Desarrollo de materiales avanzados con morfología controlada para electrodos de baterías de ion de litio / Development of advanced materials with controlled morphology for Li-ion battery electrodes

Rada Vilela , Evilus (2022) Desarrollo de materiales avanzados con morfología controlada para electrodos de baterías de ion de litio / Development of advanced materials with controlled morphology for Li-ion battery electrodes. Tesis Doctoral en Ciencias de la Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
6Mb

Resumen en español

Las baterías de ion de litio dominan el mercado de almacenamiento energético tanto en dispositivos portátiles como en vehículos eléctricos, y su uso en aplicaciones estacionarias es cada vez más amplio. Además, se prevé un incremento acelerado en la demanda de almacenamiento durante las próximas décadas, debido principalmente a la electrificación total del transporte. Este escenario plantea la necesidad de desarrollar baterías que ofrezcan mayor rango de autonomía, mayor tiempo de vida útil y altas velocidades de carga, buscando reducir el impacto ambiental desde su fabricación hasta su disposición final, y precios competitivos frente a los vehículos de motor de combustión interna. Estos factores dependen sustancialmente de las propiedades de los materiales activos de los electrodos. El óxido de litio manganeso (LiMn_2O_4) es un material activo catódico que presenta buenas propiedades electroquímicas, toxicidad reducida y costos moderados de obtención. Sin embargo, el material en volumen sufre un acelerado decaimiento de la capacidad de carga debido a la degradación de su superficie por contacto con el electrolito, y un bajo coeficiente de difusión del Li+, lo cual limita la velocidad de carga. Una de las estrategias utilizadas para mejorar el desempeño electroquímico es el uso de materiales activos nanoestructurados, ya que estos presentan propiedades distintas en comparación con su contraparte en volumen (bulk). Debido a que estas propiedades están íntimamente relacionadas con las características morfológicas de las nanopartículas, la posibilidad de controlar la morfología permite ajustar las propiedades del material optimizando el funcionamiento del mismo. Esta tesis se enfocó en la síntesis con morfología controlada de nanopartículas de LiMn_2O_4 como estrategia para abordar los problemas que presenta el material en volumen. La síntesis se basó en el método de descomposición térmica de precursores organometálicos asistida por surfactantes, seguido de un tratamiento térmico en aire. El control de la morfología se realizó mediante el ajuste de parámetros de la síntesis. Las muestras se caracterizaron química, estructural y microestructuralmente mediante difracción de rayos X, difracción de electrones, espectroscopía de pérdida de energía de electrones y microscopía electrónica de transmisión. Las propiedades electroquímicas se evaluaron mediante técnicas de ciclado galvanostático, voltamperometría cíclica y espectroscopía de impedancia electroquímica. En primer lugar, se sintetizaron nanopartículas de LiMn_2O_4, cuya capacidad de carga y descarga inicial resultó comparable con los valores reportados en la bibliografía para este material. Sin embargo, esta capacidad decae rápidamente durante el ciclado, posiblemente debido a la degradación de la superficie por contacto con el electrolito. Para evaluar la capacidad de controlar la morfología, se sintetizaron nanopartículas core/shell de composición LiMn_2O_4/Li_2O, cuya cáscara podría proteger la superficie del material, además de proveer litio adicional para compensar posibles pérdidas. Esta muestra presentó mayor capacidad de carga inicial, sin embargo, se obtuvieron valores casi nulos en los ciclos siguientes. Esto puede atribuirse a la descomposición del electrolito por reacciones secundarias del material agregado como cáscara. Finalmente, se generaron nanoestructuras huecas de LiMn_2O_4. Si bien la capacidad de carga y descarga inicial fue ligeramente inferior en comparación con las muestras anteriores, esta muestra presentó una mejor estabilidad en condiciones de ciclado, lo cual está relacionado con las características morfológicas de las nanoestructuras. Se determinó además que, tanto las nanopartículas como las nanoestructuras huecas, presentan coeficientes de difusión de Li+ elevados en comparación con los valores reportados para el material en volumen, indicando que la cinética resultó favorecida debido a las dimensiones nanométricas del material.

Resumen en inglés

Lithium-ion batteries dominate the energy storage market in both portable devices and electric cars, and their use in stationary applications is growing fast. In addition, a rapid increase in storage demand is expected in the coming decades, mainly due to the total electrification of the transport sector. This scenario raises the need to develop batteries that offer a greater drive range, longer cycle life, and faster charge rates, also ensuring a low environmental impact from its manufacture to its final disposal, and competitive prices compared to combustion engine vehicles. These factors depend substantially on the properties of the active materials of the electrodes. Lithium manganese oxide (LiMn_2O_4) is a cathodic active material that exhibits good electrochemical properties, low toxicity, and moderate manufacturing costs. However, the bulk material suffers from fast capacity fading as a result of surface degradation due to contact with the electrolyte, and low Li+ diffusion coefficient which results in slow charge/discharge rates. One of the strategies used to improve electrochemical performance is using nanostructured active materials, due to their different properties compared to their bulk counterpart. Since these properties are closely related to the morphological characteristics of the nanoparticles, the possibility of controlling the morphology allows the properties of the material to be adjusted, optimizing its performance. This thesis is focused on the synthesis with controlled morphology of LiMn_2O_4 nanoparticles as a strategy to overcome the issues of the bulk material. The synthesis was based on the method of thermal decomposition of organometallic precursors assisted by surfactants, followed by a thermal treatment in air. The morphology was controlled by adjusting certain parameters of the synthesis. Chemical, structural, and microstructructural characterization of the samples were made by X-ray diffraction, electron diffraction, electron energy loss spectroscopy, and transmission electron microscopy. The electrochemical properties were analyzed by galvanostatic charge/discharge cycling, cyclic voltammetry, and electrochemical impedance spectroscopy. Initially, LiMn_2O_4 nanoparticles were obtained, whose initial charge and discharge capacity was favorable, however, this capacity rapidly decays during cycling, possibly due to surface degradation. In order to protect the surface of the material, we synthesized core/shell nanoparticles with LiMn_2O_4/Li_2O composition. The electrochemical evaluation revealed a higher initial charge capacity for this sample; however, the charging process was highly irreversible, obtaining almost null capacities in the following cycles, which was attributed to the accelerated decomposition of the electrolyte due Li_2O side reactions. Finally, hollow LiMn_2O_4 nanostructures were obtained. Although the initial charge and discharge capacity was slightly lower compared to previous samples, these nanostructures showed improved stability during cycling, which is related to the morphological characteristics of the nanostructures. It was also determined that both the nanoparticles and the hollow nanostructures exhibit high Li+ diffusion coefficients compared to the values reported for the bulk material, indicating that the kinetics were favored due to the nanoscale dimensions of the material.

Tipo de objeto:Tesis (Tesis Doctoral en Ciencias de la Ingeniería)
Palabras Clave:Nanoparticles; Nanopartículas; [Li ion batteries; Baterías de ion de litio; Controlled morphology; Morfología controlada; Hollow nanostructures; Nanoestructuras huecas; Core shell nanoparticles; Nanopartículas core shell]
Referencias:[1] BP 2021 Statistical Review of World Energy globally consistent data on world energy markets . and authoritative publications in the field of energy BP Energy Outlook 2021 70 8–20 [2] Gray V 2021 Climate change 2021: The physical science basis summary for policymakers IPCC 18 433–40 [3] Anon The Global Anomalies and Index Data. National Centers for Environmental Information. National Oceanic and Atmospheric Administration [4] Hoegh-Guldberg O, Jacob D and Taylor M 2018 Impacts of 1.5°C of Global Warming on Natural and Human Systems Spec. Report, Intergov. Panel Clim. Chang. 175–81 [5] IEA 2021 Net Zero by 2050 A Roadmap for the 222 [6] BloombergNEF 2021 New Energy Outlook 2021 [7] IEA 2021 World Energy Outlook 2021 - revised version October 2021 [8] Conner Prochaska, Marcos Gonzales Harsha, Alex Fitzsimmons, Michael Pesin, Margaret Mann, Susan Babinec, Vicky Putsche, Stephen Hendrickson, Hugh Ho, Paul Spitsen, David Feldman, Spencer Gilleon Madeline Gilleran, Chad Hunter, Michael Penev, Genevieve Sau D W 2020 Energy Storage Grand Challenge Roadmap U.S. Dep. Energy Technical [9] Koohi-Fayegh S and Rosen M A 2020 A review of energy storage types, applications and recent developments J. Energy Storage 27 101047 [10] Behabtu H A, Messagie M, Coosemans T, Berecibar M, Fante K A, Kebede A A and Van Mierlo J 2020 A review of energy storage technologies’ application potentials in renewable energy sources grid integration Sustain. 12 1–20 [11] Dodds P E and Garvey S D 2016 The Role of Energy Storage in Low-Carbon Energy Systems (Elsevier Inc.)[12] Olabi A G, Onumaegbu C, Wilberforce T, Ramadan M, Abdelkareem M A and Al – Alami A H 2021 Critical review of energy storage systems Energy 214 118987 [13] Olabi A G and Abdelkareem M A 2021 Energy storage systems towards 2050 Energy 219 119634 [14] AL Shaqsi A Z, Sopian K and Al-Hinai A 2020 Review of energy storage services, applications, limitations, and benefits Energy Reports 6 288–306 [15] Gallo A B, Simões-Moreira J R, Costa H K M, Santos M M and Moutinho dos Santos E 2016 Energy storage in the energy transition context: A technology review Renew. Sustain. Energy Rev. 65 800–22 [16] Lynch R, Evans D, Buckley N, Rhen F, Cowan A J, Kato Y, Lund R, Hottenroth H, Madlener R and Hester R E 2018 Energy Storage Options and Their Environmental Impact [17] Balali Y and Stegen S 2021 Review of energy storage systems for vehicles based on technology, environmental impacts, and costs Renew. Sustain. Energy Rev. 135 110185 [18] International energy agency 2021 Global EV Outlook 2021 - Accelerating ambitions despite the pandemic Glob. EV Outlook 2021 101 [19] Linden D and Reddy T B 2011 HANDBOOK OF BATTERIES [20] O’Heir J 2017 Building better batteries Mech. Eng. 139 10–1 [21] Liu C, Neale Z G and Cao G 2016 Understanding electrochemical potentials of cathode materials in rechargeable batteries Mater. Today 19 109–23 [22] Reddy T B 2011 Linden’s Handbook of Batteries [23] Shaw-Stewart J, Alvarez-Reguera A, Greszta A, Marco J, Masood M, Sommerville R and Kendrick E 2019 Aqueous solution discharge of cylindrical lithium-ion cells Sustain. Mater. Technol. 22 e00110 [24] Viswanathan B 2017 Energy Sources: Fundamentals of Chemical Conversion Processes and Applications (Elsevier) [25] Ma J, Li Y, Grundish N S, Goodenough J B, Chen Y, Guo L, Peng Z, Qi X, Yang F, Qie L, Wang C A, Huang B, Huang Z, Chen L, Su D, Wang G, Peng X, Chen Z, Yang J, He S, Zhang X, Yu H, Fu C, Jiang M, Deng W, Sun C F, Pan Q, Tang Y, Li X, Ji X, Wan F, Niu Z, Lian F, Wang C, Wallace G G, Fan M, Meng Q, Xin S, Guo Y G and Wan L J 2021 The 2021 battery technology roadmap J. Phys. D. Appl. Phys. 54 [26] El Kharbachi A, Zavorotynska O, Latroche M, Cuevas F, Yartys V and Fichtner M 2020 Exploits, advances and challenges benefiting beyond Li-ion battery technologies J. Alloys Compd. 817 153261 [27] Wu X, Qiu S, Liu Y, Xu Y, Jian Z, Yang J, Ji X and Liu J 2022 The Quest for Stable Potassium‐Ion Battery Chemistry Adv. Mater. 34 2106876 [28] Chayambuka K, Mulder G, Danilov D L and Notten P H L 2020 From Li‐Ion Batteries toward Na‐Ion Chemistries: Challenges and Opportunities Adv. Energy Mater. 10 2001310 [29] Liang Y, Zhao C, Yuan H, Chen Y, Zhang W, Huang J, Yu D, Liu Y, Titirici M, Chueh Y, Yu H and Zhang Q 2019 A review of rechargeable batteries for portable electronic devices InfoMat 1 6–32 [30] Bashir T, Ismail S A, Song Y, Irfan R M, Yang S, Zhou S, Zhao J and Gao L 2021 A review of the energy storage aspects of chemical elements for lithium-ion based batteries Energy Mater. [31] CNESA 2021 Energy Storage Industry White Paper 2021 2021 [32] Ren W, Ding C, Fu X and Huang Y 2021 Advanced gel polymer electrolytes for safe and durable lithium metal batteries: Challenges, strategies, and perspectives Energy Storage Mater. 34 515–35 [33] Cha E, Patel M, Bhoyate S, Prasad V and Choi W 2020 Nanoengineering to achieve high efficiency practical lithium-sulfur batteries Nanoscale Horizons 5 808–31 [34] Wang C, Xie Z and Zhou Z 2019 Lithium-air batteries: Challenges coexist with opportunities APL Mater. 7 [35] Tian Y, Zeng G, Rutt A, Shi T, Kim H, Wang J, Koettgen J, Sun Y, Ouyang B, Chen T, Lun Z, Rong Z, Persson K and Ceder G 2021 Promises and Challenges of Next-Generation “beyond Li-ion” Batteries for Electric Vehicles and Grid Decarbonization Chem. Rev. 121 1623–69 [36] Masias A, Marcicki J and Paxton W A 2021 Opportunities and Challenges of Lithium Ion Batteries in Automotive Applications ACS Energy Lett. 6 621–30 [37] Whittingham M S 1976 Electrical energy storage and intercalation chemistry Science (80-. ). 192 1126–7 [38] Mizushima K, Jones P C, Wiseman P J and Goodenough J B 1980 LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density Mater. Res. Bull. 15 783–9 [39] Goodenough J B and Park K S 2013 The Li-ion rechargeable battery: A perspective J. Am. Chem. Soc. 135 1167–76 [40] Gavilán-Arriazu E M, Mercer M P, Barraco D E, Hoster H E and Leiva E P M 2021 Kinetic Monte Carlo simulations applied to Li-ion and post Li-ion batteries: a key link in the multi-scale chain Prog. Energy 3 042001 [41] Chen R, Zhao T, Zhang X, Li L and Wu F 2016 Advanced cathode materials for lithium-ion batteries using nanoarchitectonics Nanoscale Horizons 1 423–44 [42] Zhu P, Gastol D, Marshall J, Sommerville R, Goodship V and Kendrick E 2021 A review of current collectors for lithium-ion batteries J. Power Sources 485 229321 [43] Chen T, Jin Y, Lv H, Yang A, Liu M, Chen B, Xie Y and Chen Q 2020 Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems Trans. Tianjin Univ. 26 208–17 [44] Heiskanen S K, Kim J and Lucht B L 2019 Generation and Evolution of the Solid Electrolyte Interphase of Lithium-Ion Batteries Joule 3 2322–33 [45] Peled E 1979 The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model J. Electrochem. Soc. 126 2047–51 [46] Yu X and Manthiram A 2018 Electrode-electrolyte interfaces in lithium-based batteries Energy Environ. Sci. 11 527–43 [47] Balbuena P B and Wang Y 2004 Lithium-Ion Batteries Solid-Electrolyte Interphase (London: Imperial College Press) [48] Wang F, Graetz J, Moreno M S, Ma C, Wu L, Volkov V and Zhu Y 2011 Chemical distribution and bonding of lithium in intercalated graphite: Identification with optimized electron energy loss spectroscopy ACS Nano 5 1190–7 [49] Thomas M G S R, Bruce P G and Goodenough J B 1985 AC Impedance Analysis of Polycrystalline Insertion Electrodes: Application to Li1 − x CoO2 J. Electrochem. Soc. 132 1521–8 [50] Edström K, Gustafsson T and Thomas J O 2004 The cathode-electrolyte interface in the Li-ion battery Electrochim. Acta 50 397–403 [51] Dedryvère R, Martinez H, Leroy S, Lemordant D, Bonhomme F, Biensan P and Gonbeau D 2007 Surface film formation on electrodes in a LiCoO2/graphite cell: A step by step XPS study J. Power Sources 174 462–8 [52] Dedryvère R, Foix D, Franger S, Patoux S, Daniel L and Gonbeau D 2010 Electrode/electrolyte interface reactivity in high-voltage spinel LiMn 1.6Ni0.4O4/Li4Ti5O 12 lithium-ion battery J. Phys. Chem. C 114 10999–1008 [53] Soto F A, Marzouk A, El-Mellouhi F and Balbuena P B 2018 Understanding Ionic Diffusion through SEI Components for Lithium-Ion and Sodium-Ion Batteries: Insights from First-Principles Calculations Chem. Mater. 30 3315–22 [54] Liu G Q, Wen L and Liu Y M 2010 Spinel LiNi 0.5Mn 1.5O 4 and its derivatives as cathodes for high-voltage Li-ion batteries J. Solid State Electrochem. 14 2191–202 [55] Narayan R, Laberty-Robert C, Pelta J, Tarascon J M and Dominko R 2021 Self-Healing: An Emerging Technology for Next-Generation Smart Batteries Adv. Energy Mater. 2102652 [56] Sun Y, Liu N and Cui Y 2016 Promises and challenges of nanomaterials for lithium-based rechargeable batteries Nat. Energy 1 1–12 [57] Loveridge M and Dowson M 2021 Why Batteries Fail and How to Improve Them : Understanding Degradation to Advance Lithium-Ion Battery Performance Faraday Insights 9 [58] Wachs S J, Behling C, Ranninger J, Möller J, Mayrhofer K J J and Berkes B B 2021 Online Monitoring of Transition-Metal Dissolution from a High-Ni-Content Cathode Material ACS Appl. Mater. Interfaces 13 33075–82 [59] Jung R, Linsenmann F, Thomas R, Wandt J, Solchenbach S, Maglia F, Stinner C, Tromp M and Gasteiger H A 2019 Nickel, Manganese, and Cobalt Dissolution from Ni-Rich NMC and Their Effects on NMC622-Graphite Cells J. Electrochem. Soc. 166 A378–89 [60] Li W 2020 Review—An Unpredictable Hazard in Lithium-ion Batteries from Transition Metal Ions: Dissolution from Cathodes, Deposition on Anodes and Elimination Strategies J. Electrochem. Soc. 167 090514 [61] Klein S, Bärmann P, Beuse T, Borzutzki K, Frerichs J E, Kasnatscheew J, Winter M and Placke T 2021 Exploiting the Degradation Mechanism of NCM523∥ Graphite Lithium-Ion Full Cells Operated at High Voltage ChemSusChem 14 595–613 [62] Nitta N, Wu F, Lee J T and Yushin G 2015 Li-ion battery materials: Present and future Mater. Today 18 252–64 [63] Ding F, Xu W, Graff G L, Zhang J, Sushko M L, Chen X, Shao Y, Engelhard M H, Nie Z, Xiao J, Liu X, Sushko P V., Liu J and Zhang J G 2013 Dendrite-free lithium deposition via self-healing electrostatic shield mechanism J. Am. Chem. Soc. 135 4450–6 [64] Manthiram A 2020 A reflection on lithium-ion battery cathode chemistry Nat. Commun. 11 1–9 [65] Tarascon J M and Armand M 2001 Issues and challenges facing rechargeable lithium batteries Nature 414 359–67 [66] Shen X, Zhang X-Q, Ding F, Huang J-Q, Xu R, Chen X, Yan C, Su F-Y, Chen C-M, Liu X and Zhang Q 2021 Advanced Electrode Materials in Lithium Batteries: Retrospect and Prospect Energy Mater. Adv. 2021 1–15 [67] Ohzuku T, Kitagawa M and Hirai T 1990 Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell: III . X‐Ray Diffractional Study on the Reduction of Spinel‐Related Manganese Dioxide J. Electrochem. Soc. 137 769–75 [68] Julien C, Mauger A, Zaghib K and Groult H 2014 Comparative Issues of Cathode Materials for Li-Ion Batteries Inorganics 2 132–54 [69] Thackeray M M, Bruce P G, Goodenough J B and Road S P 1983 Lithium insertion into manganese spinels Mater. Res. Bull. 18 461–72 [70] Thackeray M M, Johnson P J, de Picciotto L A, Bruce P G and Goodenough J B 1984 Electrochemical extraction of lithium from LiMn2O4 Mater. Res. Bull. 19 179–87 [71] Lei J, Li L, Kostecki R, Muller R and McLarnon F 2005 Characterization of SEI Layers on LiMn[sub 2]O[sub 4] Cathodes with In Situ Spectroscopic Ellipsometry J. Electrochem. Soc. 152 A774 [72] Huang Y, Dong Y, Li S, Lee J, Wang C, Zhu Z, Xue W, Li Y and Li J 2020 Lithium Manganese Spinel Cathodes for Lithium-Ion Batteries Adv. Energy Mater. 11 1–21 [73] Ouyang C Y, Shi S Q and Lei M S 2009 Jahn-Teller distortion and electronic structure of LiMn2O4 J. Alloys Compd. 474 370–4 [74] Wakihara M 2005 Lithium manganese oxides with spinel structure and their cathode properties for lithium ion batteries Electrochemistry 73 328–35 [75] Kim K J and Lee J H 2007 Effects of nickel doping on structural and optical properties of spinel lithium manganate thin films Solid State Commun. 141 99–103 [76] Arabolla Rodríguez R, Della Santina Mohallem N, Avila Santos M, Sena Costa D A, Andrey Montoro L, Mosqueda Laffita Y, Tavera Carrasco L A and Perez-Cappe E L 2021 Unveiling the role of Mn-interstitial defect and particle size on the Jahn-Teller distortion of the LiMn2O4 cathode material J. Power Sources 490 229519 [77] Liu Z, Yu Q, Zhao Y, He R, Xu M, Feng S, Li S, Zhou L and Mai L 2019 Silicon oxides: A promising family of anode materials for lithium-ion batteries Chem. Soc. Rev. 48 285–309 [78] Posudievsky O Y, Kozarenko O A, Koshechko V G and Pokhodenko V D 2016 Conducting polymer-based hybrid nanocomposites as promising electrode materials for lithium batteries Adv. Electrode Mater. 355–96 [79] Han A R, Kim T W, Park D H, Hwang S J and Choy J H 2007 Soft chemical dehydration route to carbon coating of metal oxides: Its application for spinel lithium manganate J. Phys. Chem. C 111 11347–52 [80] Ji H, Ben L, Wang S, Liu Z, Monteiro R, Ribas R, Yu H, Gao P, Zhu Y and Huang X 2021 Effects of the Nb2O5-Modulated Surface on the Electrochemical Properties of Spinel LiMn2O4Cathodes ACS Appl. Energy Mater. 4 8350–9 [81] Li H, Xue L, Ni M, Savilov S V., Aldoshin S M and Xia H 2022 Boosting the cycling performance of spinel LiMn2O4 by in situ MnBO3 coating Electrochem. commun. 137 107266 [82] Zhao R R, Ma G Z, Zhu L C, Li A J and Chen H Y 2012 An improved Carbon-Coating Method for LiFePO 4 / C composite derived from Fe 3 + precursor 7 10923–32 [83] Pratheeksha P M, Mohan E H, Sarada B V, Ramakrishna M, Hembram K, Srinivas P V V, Daniel P J, Rao T N and Anandan S 2017 Development of a novel carbon-coating strategy for producing core–shell structured carbon coated LiFePO 4 for an improved Li-ion battery performance Phys. Chem. Chem. Phys. 19 175–88 [84] Zhang X, Cheng X and Zhang Q 2016 Nanostructured energy materials for electrochemical energy conversion and storage: A review J. Energy Chem. 25 967–84 [85] Park J, Joo J, Soon G K, Jang Y and Hyeon T 2007 Synthesis of monodisperse spherical nanocrystals Angew. Chemie - Int. Ed. 46 4630–60 [86] Niederberger M and Pinna N 2009 Metal Oxide Nanoparticles in Organic Solvents. Synthesis, formation assembly and application (London: Springer) [87] Lockwood D J Nanotechnology for Lithium-Ion Batteries (2013, Springer US) - libgen.lc.pdf [88] Park J H J E G, An K, Hwang Y, Park J H J E G, Noh H J, Kim J Y, Park J H J E G, Hwang N M and Hyeon T 2004 Ultra-large-scale syntheses of monodisperse nanocrystals Nat. Mater. 3 891–5 [89] Hyeon T, Su Seong L, Park J, Chung Y and Hyon B N 2001 Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size- Selection Process J. Ameriacan Chem. Soc. 123 12789–801 [90] Shouheng Sun, Hao Zeng, David B. Robinson, Simone Raoux, Philip M. Rice, Shan X. Wang and G L 2004 Monodisperse MFe2O4 (M ) Fe, Co, Mn) Nanoparticles J.Am.Chem.Soc. 126 273–9 [91] Seo W S, Jo H H, Lee K, Kim B, Oh S J and Park J T 2004 Size-dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles Angew. Chemie - Int. Ed. 43 1115–7 [92] Van Embden J, Chesman A S R and Jasieniak J J 2015 The heat-up synthesis of colloidal nanocrystals Chem. Mater. 27 2246–85 [93] Kwon S G and Hyeon T 2011 Formation Mechanisms of Uniform Nanocrystals via Hot-Injection and Heat-Up Methods 2685–702 [94] Park J, Joo J, Soon G K, Jang Y and Hyeon T 2007 Synthesis of monodisperse spherical nanocrystals Angew. Chemie - Int. Ed. 46 4630–60 [95] Williams D B and Carter C B 2009 Transmission electron microscopy: A textbook for materials science [96] Ludwig Reimer 1997 Transmission Electron Microscopy - Physics of Image Fromation and Microanalysis [97] Brandon D and Kaplan W D 2008 Microstructural Characterization of Materials: 2nd Edition [98] R.F. Egerton 2011 Electron Energy-Loss Spectroscopy in the Electron Microscope (Springer) [99] Xiao J, Li Q, Bi Y, Cai M, Dunn B, Glossmann T, Liu J, Osaka T, Sugiura R, Wu B, Yang J, Zhang J G and Whittingham M S 2020 Understanding and applying coulombic efficiency in lithium metal batteries Nat. Energy 5 561–8 [100] J. Bard Larry R. and Faulkner A 2019 ELECTROCHEMICAL METHODS Fundamentals and Applications vol 2 [101] Kim T, Choi W, Shin H C, Choi J Y, Kim J M, Park M S and Yoon W S 2020 Applications of voltammetry in lithium ion battery research J. Electrochem. Sci. Technol. 11 14–25 [102] Chen J, Zhao N, Zhao J, Li J, Guo F F and Li G D 2018 Facile synthesis of LiMn2O4 microsheets with porous micro-nanostructure as high-rate cathode materials for Li-ion batteries J. Solid State Electrochem. 22 331–8 [103] Jo J, Nam S, Han S, Mathew V, Alfaruqi M H, Pham D T, Kim S, Park S, Park S and Kim J 2019 One-pot pyro synthesis of a nanosized-LiMn2O4/C cathode with enhanced lithium storage properties RSC Adv. 9 24030–8 [104] Wu Y, Wen Z, Feng H and Li J 2012 Hollow porous LiMn 2O 4 microcubes as rechargeable lithium battery cathode with high electrochemical performance Small 8 858–62 [105] Cai Y, Huang Y, Wang X, Jia D, Pang W, Guo Z, Du Y and Tang X 2015 Facile synthesis of LiMn2O4 octahedral nanoparticles as cathode materials for high capacity lithium ion batteries with long cycle life J. Power Sources 278 574–81 [106] Hou Y, Xu Z and Sun S 2007 Controlled Synthesis and Chemical Conversions of FeO Angew. Chemie - Int. Ed. 46 6329–32 [107] Mourdikoudis S and Liz-Marzán L M 2013 Oleylamine in nanoparticle synthesis Chem. Mater. 25 1465–76 [108] Lohr J, Vasquez Mansilla M, Gerbaldo M V., Moreno M S, Tobia D, Goya G F, Winkler E L, Zysler R D and Lima E 2021 Dependence of the composition, morphology and magnetic properties with the water and air exposure during the Fe1-yO/Fe3O4 core–shell nanoparticles synthesis J. Nanoparticle Res. 23 [109] Obrovac M N, Mao O and Dahn J R 1998 Structure and electrochemistry of LiMO2 (M = Ti, Mn, Fe, Co, Ni) prepared by mechanochemical synthesis Solid State Ionics 112 9–19 [110] Johnston W D and Heikes R R 1956 A Study of the LixMn(1-x)O System J. Am. Chem. Soc. 78 3255–60 [111] Massarotti V, Capsoni D and Bini M 2002 Stability of LiMn2O4 and new high temperature phases in air, O2 and N2 Solid State Commun. 122 317–22 [112] Buzanov G A, Nipan G D, Zhizhin K Y and Kuznetsov N T 2015 Isothermal diagrams of the Li2O-MnO-MnO2 system Dokl. Chem. 465 268–71 [113] Laugier J and Bernard B 2003 Celref V3 for Windows. Unit cell refinement program [114] Sasaki B Y S, Fujino K and Sadanaga R 1980 On the Estimation of Atomic Charges by the X-ray Method for Some Oxides and Silicates Acta Crystallogr. Sect. A A36 904–15 [115] Castro F C and Dravid V P 2018 Characterization of Lithium Ion Battery Materials with Valence Electron Energy-Loss Spectroscopy Microsc. Microanal. 24 214–20 [116] Basak S, Jansen J, Kabiri Y and Zandbergen H W 2018 Towards optimization of experimental parameters for studying Li-O2 battery discharge products in TEM using in situ EELS Ultramicroscopy 188 52–8 [117] Hed A Z and Tannhauser D S 1967 High-temperature electrical properties of manganese monoxide J. Chem. Phys. 47 2090–103 [118] O’Keeffe M and Valigi M 1970 The electrical properties and defect structure of pure and chromium-doped MnO J. Phys. Chem. Solids 31 947–62 [119] Logsdail A J, Downing C A, Keal T W, Sherwood P, Sokol A A and Catlow C R A 2019 Hybrid-DFT Modeling of Lattice and Surface Vacancies in MnO J. Phys. Chem. C 123 8133–44 [120] Kamenskii M A, Eliseeva S N, Tolstopjatova E G, Volkov A I, Zhuzhelskii D V. and Kondratiev V V. 2019 The advantages of mass normalized electrochemical impedance spectra for the determination of the kinetic parameters of LiMn2O4 cathodes Electrochim. Acta 326 134969 [121] Chudzik K, Lis M, Świętosławski M, Bakierska M, Gajewska M and Molenda M 2019 Improving the performance of sulphur doped LiMn2O4 by carbon coating J. Power Sources 434 226725 [122] Brezesinski T, Wang J, Tolbert S H and Dunn B 2010 Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors Nat. Mater. 9 146–51 [123] Augustyn V, Come J, Lowe M A, Kim J W, Taberna P L, Tolbert S H, Abruña H D, Simon P and Dunn B 2013 High-rate electrochemical energy storage through Li + intercalation pseudocapacitance Nat. Mater. 12 518–22 [124] Lesel B K, Ko J S, Dunn B and Tolbert S H 2016 Mesoporous LixMn2O4 Thin Film Cathodes for Lithium-Ion Pseudocapacitors ACS Nano 10 7572–81 [125] Fehse M, Trócoli R, Ventosa E, Hernández E, Sepúlveda A, Morata A and Tarancón A 2017 Ultrafast Dischargeable LiMn 2 O 4 Thin-Film Electrodes with Pseudocapacitive Properties for Microbatteries ACS Appl. Mater. Interfaces 9 5295–301 [126] Lee G J, Abbas M A, Lee M D, Lee J J, Lee J J and Bang J H 2020 Lithiation Mechanism Change Driven by Thermally Induced Grain Fining and Its Impact on the Performance of LiMn2 O4 in Lithium-Ion Batteries Small 2002292 e2002292 [127] Lesel B K, Cook J B, Yan Y, Lin T C and Tolbert S H 2017 Using Nanoscale Domain Size to Control Charge Storage Kinetics in Pseudocapacitive Nanoporous LiMn2O4 Powders ACS Energy Lett. 2 2293–8 [128] Liu Y, Jiang S P and Shao Z 2020 Intercalation pseudocapacitance in electrochemical energy storage: recent advances in fundamental understanding and materials development Mater. Today Adv. 7 100072 [129] Mohamedi M, Takahashi D, Uchiyama T, Itoh T, Nishizawa M and Uchida I 2001 Explicit analysis of impedance spectra related to thin films of spinel LiMn2O4 J. Power Sources 93 93–103 [130] Aurbach D, Levi M D, Levi E, Teller H, Markovsky B, Salitra G, Heider U and Heider L 1998 Common Electroanalytical Behavior of Li Intercalation Processes into Graphite and Transition Metal Oxides J. Electrochem. Soc. 145 3024–34 [131] Levi M D, Salitra G, Markovsky B, Teller H, Aurbach D, Heider U and Heider L 1999 Solid‐State Electrochemical Kinetics of Li‐Ion Intercalation into Li1 − x CoO2: Simultaneous Application of Electroanalytical Techniques SSCV, PITT, and EIS J. Electrochem. Soc. 146 1279–89 [132] Cui X, Du S, Zhu K, Geng S, Zhao D, Li X, Tang F and Li S 2018 Elevated electrochemical property of LiMn2O4 originated from nano-sized Mn3O4 Ionics (Kiel). 24 697–706 [133] Xie J, Kohno K, Matsumura T, Imanishi N, Hirano A, Takeda Y and Yamamoto O 2008 Li-ion diffusion kinetics in LiMn2O4 thin films prepared by pulsed laser deposition Electrochim. Acta 54 376–81 [134] Liu Q, Zhu G, Li R, Lou S, Huo H, Ma Y, An J, Cao C, Kong F, Jiang Z, Lu M, Tong Y, Ci L, Yin G and Wang J 2021 Fast lithium transport kinetics regulated by low energy-barrier LixMnO2 for long-life lithium metal batteries Energy Storage Mater. 41 1–7 [135] Capron O, Gopalakrishnan R, Jaguemont J, Van Den Bossche P, Omar N and Van Mierlo J 2018 On the ageing of high energy lithium-ion batteries-comprehensive electrochemical diffusivity studies of Harvested Nickel Manganese Cobalt Electrodes Materials (Basel). 11 [136] Ji Y R, Weng S T, Li X Y, Zhang Q H and Gu L 2020 Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review Rare Met. 39 205–17 [137] Zhan C, Wu T, Lu J and Amine K 2018 Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes-A critical review Energy Environ. Sci. 11 243–57 [138] Tesfamhret Y, Liu H, Chai Z, Berg E and Younesi R 2021 On the Manganese Dissolution Process from LiMn2O4 Cathode Materials ChemElectroChem 8 1516–23 [139] Gummow R J, Kock A De and Thackeray M M 1994 Improved capacity retention in rechargeable 4 V lithium/lithium Solid State Ionics 69 59–67 [140] Thackeray M M 2020 Exploiting the Spinel Structure for Li-ion Battery Applications: A Tribute to John B. Goodenough Adv. Energy Mater. 2001117 1–8 [141] Banerjee A, Shilina Y, Ziv B, Ziegelbauer J M, Luski S, Aurbach D and Halalay I C 2017 On the oxidation state of manganese ions in li-ion battery electrolyte solutions J. Am. Chem. Soc. 139 1738–41 [142] Hanf L, Henschel J, Diehl M, Winter M and Nowak S 2020 Mn2+ or Mn3+? Investigating transition metal dissolution of manganese species in lithium ion battery electrolytes by capillary electrophoresis Electrophoresis 41 697–704 [143] Sun X, Xiao R, Yu X and Li H 2021 First-Principles Simulations for the Surface Evolution and Mn Dissolution in the Fully Delithiated Spinel LiMn2O4 Langmuir 37 5252–9 [144] Li S, Zhu K, Zhao D, Zhao Q and Zhang N 2019 Porous LiMn2O4 with Al2O3 coating as high-performance positive materials Ionics (Kiel). 25 1991–8 [145] Sarkar S, Patel R L, Liang X and Park J 2017 Unveiling the Role of CeO2 Atomic Layer Deposition Coatings on LiMn2O4 Cathode Materials: An Experimental and Theoretical Study ACS Appl. Mater. Interfaces 9 30599–607 [146] Guo J, Chen Y, Xu C, Li Y, Deng S, Xu H and Su Q 2019 Enhanced electrochemical performance of LiMn 2 O 4 by SiO 2 modifying via electrostatic attraction forces method 2–10 [147] Cui Y, Zhu C, Huang R, Liu J and Zhang Y 2020 Improved electrochemical cyclic performances of spinel LiMn2O4 by coating with lanthanum phosphate Int. J. Electrochem. Sci. 15 5440–8 [148] Tron A, Park Y D and Mun J 2016 AlF3-coated LiMn2O4 as cathode material for aqueous rechargeable lithium battery with improved cycling stability J. Power Sources 325 360–4 [149] Qiao Y, Yang H, Chang Z, Deng H, Li X and Zhou H 2021 A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent Nat. Energy 6 653–62 [150] Sun Y, Lee H W, Seh Z W, Liu N, Sun J, Li Y and Cui Y 2016 High-capacity battery cathode prelithiation to offset initial lithium loss Nat. Energy 1 1–7 [151] Ha Y, Schulze M C, Frisco S, Trask S E, Teeter G, Neale N R, Veith G M and Johnson C S 2021 Li2 O-based cathode additives enabling prelithiation of Si Anodes Appl. Sci. 11 [152] El Mendili Y, Grasset F, Randrianantoandro N, Nerambourg N, Greneche J M and Bardeau J F 2015 Improvement of thermal stability of maghemite nanoparticles coated with oleic acid and oleylamine molecules: Investigations under laser irradiation J. Phys. Chem. C 119 10662–8 [153] Mohapatra J, Zeng F, Elkins K, Xing M, Ghimire M, Yoon S, Mishra S R and Liu J P 2018 Size-dependent magnetic and inductive heating properties of Fe3O4 nanoparticles: Scaling laws across the superparamagnetic size Phys. Chem. Chem. Phys. 20 12879–87 [154] Maldonado A C M, Winkler E L, Raineri M, Córdova A T, Rodríguez L M, Troiani H E, Pisciotti M L M, Mansilla M V, Tobia D, Nadal M S, Torres T E, De Biasi E, Ramos C A, Goya G F, Zysler R D and Lima E 2019 Free-Radical Formation by the Peroxidase-Like Catalytic Activity of MFe2O4 (M = Fe, Ni, and Mn) Nanoparticles J. Phys. Chem. C 123 20617–27 [155] Martinez P S, Jr E L, Ruiz F, Curiale J and Moreno M S 2018 Morphology and Electrochemical Response of LiFePO4 Nanoparticles Tuned by Adjusting the Thermal Decomposition Synthesis J. Phys. Chem. C 122 18795–801 [156] Palaniyandy N, Rambau K, Musyoka N and Ren J 2020 A Facile Segregation Process and Restoration of LiMn 2 O 4 Cathode Material From Spent Lithium-Ion Batteries J. Electrochem. Soc. 167 090510 [157] Liu H, Zhou Y and Song W 2018 Facile synthesis of porous LiMn2O4micro-/nano-hollow spheres with extremely excellent cycle stability as cathode of lithium-ion batteries J. Solid State Electrochem. 22 2617–22 [158] Zou Z, Li Z, Zhang H, Wang X and Jiang C 2017 Copolymerization-Assisted Preparation of Porous LiMn2O4 Hollow Microspheres as High Power Cathode of Lithium-ion Batteries J. Mater. Sci. Technol. 33 781–7 [159] Xu J, Li Y, Yu Z, Le T H, Zhang C and Yang Y 2020 Self-templated hollow LiMn2O4 nanofibers as extremely long lifespan lithium ion battery cathode J. Mater. Sci. Mater. Electron. 31 12249–56 [160] Ding Y L, Zhao X B, Xie J, Cao G S, Zhu T J, Yu H M and Sun C Y 2011 Double-shelled hollow microspheres of LiMn2O4 for high-performance lithium ion batteries J. Mater. Chem. 21 9475–9 [161] Jiang H, Fu Y, Hu Y, Yan C, Zhang L, Lee P S and Li C 2014 Hollow LiMn2O4 nanocones as superior cathode materials for lithium-ion batteries with enhanced power and cycle performances Small 10 1096–100 [162] Luo J Y, Xiong H M and Xia Y Y 2008 LiMn2O4 nanorods, nanothorn microspheres, and hollow nanospheres as enhanced cathode materials of lithium ion battery J. Phys. Chem. C 112 12051–7 [163] Chen P, Wu H, Huang S and Zhang Y 2016 Template synthesis and lithium storage performances of hollow spherical LiMn2O4 cathode materials Ceram. Int. 42 10498–505 [164] Kim J S, Kim K, Cho W, Shin W H, Kanno R and Choi J W 2012 A truncated manganese spinel cathode for excellent power and lifetime in lithium-ion batteries Nano Lett. 12 6358–65 [165] Sun W, Cao F, Liu Y, Zhao X, Liu X and Yuan J 2012 Nanoporous LiMn2O4 nanosheets with exposed {111} facets as cathodes for highly reversible lithium-ion batteries J. Mater. Chem. 22 20952–7 [166] Wu Y, Cao C, Zhang J, Wang L, Ma X and Xu X 2016 Hierarchical LiMn2O4 Hollow Cubes with Exposed {111} Planes as High-Power Cathodes for Lithium-Ion Batteries ACS Appl. Mater. Interfaces 8 19567–72 [167] Hirayama M, Ido H, Kim K, Cho W, Tamura K, Mizuki J and Kanno R 2010 Dynamic structural changes at LiMn2O4/electrolyte interface during lithium battery reaction J. Am. Chem. Soc. 132 15268–76 [168] Xiao Y, Zhang X D, Zhu Y F, Wang P F, Yin Y X, Yang X, Shi J L, Liu J, Li H, Guo X D, Zhong B H and Guo Y G 2019 Suppressing Manganese Dissolution via Exposing Stable {111} Facets for High-Performance Lithium-Ion Oxide Cathode Adv. Sci. 6 [169] Cabot A, Puntes V F, Shevchenko E, Yin Y, Balcells L, Marcus M A, Hughes S M and Alivisatos A P 2007 Vacancy coalescence during oxidation of iron nanoparticles J. Am. Chem. Soc. 129 10358–60 [170] Rada E, Lima E, Moreno S and Ruiz F 2021 Small hollow nanostructures as a new morphology to improve stability of LiMn2O4 cathodes in Li-ion batteries Nanotechnology 435403 [171] Amos C D, Roldan M A, Varela M, Goodenough J B and Ferreira P J 2016 Revealing the Reconstructed Surface of Li[Mn2]O4 Nano Lett. 16 2899–906 [172] Okubo M, Mizuno Y, Yamada H, Kim J, Hosono E, Zhou H, Kudo T and Honma I 2010 Fast Li-ion insertion into nanosized LiMn2O4 without domain boundaries ACS Nano 4 741–52
Materias:Ingeniería mecánica > Ciencia de materiales
Divisiones:Gcia. de área de Aplicaciones de la tecnología nuclear > Gcia. de Investigación aplicada > Materiales metálicos y nanoestructurados
Código ID:1167
Depositado Por:Tamara Cárcamo
Depositado En:13 Mar 2023 16:19
Última Modificación:13 Mar 2023 16:19

Personal del repositorio solamente: página de control del documento