Rozan, Eric A. (2022) Formulación de modelos epidemiológicos avanzados / Formulation of advanced epidemiological models. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 4Mb |
Resumen en español
En esta tesis se desarrollaron modelos epidemiológicos matemáticos de campo medio en poblaciones heterogéneas. A diferencia de los modelos compartimentales tradicionales, en los que se considera una población homogénea y que todos los individuos están mezclados, en estos modelos se usan conceptos elementales de la teoría de redes complejas para incluir la estructura social de la población, condensada en la distribución de grado de los individuos. De esta forma, el modelo cuenta con las ventajas analíticas de los modelos de campo medio, e incorpora la capacidad de tener en cuenta los patrones de contactos en una sociedad. El modelo admite tratar con redes arbitrarias (mientras se cumplan ciertas propiedades), y en este trabajo se analizaron dos casos: redes regulares, en las que todos los individuos tienen la misma cantidad de contactos, y redes libres de escala, en la que la distribución de grado sigue una ley de potencia. Tras caracterizar el modelo exhaustivamente en cada caso por separado, se implementaron medidas de aislamiento que consisten en cambiar la distribución de grado de manera tal que esté más concentrada sobre grados menores. Se observó cómo se modifican los principales observables epidemiológicos ante distintas estrategias de aislamiento. Se encontró que no hay una única estrategia que sea más efectiva que el resto con la que se mejoren todos los observables analizados. En particular, se encontró que si el aislamiento es demasiado restrictivo durante una primera ola de contagios, entonces si no se repite el aislamiento se da lugar a una segunda ola más severa que la primera, y si se repite puede que el número acumulado de individuos que se infectaron crezca.
Resumen en inglés
In this work we developed mean-field mathematical epidemiology models for heterogeneous populations. As opposed to traditional compartmental models, in which the population is considered to be homogeneous and its individuals to be completely mixed, basic concepts from complex networks theory are used in these models in order to take into account the social structure of the population, reflected in their degree distribution. Thus, the model has the analytical advantages of mean-fields models, and it also gains the capability to consider the social contact patterns of the population. The model works with arbitrary networks (as long as they have certain properties), and in this work two cases were analyzed: regular networks in which all individuals have the same amount of contacts, and scale-free networks that have a power law degree distribution. We characterized each case separately in detail, and after that we modeled preventive isolation measures that consist in changing the degree distribution so that it is more concentrated over lower degrees. We observed the dependency of some key epidemiological observable quantities on the different containment strategies. We found that there is no one strategy that is more effective than the rest in improving all of the analyzed observables at once. In particular, we found that when the isolation measure is too restrictive during the first wave of infections, then if the measure is not repeated the second wave can be worse than the first one, and on the other hand if it is repeated then the final total number of infected individuals can increase.
Tipo de objeto: | Tesis (Maestría en Ciencias Físicas) |
---|---|
Palabras Clave: | Epidemiology; Epidemiología; Mathematical models; Modelos matemáticos; Dynamical systems; Sistemas dinámicos; Statistical mechanics; Mecánica estadísticas; [Epidemiological dynamics; Dinámica epidemiológica; Complex networks; Redes complejas; Interdiscisciplinary physics; Física interdisciplinaria] |
Referencias: | [1] Ross, R. Some a priori pathometric equations. Br Med J, 546, 1915. 2 [2] Ross, R. An application of the theory of probabilities to the study of a priori pathometry - I. Proc. R. Soc. A, 92, 1916. [3] Ross, R., Hudson, H. P. An application of the theory of probabilities to the study of a priori pathometry -II. Proc. R. Soc. A, 93,1916. 2 [4] Anderson, R. M., May, R. M. Infectious diseases of humans: dynamics and control. Oxford University Press, 1991. 3 [5] Macdonald, G. The epidemiology and control of malaria. Oxford University Press, 1957. [6] Aron, J. L., May, R. M. The population dynamics of malaria, págs. 139–179. Springer US, 1982. [7] Dietz, K. Mathematical models for transmission and control of malaria. Malaria: principles and practice of malariology. Volume 2., págs. 1091–1133, 1988. [8] Aron, J. L. Mathematical modeling of immunity to malaria. Mathematical and Computer Modelling, 12 (9), 1180, 1989. [9] Filipe, J. A. N., Riley, E. M., Drakeley, C. J., Sutherland, C. J., Ghani, A. C. Determination of the Processes Driving the Acquisition of Immunity to Malaria Using a Mathematical Transmission Model. PLOS Computational Biology, 3 (12), 1–11, 2007. [10] Rodríguez, D. J., Torres-Sorando, L. Models of infectious diseases in spatially heterogeneous environments. Bulletin of mathematical biology, 63 (12), 547–71, 2001. 3 [11] Kermack, W. O., McKendrick, A. G. Models of infectious diseases in spatially heterogeneous environments. Proc. R. Soc. A, 115, 700, 1927. 3, 8 [12] Abbey, H. An examination of the reed-frost theory of epidemics. Human biology, 24 3, 201–33, 1952. 3 [13] Bailey, N. T. The mathematical theory of infectious diseases and its applications. Charles Griffin & Company Ltd, 5a Crendon Street, High Wycombe, Bucks HP13 6LE., 1975. 3 [14] Ball, F., Donnelly, P. Strong approximations for epidemic models. Stochastic Processes and their Applications, 55 (1), 1–21, 1995. [15] Andersson, H., Britton, T. Stochastic epidemic models and their statistical analysis. Springer Verlag, New York, 2000. [16] Diekmann, O., Heesterbeek, J. Mathematical epidemiology of infectious diseases: model building, analysis and interpretation. Wiley series in mathematical and computational biology. John Wiley and Sons, 2000. [17] Isham, V. Stochastic models for epidemics: Current issues and developments. Oxford University Press, 2005. [18] Tuckwell, H. C., Williams, R. J. Some properties of a simple stochastic epidemic model of SIR type. Mathematical biosciences, 208, 76–97, 2007. 3 [19] Mollison, D. Dependence of epidemic and population velocities on basic parameters. Mathematical Biosciences, 107, 255–287, 1991. 4 [20] Kuperman, M., Abramson, G. Small world effect in an epidemiological model. Physical Review Letters, 86, 2909–12, 04 2001. 4 [21] Zanette, D., Risau, S. Infection spreading in a population with evolving contacts. Journal of Biological Physics, 34, 135–48, 2008. 4 [22] Zanette, D. H., Kuperman, M. Effects of immunization in small-world epidemics. Physica A: Statistical Mechanics and its Applications, 309 (3), 445–452, 2002. 4 [23] Svoboda, J., Tkadlec, J., Pavlogiannis, A., Chatterjee, K., Nowak, M. A. Infection dynamics of COVID-19 virus under lockdown and reopening. Scientific Reports, 01 2022. 4, 13, 18, 26 [24] Cornes, F. E., Frank, G. A., Dorso, C. O. COVID-19 spreading under containment actions. Physica A: Statistical Mechanics and its Applications, 588, 126566, 2022. [25] Karaivanov, A. A social network model of COVID-19. PLOS ONE, 15, 1–33, 2020. 4 [26] Zhang, R., Wang, Y., Lv, Z., Pei, S. Evaluating the impact of stay-at-home and quarantine measures on COVID-19 spread. BMC Infectious Diseases, 22, 2022. 5 [27] Hasanov, F., Cherif, R. A tip Against the COVID-19 Pandemic. Imf working papers, International Monetary Fund, 2020. [28] Liu, Z., Magal, P., Seydi, O., Webb, G. A COVID-19 epidemic model with latency period. Infectious Disease Modelling, 5, 323–337, 2020. [29] Giordano, G., Blanchini, F., Bruno, R., Colaneri, P., Di Filippo, A., Di Matteo, A., et al. Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy. Nature Medicine, 26, 855–860, 2020. [30] Mwalili, S., Kimathi, M., Ojiambo, V., Gathungu, D., Mbogo, R. SEIR model for COVID-19 dynamics incorporating the environment and social distancing. BMC Research Notes, 13, 352, 2020. 5 [31] Moreno, Y., Pastor-Satorras, R., Vespignani, A. Epidemic outbreaks in complex heterogeneous networks. The European Physical Journal B - Condensed Matter and Complex Systems, 2002. 5, 15 [32] Pastor-Satorras, R., Vespignani, A. Immunization of complex networks. Phys. Rev. E, 65, 036104, 2002. 5 [33] Hethcote, H. W. A thousand and one epidemic models. Frontiers in Mathematical Biology, Springer Berlin Heidelberg, 1994. 8 [34] Derrode, S., Gauchon, R., Ponthus, N., Rigotti, C., Pothier, C., Volpert, V., et al. Piecewise estimation of R0 by a simple SEIR model. Application to COVID-19 in French regions and departments until June 30, 2020. Research report, LIRIS UMR CNRS 5205 ; Ecole centrale de lyon ; INSA LYON ; Universite Lyon 1 - Claude Bernard, 2020. 10, 24 [35] Barrat, A., Barth´elemy, M., Vespignani, A. Dynamical Processes on Complex Networks. Cambridge University Press, 2008. 11, 15, 22 [36] Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Phys., 87, 925–979, Aug 2015. 11 [37] Barabasi, A.-L., Albert, R. Emergence of scaling in random networks. Science, 286 (5439), 509–512, 1999. 13 [38] Hernando, A., Villuendas, D., Vesperinas, C., Abad, M., Plastino, A. Unravelling the size distribution of social groups with information theory in complex networks. The European Physical Journal B, 76, 2010. 14 [39] May, R. M., Lloyd, A. L. Infection dynamics on scale-free networks. Phys. Rev. E, 64, 066112, 2001. 17 [40] Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. New England Journal of Medicine, 382, 01 2020. 22, 35 [41] Mathieu, E., Ritchie, H., Rodes-Guirao, L., Appel, C., Giattino, C., Hasell, J., et al. Coronavirus Pandemic (COVID-19). Our World in Data, 2020. 54 |
Materias: | Física > Sistemas complejos |
Divisiones: | Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Sistemas complejos y altas energías > Física estadística interdisciplinaria |
Código ID: | 1164 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 04 Aug 2023 11:47 |
Última Modificación: | 04 Aug 2023 11:47 |
Personal del repositorio solamente: página de control del documento