Books on Physics Series. Dover Publications, 1956. URL https://books.google.com.ar/books?id=AOIVupH_hboC. 11 [33] Bear, J. Dynamics of Fluids in Porous Media. Dover Civil and Mechanical Engineering Series. Dover, 1988. URL https://books.google.com.ar/books?id=lurrmlFGhTEC. 14 [34] Stejskal, E. O., Tanner, J. E. Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient. The Journal of Chemical Physics, 42 (1), 288-292, 1965. URL https://doi.org/10.1063/1.1695690. 15 [35] Klauder, J. R., Anderson, P. W. Spectral diffusion decay in spin resonance experiments. Phys. Rev., 125, 912-932, Feb 1962. URL https://link.aps.org/doi/ 10.1103/PhysRev.125.912. 17 [36] Stepi²nik, J. Validity limits of gaussian approximation in cumulant expansion for diffusion attenuation of spin echo. Physica B: Condensed Matter, 270 (1), 110-117, 1999. URL https://www.sciencedirect.com/science/article/pii/S092145269900160X. 17 [37] Stepi²nik, J. Time-dependent self-diffusion by nmr spin-echo. Physica B: Condensed Matter, 183 (4), 343-350, 1993. URL https://www.sciencedirect.com/science/article/pii/092145269390124O. 21 [38] Stepisnik, J., Mohoric, A., Duh, A. Diffusion and flow in a porous structure by the gradient spin echo spectral analysis. Physica B: Condensed Matter, 307, 158-168, 12 2001. 21 [39] Informe realizado por Diana Betancourth proporcionado en comunicación privada con Gonzalo A. Álvarez. 30, 31 [40] Tomas Psorn. Documentación de brukerapi, 2020. URL https://bruker-api. readthedocs.io/en/latest/, [accedido el 9/11/21]. 30 [41] Mitra, P. P., Sen, P. N., Schwartz, L. M., Le Doussal, P. Diffusion propagator as a probe of the structure of porous media. Phys. Rev. Lett., 68, 3555-3558, Jun 1992. URL https://link.aps.org/doi/10.1103/PhysRevLett.68.3555. 51 [42] Novikov, D., Kiselev, V. Surface-to-volume ratio with oscillating gradients. Journal of magnetic resonance (San Diego, Calif. : 1997), 210, 141-5, 02 2011. 52 [43] Lemberskiy, G., Baete, S., Cloos, M., Novikov, D., Fieremans, E. Validation of surface-to-volume ratio measurements derived from oscillating gradient spin echo on a clinical scanner using anisotropic fiber phantoms. NMR in biomedicine, 30, 03 2017. 52 [44] Kuffer, M., Zwick, A., Álvarez, G. A. Path integral framework for characterizing and controlling decoherence induced by nonstationary environments on a quantum probe. PRX Quantum, 3, 020321, Apr 2022. URL https://link.aps.org/doi/10.1103/PRXQuantum.3.020321. 65 |
Materias: | Física > Física médica |
Divisiones: | Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Física médica |
Código ID: | 1162 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 04 Aug 2023 11:10 |
Última Modificación: | 04 Aug 2023 11:10 |
Personal del repositorio solamente: página de control del documento