Cuevas, Santiago (2022) Influencia de la estructura de contactos en las transacciones económicas / Impact of contact network structure on economic exchanges. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 11Mb |
Resumen en español
Se estudió un modelo de intercambio de riqueza entre agentes económicos conocido como Yard-Sale. Con el objetivo de probar un enfoque de interacciones más realista se consideró a los agentes como los nodos de diferentes redes complejas y se restringieron los intercambios a los nodos conectados por esta estructura. En un nivel de descripción macroscópico se evaluaron indicadores económicos típicos, como el coeficiente de Gini y la liquidez, y se compararon los obtenidos con el modelo Yard-Sale en el esquema de campo medio, donde no hay restricciones para la interacción entre agentes. Se encontraron algunas similitudes, tales como las curvas de distribución de la riqueza, que reflejan el comportamiento de la clase media y baja en las economías reales. Entre las principales diferencias, se observó la pérdida de ergodicidad al medir la desigualdad final de los sistemas, incluso al realizar repeticiones con idénticas condiciones iniciales. Además se obtuvo un rango diferente de valores de desigualdad, más cercano a los valores de países reales. Otro nivel de descripción permitió estudiar la influencia de las características individuales de los agentes en el éxito económico logrado. Se demostró que las cantidades microscópicas relacionadas con el flujo de riqueza dependen exclusivamente del modelo de intercambio, y se encontró una dependencia de la riqueza final de los agentes con el número de contactos que poseen. Además, la inclusión de las redes generó una dependencia del éxito económico individual con la riqueza inicial con la que contaba cada agente, a diferencia de lo obtenido en el esquema de campo medio. Se propuso un nuevo nivel de descripción del problema, con el que se estudió en detalle el subgrupo de agentes que no quedaba en bancarrota, introduciendo un nuevo indicador de desigualdad. Se encontró un proceso de percolación asociado a la subred que estos agentes conformaban. Finalmente, se implementó y distribuyó una librería open source de fácil acceso y uso, que permite reproducir todos los resultados obtenidos en este trabajo y realizar pruebas similares sobre otros modelos de intercambio en redes complejas arbitrarias.
Resumen en inglés
The well-known model of wealth exchange between economic agents Yard-Sale was studied, representing the agents with nodes of complex networks. Exchanges were restricted to nodes connected by this structure, aiming at a more realistic interaction approach and studying the influence of the number of connections on the economic success of agents. Systems defined with these models were evolved and typical economic indicators such as the Gini coefficient and liquidity were used to compare the characteristics with the Yard-Sale model in the mean field scheme, where there are no restrictions between which agents can to interact. Similarities were found, such as wealth distribution curves, which reflect the behavior of the middle and lower classes in real economies. As one of the differences, a loss of ergodicity was observed when measuring the final inequality of the systems, even when performing repetitions with identical initial conditions. Also a different range of inequality values, closer to the values of real countries, was obtained. The influence of the individual characteristics of the agents on economic success was studied. It was shown that the microscopic quantities related to movement of wealth among the agents depended exclusively on the exchange model. Previous results related to that behaibour were found. Likewise, it was shown that there is a dependence on the final wealth obtained with the contact number of the agents. In addition, the presence of networks gave importance to the initial wealth that each agent had, which does not happen in the mean field scheme. The subgroup of agents that did not go bankrupt was studied in detail, introducing a new indicator of inequality. Additionally, a percolation process, associated with the subgraph formed by these agents, was discovered. Finally, an easy to access and use open source library was implemented and distributed. It allows reproducing all the results obtained in this work and perform out similar tests on other exchange models in arbitrary graphs.
Tipo de objeto: | Tesis (Maestría en Ciencias Físicas) |
---|---|
Palabras Clave: | [Econophysics; Econofísica; Wealth distributions; Distribuciones de riquezas; Kinetic wealth exchange model; Modelo de agentes económicos; Dynamical processes on complex networks; Dinámica en redes complejas] |
Referencias: | [1] Castellano, C., Fortunato, S., Loreto, V. Statistical physics of social dynamics. Reviews of modern physics, 81 (2), 591, 2009. 1 [2] Taagepera, R. Making social sciences more scientific: The need for predictive models. OUP Oxford, 2008. 1 [3] Yakovenko, V. M. Econophysics, statistical mechanics approach to. arXiv preprint arXiv:0709.3662, 2007. 1 [4] Chancel, L., Piketty, T., Saez, E., Zucman, G., et al. World inequality report 2022. World Inequality Lab, 2021. 1, 2 [5] Pareto, V. Cours d’economie politique, vol. 2. Pichou, Paris, 1897. 2 [6] Gibrat, R. Les in´egalits ´economiques. Sirey, 1931. 2 [7] Chakrabarti, B. K., Chakraborti, A., Chakravarty, S. R., Chatterjee, A. Econophysics of income and wealth distributions. Cambridge University Press, 2013. 2, 3 [8] Dragulescu, A., Yakovenko, V. M. Exponential and power-law probability distributions of wealth and income in the united kingdom and the united states. Physica A: Statistical Mechanics and its Applications, 299 (1-2), 213–221, 2001. 3 [9] Dragulescu, A. A., Yakovenko, V. M. Statistical mechanics of money, income, and wealth: a short survey. En: AIP Conference Proceedings, tomo 661, pags. 180–183. American Institute of Physics, 2003. 3 [10] Berrebi, Z. M., Silber, J. Income inequality indices and deprivation: A generalization. The Quarterly Journal of Economics, 100 (3), 807–810, 1985. 3, 13 [11] Angle, J. The surplus theory of social stratification and the size distribution of personal wealth. Social Forces, 65 (2), 293–326, 1986. 4 [12] Ispolatov, S., Krapivsky, P. L., Redner, S. Wealth distributions in asset exchange models. The European Physical Journal B-Condensed Matter and Complex Systems, 2 (2), 267–276, 1998. 4 [13] Dragulescu, A., Yakovenko, V. M. Statistical mechanics of money. The European Physical Journal B-Condensed Matter and Complex Systems, 17 (4), 723–729, 2000. 4, 68 [14] Chakraborti, A. Distributions of money in model markets of economy. International Journal of Modern Physics C, 13 (10), 1315–1321, 2002. 4 [15] Hayes, B. Follow the money. American Scientist, 90, 400, 09 2002. 4 [16] Iglesias, J.-R., Gon¸calves, S., Abramson, G., Vega, J.-L. Correlation between risk aversion and wealth distribution. Physica A: Statistical Mechanics and its Applications, 342 (1-2), 186–192, 2004. 4, 7, 8 [17] Fuentes, M. A., Kuperman, M., Iglesias, J. Living in an irrational society: Wealth distribution with correlations between risk and expected profits. Physica A: Statistical Mechanics and its Applications, 371 (1), 112–117, 2006. 7 [18] Caon, G., Gon¸calves, S., Iglesias, J. The unfair consequences of equal opportunities: Comparing exchange models of wealth distribution. The European Physical Journal Special Topics, 143 (1), 69–74, 2007. 15, 23, 24, 26 [19] Cardoso, B.-H. F., Gon¸calves, S., Iglesias, J. R. Wealth distribution models with regulations: Dynamics and equilibria. Physica A: Statistical Mechanics and its Applications, 551, 124201, 2020. 9, 13, 14, 15, 23, 26, 27, 28, 34, 75 [20] Neñer, J. M. Redes neuronales para la b´usqueda de estrategias ´optimas en problemas de econofísica. Tesis Doctoral, Universidad Nacional de Cuyo, 2021. 17, 18, 23, 24, 26, 31, 32, 64, 72 [21] Neñer, J., Laguna, M. F. Optimal risk in wealth exchange models: Agent dynamics from a microscopic perspective. Physica A: Statistical Mechanics and its Applications, 566, 125625, 2021. 4, 9, 13, 15, 44 [22] Chatterjee, A., Yarlagadda, S., Chakrabarti, B. K. Econophysics of wealth distributions: Econophys-Kolkata I. Springer Science & Business Media, 2007. 4 [23] Souma, W., Fujiwara, Y., Aoyama, H. Small-world effects in wealth distribution. arXiv preprint cond-mat/0108482, 2001. 5 [24] Bustos-Guajardo, R., Moukarzel, C. F. Yard-sale exchange on networks: wealth sharing and wealth appropriation. Journal of Statistical Mechanics: Theory and Experiment, 2012 (12), P12009, 2012. 5, 8, 20, 23, 24 [25] Barabasi, A.-L., Albert, R. Emergence of scaling in random networks. science, 286 (5439), 509–512, 1999. 5, 10 [26] Albert, R., Barabasi, A.-L. Statistical mechanics of complex networks. Reviews of modern physics, 74 (1), 47, 2002. 5 [27] Serrano, M. A., Boguna, M. Topology of the world trade web. Physical Review E, 68 (1), 015101, 2003. 5 [28] Vázquez-Montejo, J., Huerta-Quintanilla, R., Rodrıguez-Achach, M. Wealth condensation in a barabasi–albert network. Physica A: Statistical Mechanics and its Applications, 389 (7), 1464–1470, 2010. 5, 12, 23, 24, 75 [29] Patriarca, M., Heinsalu, E., Chakraborti, A. Basic kinetic wealth-exchange models: common features and open problems. The European Physical Journal B, 73 (1), 145–153, 2010. 5, 8 [30] Chorro, C. A simple probabilistic approach of the yard-sale model. Statistics & Probability Letters, 112, 35–40, 2016. 8 [31] Scafetta, N., Picozzi, S., West, B. J. A trade-investment model for distribution of wealth. Physica D: Nonlinear Phenomena, 193 (1-4), 338–352, 2004. 8 [32] Moukarzel, C. F., Gon¸calves, S., Iglesias, J.-R., Rodrıguez-Achach, M., Huerta-Quintanilla, R. Wealth condensation in a multiplicative random asset exchange model. The European Physical Journal Special Topics, 143 (1), 75–79, 2007. 8, 39 [33] Kelly, J. L. A new interpretation of information rate. The Bell System Technical Journal, 35 (4), 917–926, 1956. 9 [34] Erdos, P., Renyi, A., et al. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci, 5 (1), 17–60, 1960. 10 [35] Newman, M. E., Watts, D. J. Renormalization group analysis of the small-world network model. Physics Letters A, 263 (4-6), 341–346, 1999. 11 [36] Suisse, C. The global wealth report 2020. Switzerland: Research Institute, 2022. 12 [37] Csardi, G., Nepusz, T., et al. The igraph software package for complex network research. InterJournal, complex systems, 1695 (5), 1–9, 2006. 12 [38] Cobham, A., Schlogl, L., Sumner, A. Inequality and the tails: the palma proposition and ratio. Global Policy, 7 (1), 25–36, 2016. 56, 57 [39] Palma, J. G. Has the income share of the middle and upper-middle been stable around the ‘50/50 rule’, or has it converged towards that level? the ‘palma ratio’revisited. Development and Change, 45 (6), 1416–1448, 2014. 56, 75 [40] Bopghosian, B. M. ¿ es inevitable la desigualdad? Investigaci´on y ciencia, (520), 34–41, 2020. 56 [41] Cobham, A., Sumner, A. Is it all about the tails? the palma measure of income inequality. Center for Global Development working paper, (343), 2013. 57 [42] Barrat, A., Barthelemy, M., Vespignani, A. Dynamical processes on complex networks, cap. Chapter 6. Resilience and robustness of networks. Cambridge university press, 2008. 61, 62 [43] Chatterjee, A., Sen, P. Agent dynamics in kinetic models of wealth exchange. Physical Review E, 82 (5), 056117, 2010. 63 [44] Cuevas, S. cuTradeNet, Module for GPU-Accelerated Kinetic Wealth Exchange Models on Complex Networks, 2022, doi:10.5281/zenodo.7336541. URL https://github.com/Qsanti/cuTradeNet. 67, 69, 77 [45] Python package index - pypi. URL https://pypi.org/. 67 [46] Chatterjee, A., Chakrabarti, B. K., Manna, S. Money in gas-like markets: Gibbs and pareto laws. Physica Scripta, 2003 (T106), 36, 2003. 68 [47] Cuevas, S. cuTradeNet: module distributed version, 2022. URL https://pypi.org/project/cuTradeNet/. 69 [48] Bank, W. Gini index (world bank estimate). World Bank. Available: https://data.worldbank. org/indicator/SI. POV. GINI. Accessed, 1, 2021. 75 |
Materias: | Física > Econofísica |
Divisiones: | Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Sistemas complejos y altas energías > Física estadística interdisciplinaria |
Código ID: | 1175 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 07 Aug 2023 11:25 |
Última Modificación: | 07 Aug 2023 11:25 |
Personal del repositorio solamente: página de control del documento