Aragón Sáchez, Jazmín (2022) Propiedades electrónicas locales y materia de vórtices en el superconductor FeSe / Local electronic properties and vortex material in the FeSe superconductor. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 21Mb |
Resumen en español
En esta tesis presentamos un estudio de las propiedades estructurales y electrónicas a escala atómica, y las características estructurales de la materia de vórtices nucleada en superconductores de la familia FeSe. Discutimos el impacto de los defectos atómicos en los estados electrónicos de estos materiales y la relevancia del acople entre algunas peculiaridades de estos estados y la estructura de vórtices nucleada en estos superconductores. En primer lugar estudiamos los estados electrónicos de FeSe, FeSe_1xS_x y K_xFeSe con técnicas que son sensibles a las propiedades físicas en diferentes espesores de las muestras. Utilizando microscopia túnel de barrido determinamos los tipos de defectos presentes en los cristales y estudiamos las modificaciones estructurales inducidas por ellos. La complementación de estos resultados con datos sobre los estados electrónicos internos de los átomos del compuesto obtenidos mediante espectroscopia de fotoelectrones excitados con rayos X nos permite cuantificar los cambios en la transferencia de carga inducidos en los átomos vecinos a los defectos. Mediante simulaciones de DFT explicamos que los defectos dumbbell conllevan una redistribución de la nube electrónica de los átomos circundantes pero no inducen una modificación de la distancia entre el Fe y el anión. Considerando el gran volumen de evidencia que existe en la literatura sobre la dependencia de la temperatura crítica de los nicogenuros y calcogenuros basados en Fe con esta distancia [2], nuestras simulaciones explican que para densidades bajas de estos defectos la Tc del material no cambia. En contraste, en el caso de los defectos atómicos observados en las muestras irradiadas con K, en el entorno de la vacancia de Se generada por la irradiación se produce un aumento de la distancia entre el anión y el Fe. Este resultado explica el aumento de Tc reportado al irradiar con K [3]. En segundo lugar, considerando las propiedades electrónicas peculiares de los superconductores en base a Fe estudiados en la primer parte de esta tesis, nos preguntamos cómo cambian las propiedades estructurales de la materia de vórtices nucleada en este sustrato. Las muestras de FeSe poseen propiedades electrónicas no convencionales que a su vez inducen un acople fuerte entre las propiedades elásticas del cristal y la red de vórtices, conocido como efecto magnetoelástico. Mediante imágenes de vórtices individuales en regiones extendidas observamos que en la familia FeSe la materia de vórtices tiene una simetría hexagonal con deformaciones rómbicas y una estructura policristalina aunque con un orden orientacional de casi largo alcance débil en registro de las direcciones cristalinas de la muestra. Adicionalmente presenta fructuaciones de densidad que decaen algebraicamente a grandes distancias con un exponente que indica que el sistema de vórtices presenta el orden escondido de hiperuniformidad aunque es de la clase III desordenada. La comparación de estos resultados experimentales con los obtenidos en otros compuestos y con simulaciones realistas de dinámica de Langevin indican que la clase de hiperuniformidad y las distorsiones rómbicas observadas en la materia de vórtices en FeSe son el resultado del acople de los vórtices con las propiedades electrónicas y estructurales de las muestras. En particular, la importante magnitud del acople magnetoelástico / (dTc=dP )"2 en FeSe introduce un término extra anisotrópico y de largo alcance en la interacción entre vórtices que da origen a las propiedades estructurales de la materia de vórtices observadas en este compuesto. Por ultimo, en este trabajo mostramos que la forma funcional de la distribución espacial de la fuerza de interacción entre vórtices es un descriptor del acople entre la estructura de vórtices y propiedades electrónicas y elásticas anisotrópicas, y el desorden característico del sustrato en el que se nuclea, es decir, la muestra superconductora. Llegamos a esta conclusión luego de realizar un estudio comparativo entre las distribuciones de las fuerzas en FeSe y compuestos modelos como Bi_2Sr_2CaCu2O_8-δ y NbSe_2.
Resumen en inglés
In this work we present a study of the structural and electronic properties at the atomic scale, and the structural characteristics of vortex matter nucleated in the FeSe family of superconductors. We discuss the impact of atomic defects on the electronic states of these materials and the relevance of the coupling between some peculiarities of these states and the nucleated vortex structure in these superconductors. First, we study the electronic states of FeSe, FeSe_1xS_x and K_xFeSe with techniques that are sensitive to information at dierent thicknesses of the samples. Using scanning tunneling microscopy, we reveal the type of defects present in these samples and study the entailed structural modications. Complementing these results with data on the internal electronic states of the atoms of the compound obtained by X-ray excited photoelectron spectroscopy allows us to quantify the changes in the charge transfer induced in the neighbour atoms to the defects. Applying DFT simulations we explain that the dumbbell defects lead to a redistribution of the electron cloud of the surrounding atoms but do not induce a modication of the distance between the Fe and the anion atoms. Considering the large volume of evidence in the literature on the dependency of the critical temperature of Fe-based pnictogens and chalcogens with this distance [2], the simulations explain that for low densities of these defects the Tc of the material is not affected. In contrast, in the case of the atomic defects observed in the samples irradiated with K, an increase in the distance between the anion and the Fe atoms is produced in the vicinity of the Se vacancy generated by the irradiation. This result explains the increase in Tc reported when irradiating with K [3]. Second, considering the peculiar electronic properties of Fe-based superconductors studied in the rst part of this work, we wonder how they affect the structural properties of vortex matter nucleated in this substrate. FeSe samples have unconventional electronic properties that in turn induce a strong coupling between the elastic properties of the crystal and the vortex structure, known as the magneto-elastic effect. Using images of individual vortices in extended regions we observe that in the FeSe family vortex matter has a hexagonal symmetry with rhombic deformations and a polycrystalline structure, although with a weak near-long-range orientational order in register with the crystalline directions of the sample. Additionally, it presents density fluctuations that decay algebraically over large distances with an exponent that indicates that the vortex system presents the hidden order of hyperuniformity although it is class-III disordered. Comparing these experimental results with those obtained in other compounds and with realistic simulations of Langevin dynamics, we suggest that the hyperuniformity class and rhombic distortions observed in vortex matter in FeSe are the result of vortices coupling with the electronic and structural properties of the samples. In particular, the signicant magnitude of the magnetoelastic coupling / (dTc=dP )"2 in FeSe introduces an extra long-range anisotropic term in the interaction between vortices that gives rise to the structural properties of vortex matter observed in this compound. Finally, in this work we show that the functional form of the spatial distribution of the interaction force between vortices is a descriptor of the coupling between vortex matter and anisotropic electronic and elastic properties, and the characteristic disorder, of the substrate in which it nucleated, i.e. the superconducting sample. We reached this conclusion after conducting a comparative study between the force distributions in FeSe and model compounds such as Bi_2Sr_2CaCu2O_8-δand NbSe_2.
Tipo de objeto: | Tesis (Tesis Doctoral en Física) |
---|---|
Palabras Clave: | Scanning tunneling microscopy; Microscopia de efecto túnel; Superconductivity; Superconductividad; [Local electronic properties; Propiedades electronicas locales; Vortex matter; Materia de vórtices; Hiperuniformaty; Hiperuniformidad; Density functional theory; Teoría del funcional de la densidad; X-ray excited photoelectronic spectroscopy; Espectroscopia de fotoelectrones excitados] |
Referencias: | [1] Huang, D., Webb, T. A., Song, C.-L., Chang, C.-Z., Moodera, J. S., Kaxiras, E., et al. Dumbbell defects in FeSe films: A scanning tunneling microscopy and first- principles investigation. Nano Letters, 16 (7), 4224–4229, 2016. URL https: //doi.org/10.1021/acs.nanolett.6b01163, pMID: 27282020. xvii, 66, 67, 68, 98, 99, 104, 106, 116, 118, 124, 125, 128, 129, 130, 132, 144, 221 [2] Norman, M. R. High-temperature superconductivity in the iron pnictides. Phy- sics, 1, 1–5, Sep 2008. URL http://link.aps.org/doi/10.1103/Physics.1. 21. xix, xxi, 9, 10, 11, 222 [3] Mogensen, G. A. Tesis de Maestr´ıa en Ciencias F´ısicas, Instituto Balseiro, UN- Cuyo. 2022. xix, xxi, 69, 70, 71, 144, 223 [4] Kamerlingh Onnes, H. Communications from the Kamerlingh Onnes Laboratory of the University of Leiden. v. 12,n.º 121-132;v. 121-132. Kamerlingh Onnes laboratorium, Rijksuniversiteit., 1913. URL https://books.google.com.ar/ books?id=UXXkAAAAMAAJ. 1, 5 [5] Meissner, W., Ochsenfeld, R. Ein neuer effekt bei eintritt der supraleitf¨ahigkeit. Naturwissenschaften, 21, 787–788, Nov 1933. URL https://doi.org/10.1007/BF01504252. 1 [6] Tinkham, M. Introduction to Superconductivity. Dover Books on Physics Series. Dover Publications, 2004. URL https://books.google.com.ar/books?id=VpUk3NfwDIkC. 1, 2, 5, 7, 22, 146, 172, 176, 198, 202 [7] London, F., London, H., Lindemann, F. A. The electromagnetic equations of the supraconductor. Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, 149 (866), 71–88, 1935. URL https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1935.0048. 1 [8] Landau, L. D., Ginzburg, V. L. On the theory of superconductivity. Zh. Eksp. Teor. Fiz., 20, 1064, 1950. URL http://cds.cern.ch/record/486430. 2 [9] Abrikosov, A. A. On the magnetic properties of superconductors of the second group. Sov. Phys. JETP, 5, 1174–1182, 1957. 2, 4, 5 [10] Bardeen, J., Cooper, L. N., Schrieffer, J. R. Theory of superconductivity. Phys. Rev., 108, 1175–1204, Dec 1957. URL https://link.aps.org/doi/10.1103/ PhysRev.108.1175. 2 [11] Landau, L. D. On the theory of phase transitions. I. Phys. Z. Sowjet., 11, 26, 1937. URL http://cds.cern.ch/record/480039. 2 [12] Cooper, L. N. Bound electron pairs in a degenerate Fermi gas. Phys. Rev., 104, 1189–1190, Nov 1956. URL https://link.aps.org/doi/10.1103/PhysRev.104.1189. 2 [13] Gor’kov, L. P. Microscopic derivation of the Ginzburg-Landau equations in the theory of superconductivity. Sov. Phys. - JETP (Engl. Transl.); (United States). URL https://www.osti.gov/biblio/7264935. 2 [14] Fischer, O., Kugler, M., Maggio-Aprile, I., Berthod, C., Renner, C. Scanning tunneling spectroscopy of high-temperature superconductors. Rev. Mod. Phys., 79,353–419, Mar 2007. URL https://link.aps.org/doi/10.1103/RevModPhys.79.353. 2, 3, 31 [15] Watanabe, T., Nohara, M., Hanaguri, T., Takagi, H. Anisotropy of the super- conducting gap of the borocarbide superconductor YNi2B2C with ultrasonic at- tenuation. Phys. Rev. Lett., 92, 147002, Apr 2004. URL https://link.aps. org/doi/10.1103/PhysRevLett.92.147002. 3 [16] Bednorz, J. G., Muuuuuu¨ller, K. A. Possible high-Tc superconductivity in the Ba-La- Cu-O system. Zeitschrift fuuuuuu¨r Physik B Condensed Matter, 64, 189–193, Jun 1986. URL https://doi.org/10.1007/BF01303701. 3 [17] Suhl, H., Matthias, B. T., Walker, L. R. Bardeen-Cooper-Schrieffer theory of superconductivity in the case of overlapping bands. Phys. Rev. Lett., 3, 552–554, Dec 1959. URL https://link.aps.org/doi/10.1103/PhysRevLett.3.552. 4 [18] Nagamatsu, J., Nakagawa, N., Muranaka, T. e. a. Superconductivity at 39 K un magnesium diboride. Nature, 410, 63–64, March 2001. URL https://www. nature.com/articles/35065039. 4 [19] Matthias, B. T., Geballe, T. H., Compton, V. B. Superconductivity. Rev. Mod. Phys., 35, 1–22, Jan 1963. URL https://link.aps.org/doi/10.1103/RevModPhys.35.1. 5 [20] Eisenstein, J. Superconducting elements. Rev. Mod. Phys., 26, 277–291, Jul 1954. URL https://link.aps.org/doi/10.1103/RevModPhys.26.277. 5 [21] Abdel-Hafiez, M., Zhang, Y.-Y., Cao, Z.-Y., Duan, C.-G., Karapetrov, G., Pu- dalov, V. M., et al. Superconducting properties of sulfur-doped iron selenide. Phys. Rev. B, 91, 165109, Apr 2015. URL https://link.aps.org/doi/10.1103/PhysRevB.91.165109. 5, 146, 149 [22] Abdel-Hafiez, M., Ge, J., Vasiliev, A. N., Chareev, D. A., Van de Vondel, J., Moshchalkov, V. V., et al. Temperature dependence of lower critical field Hc1(T) shows nodeless superconductivity in FeSe. Phys. Rev. B, 88, 174512, Nov 2013. URL https://link.aps.org/doi/10.1103/PhysRevB.88.174512. 5 [23] Lei, H., Hu, R., Petrovic, C. Critical fields, thermally activated transport, and critical current density of β-FeSe single crystals. Phys. Rev. B, 84, 014520, Jul 2011. URL https://link.aps.org/doi/10.1103/PhysRevB.84.014520. 5, 146 [24] Fasano, Y., Menghini, M., de la Cruz, F., Paltiel, Y., Myasoedov, Y., Zeldov, E., et al. Order-disorder phase transition in NbSe2: Absence of amorphous vortex matter. Phys. Rev. B, 66, 020512, Jul 2002. URL https://link.aps.org/doi/10.1103/PhysRevB.66.020512. 5 [25] Kaul, E., Nieva, G. Oxygen doping effects on the magnetization of Bi2Sr2CaCu2O8+δ single crystalline system in the mixed state. Physica C: Super- conductivity, 341-348, 1343–1344, 2000. URL https://www.sciencedirect. com/science/article/pii/S0921453400008728. 5, 9 [26] Essmann, U., Tr¨auble, H. The direct observation of individual flux lines in type- II superconductors. Physics Letters A, 24 (10), 526–527, 1967. URL https: //www.sciencedirect.com/science/article/pii/0375960167908195. 6, 43 [27] Blatter, G., Feigel’man, M. V., Geshkenbein, V. B., Larkin, A. I., Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys., 66, 1125–1388, Oct 1994. URL https://link.aps.org/doi/10.1103/RevModPhys.66.1125. 6 [28] Giamarchi, T., Doussal, P. L. Statics and dynamics of disordered elastic systems.arXiv: Disordered Systems and Neural Networks, 1997. 7 [29] Sánchez, J. A., Maldonado, R. C., Bolecek, N. R. C., Rumi, G., Pedrazzini, P., Dolz, M. I., et al. Unveiling the vortex glass phase in the surface and volume of a type-II superconductor. Computer Physics Communications, 2 (143), 1–11, 2019. URL https://rdcu.be/cRYKi. 7, 42, 46, 153, 154, 180 [30] Llorens, J. B., Guillamón, I., Serrano, I. G., Córdoba, R., Sese, J., De Teresa, J. M., et al. Disordered hyperuniformity in superconducting vortex lattices. Phys. Rev. Research, 2, 033133, Jul 2020. URL https://link.aps.org/doi/10.1103/PhysRevResearch.2.033133. 159, 163 [31] Puig, J., El´ıas, F., Arag´on Sanch´ez, J., Cort´es Maldonado, R., Rumi, G., Nieva, G., et al. Anisotropic suppression of hyperuniform of elastic systems in media with planar disorder. Communications Materials, 3, 1–9, May 2022. URL https: //www.nature.com/articles/s43246-022-00250-6. 7, 159, 192 [32] Le Doussal, P., Giamarchi, T. Moving glass theory of driven lattices with disorder. Phys. Rev. B, 57, 11356–11403, May 1998. URL https://link.aps.org/doi/10.1103/PhysRevB.57.11356. 7 [33] Crabtree, G. W., Nelson, D. R. Vortex physics in high-temperature supercon- ductors. Physics Today, 50 (4), 38–45, 1997. URL https://doi.org/10.1063/1.881715. 7 [34] Sánchez, J., Rumi, G., Maldonado, R. e. a. Non-gaussian tail in the force distribution: a hallmark of correlated disorder in the host media of elastic objects. Scientific Reports, 10, Nov 2020. URL https://www.nature.com/articles/ s41598-020-76529-w. 7, 197 [35] Fasano, Y. Tesis Carrera de Doctorado en F´ısica, Instituto Balseiro, UNCuyo. 2003. 8, 44 [36] Pastoriza, H., Goffman, M. F., Arrib´´´´´ere, A., de la Cruz, F. First order phase transition at the irreversibility line of Bi2Sr2CaCu2O8. Phys. Rev. Lett., 72, 2951–2954, May 1994. URL https://link.aps.org/doi/10.1103/PhysRevLett.72.2951. 7 [37] Klein, T., Joumard, I., Blanchard, S. e. a. A Bragg glass phase in the vortex lattice of a type-II superconductor. Nature, 413, 404–406, Sep 2001. URL https://www.nature.com/articles/35096534. 7 [38] Khaykovich, B., Konczykowski, M., Zeldov, E., Doyle, R., Majer, D., Kes, P., et al. Vortex-matter phase transitions in Bi2Sr2CaCu2O8: Effects of weak disor- der. Physical Review B, 56 (2), 4, 1997. 7 [39] Kamihara, Y., Hiramatsu, H., Hirano, M., Kawamura, R., Yanagi, H., Kamiya, T., et al. Iron-based layered superconductor: LaOFeP. Journal of the American Chemical Society, 128 (31), 10012–10013, 2006. URL https://doi.org/10.1021/ja063355c, pMID: 16881620. 8 [40] Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H. Iron-based layered su- perconductor LaO1−xFxFeAs (x = 0.05-0.12) with Tc = 26 K. Journal of the American Chemical Society, 130 (11), 3296–3297, 2008. URL https://doi. org/10.1021/ja800073m, pMID: 18293989. 8, 9, 10, 20 [41] Tapp, J. H., Tang, Z., Lv, B., Sasmal, K., Lorenz, B., Chu, P. C. W., et al. LiFeAs: An intrinsic FeAs-based superconductor with Tc = 18 K. Phys. Rev. B, 78, 060505, Aug 2008. URL https://link.aps.org/doi/10.1103/PhysRevB.78.060505. 8, 10 [42] Pitcher, M. J., Parker, D. R., Adamson, P., Herkelrath, S. J. C., Boothroyd, A. T., Ibberson, R. M., et al. Structure and superconductivity of LiFeAs. Chem. Com- mun., p´ags. 5918–5920, 2008. URL http://dx.doi.org/10.1039/B813153H. [43] Wang, X., Liu, Q., Lv, Y., Gao, W., Yang, L., Yu, R., et al. The superconducti- vity at 18 K in LiFeAs system. Solid State Communications, 148 (11), 538–540, 2008. URL https://www.sciencedirect.com/science/article/pii/ S0038109808005851. 8, 10 [44] Rotter, M., Tegel, M., Johrendt, D. Superconductivity at 38 K in the iron arsenide Ba1−xKxFe2As2. Phys. Rev. Lett., 101, 107006, Sep 2008. URL https://link. aps.org/doi/10.1103/PhysRevLett.101.107006. 8, 10 [45] Wang, C., Li, L., Chi, S., Zhu, Z., Ren, Z., Li, Y., et al. Thorium-doping–induced superconductivity up to 56 K in Gd1−xThx FeAsO. EPL (Europhysics Let- ters), 83 (6), 67006, sep 2008. URL https://doi.org/10.1209/0295-5075/83/67006. 8, 10, 20 [46] Hsu, F.-C., Luo, J.-Y., Yeh, K.-W., Chen, T.-K., Huang, T.-W., Wu, P. M., et al. Superconductivity in the PbO-type structure α-FeSe. Proceedings of the National Academy of Sciences, 105 (38), 14262–14264, 2008. URL https://www.pnas.org/doi/abs/10.1073/pnas.0807325105. 9, 10 [47] Mazin, I. Superconductivity gets an iron boost. Nature, 464, 183–186, March 2010. URL https://www.nature.com/articles/nature08914. 9 [48] Hirschfeld, P. J., Korshunov, M. M., Mazin, I. I. Gap symmetry and structure of Fe-based superconductors. Reports on Progress in Physics, 74 (12), 124508, oct 2011. URL https://doi.org/10.1088/0034-4885/74/12/124508. [49] Chubukov, A. Pairing mechanism in Fe-based superconductors. Annual Review of Condensed Matter Physics, 3 (1), 57–92, 2012. URL https://doi.org/10. 1146/annurev-conmatphys-020911-125055. 9 [50] Cuk, T., Zocco, D. A., Eisaki, H., Struzhkin, V., Grosche, F. M., Maple, M. B., et al. Signatures of pressure-induced superconductivity in insulating Bi1.98Sr2.06Y0.68CaCu2O8+δ . Phys. Rev. B, 81, 184509, May 2010. URL https: //link.aps.org/doi/10.1103/PhysRevB.81.184509. 9 [51] de la Cruz, C., Huang, Q., Lynn, J. W., Li, J., Ratcliff II, W., Zarestky, J. L., et al. Magnetic order close to superconductivity in the iron-based la- yered LaO1−xFxFeAs systems. Nature, 453, 899–902, 2008. URL https: //www.nature.com/articles/nature07057.9 [52] Feiner, L. F., Jefferson, J. H., Raimondi, R. Effective single-band models for the high-Tc cuprates. i. coulomb interactions. Phys. Rev. B, 53, 8751–8773, Apr 1996. URL https://link.aps.org/doi/10.1103/PhysRevB.53.8751. 9 [53] Ren, Z. A., Yang, J., Lu, W., Yi, W., Che, G. C., Dong, X. L., et al. Su- perconductivity at 52 K in iron based F doped layered quaternary compound Pr[O1–xFx]FeAs. Materials Research Innovations, 12 (3), 105–106, 2008. URL https://doi.org/10.1179/143307508X333686. 10 [54] Wei, Z., Li, H., Hong, W., Lv, Z., Wu, H., Guo, X., et al. Superconductivity at 57.3 K in La-doped iron-based layered compound Sm0.95La0.05O0.85F0.15FeAs. Journal of Superconductivity and Novel Magnetism, 21, 213–215, July 2008. URL https://link.springer.com/article/10.1007/s10948-008-0327-y. 10 [55] Korotkov, N. Y., Frolov, K. V., Lyubutin, I. S., Khlybov, E. P., Pudalov, V. M. Mossbauer study of a new superconductor GdOFeAs. Journal of Su- perconductivity and Novel Magnetism, 26, 2877–2879, July 2013. URL https: //link.springer.com/article/10.1007/s10948-013-2211-7. 10 [56] Bos, J.-W. G., Penny, G. B. S., Rodgers, J. A., Sokolov, D. A., Huxley, A. D., Attfield, J. P. High pressure synthesis of late rare earth RFeAs(O,F) super- conductors; R = Tb and Dy. Chem. Commun., p´ags. 3634–3635, 2008. URL http://dx.doi.org/10.1039/B808474B. 10 [57] Torikachvili, M. S., Bud’ko, S. L., Ni, N., Canfield, P. C. Pressure induced superconductivity in CaFe2As2. Phys. Rev. Lett., 101, 057006, Jul 2008. URL https://link.aps.org/doi/10.1103/PhysRevLett.101.057006. 10 [58] Lee, S., Roh, S., Seo, Y.-S., Lee, M., Jung, E., Ok, J. M., et al. Temperature-dependent optical properties of self-doped superconducting Fe- pnictide, Sr2VO3FeAs. Journal of Physics: Condensed Matter, 31 (44), 445602, aug 2019. URL https://doi.org/10.1088/1361-648x/ab31cd. 10 [59] Alireza, P. L., Ko, Y. T. C., Gillett, J., Petrone, C. M., Cole, J. M., Lonzarich, G. G., et al. Superconductivity up to 29 K in SrFe2As2 and BaFe2As2 at high pressures. Journal of Physics: Condensed Matter, 21 (1), 012208, dec 2008. URL https://doi.org/10.1088/0953-8984/21/1/012208. 10 [60] Albedah, M. A., Stadnik, Z. M., Fedoryk, O., Liu, Y.-B., Cao, G.-H. Magnetic properties of EuFeAs2 and the 14 K superconductor EuFe0.97Ni0.03As2. Journal of Magnetism and Magnetic Materials, 503, 166603, 2020. URL https://www. sciencedirect.com/science/article/pii/S0304885320300214. 10 [61] Parker, D. R., Pitcher, M. J., Baker, P. J., Franke, I., Lancaster, T., Blundell, S. J., et al. Structure, antiferromagnetism and superconductivity of the layered iron arsenide NaFeAs. Chem.Commun., p´ags. 2189–2191, 2009. URL http: //dx.doi.org/10.1039/B818911K. 10 [62] Lai, X., Zhang, H., Wang, Y., Wang, X., Zhang, X., Lin, J., et al. Observation of superconductivity in tetragonal FeS. Journal of the American Chemical Society, 137 (32), 10148–10151, 2015. URL https://doi.org/10.1021/jacs.5b06687, pMID: 26244711. 10, 89, 90 [63] Mizuguchi, Y., Tomioka, F., Tsuda, S., Yamaguchi, T., Takano, Y. FeTe as a candidate material for new iron-based superconductor. Physica C: Supercon- ductivity, 469 (15), 1027–1029, 2009. URL https://www.sciencedirect.com/science/article/pii/S0921453409002135, proceedings of the 21st Internatio- nal Symposium on Superconductivity (ISS 2008). 10 [64] Aswathy, P. M., Anooja, J. B., Sarun, P. M., Syamaprasad, U. An overview on iron based superconductors. Superconductor Science and Technology, 23 (7), 073001, jun 2010. URL https://doi.org/10.1088/0953-2048/23/7/073001.10 [65] Matsuura, K., Mizukami, Y., Arai, Y., Sugimura, Y., Maejima, N., Machida, A., et al. Maximizing Tc by tuning nematicity and magnetism in FeSe1−xSx super- conductors. Nature Communications, 8, 6, 2017. URL https://www.nature. com/articles/s41467-017-01277-x. 10, 13, 187 [66] Guo, J., Jin, S., Wang, G., Wang, S., Zhu, K., Zhou, T., et al. Superconductivity in the iron selenide KxFe2Se2 (0 ≤ x ≤ 1.0). Phys. Rev. B, 82, 180520, Nov 2010. URL https://link.aps.org/doi/10.1103/PhysRevB.82.180520. 10 [67] Liu, Y., Wang, G., Ying, T., Lai, X., Jin, S., Liu, N., et al. Understanding doping, vacancy, lattice stability, and superconductivity in KxFe2−y Se2. Advanced Science, 3 (10), 1600098, 2016. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/advs.201600098. 10, 69 [68] Izumi, M., Zheng, L., Sakai, Y., Goto, H., Sakata, M., Nakamoto, Y., et al. Emergence of double-dome superconductivity in ammoniated metal-doped FeSe. Scientific Reports, 5, 9477, Apr 2015. 10 [69] Shi, M. Z., Wang, N. Z., Lei, B., Ying, J. J., Zhu, C. S., Sun, Z. L., et al. FeSe- based superconductors with a superconducting transition temperature of 50 K. New Journal of Physics, 20 (12), 123007, dec 2018. URL https://doi.org/10.1088/1367-2630/aaf312. 10 [70] Dai, P. Antiferromagnetic order and spin dynamics in iron-based superconduc- tors. Rev. Mod. Phys., 87, 855–896, Aug 2015. URL https://link.aps.org/ doi/10.1103/RevModPhys.87.855. 10 [71] Yi, M., Lu, D., Chu, J.-H., Analytis, J. G., Sorini, A. P., Kemper, A. F., et al. Symmetry-breaking orbital anisotropy observed for detwinned Ba(Fe1−xCox)2As2 above the spin density wave transition. Proceedings of the National Academy of Sciences, 108 (17), 6878–6883, 2011. URL https://www.pnas.org/doi/abs/ 10.1073/pnas.1015572108. 11 [72] Fernandes, R., Chubukov, A., Schmalian, J. What drives nematic order in iron- based superconductors? Nature Physics, 10, 97–104, 2014. URL https://www. nature.com/articles/nphys2877. 11 [73] Margadonna, S., Takabayashi, Y., McDonald, M. T., Kasperkiewicz, K., Mizugu- chi, Y., Takano, Y., et al. Crystal structure of the new FeSe1−x superconductor. Chem. Commun., p´´ags. 5607–5609, 2008. URL http://dx.doi.org/10.1039/ B813076K. 11, 12, 22, 63, 65, 69, 70, 105, 145, 146, 175 [74] Buuchner, B., Hess, C. Vital clues from a basic compound. Nature Materials, 8,615–616, 2009. URL https://www.nature.com/articles/nmat2501. 11 [75] Bohmer, A. E., Kreisel, A. Nematicity, magnetism and superconductivity in FeSe. Journal of Physics: Condensed Matter, 30 (2), 023001, dec 2017. URL https://doi.org/10.1088/1361-648x/aa9caa. 105 [76] Chen, T., Yi, M., Dai, P. Electronic and magnetic anisotropies in FeSe family on iron-based superconductors. Frontiers in Physics, 8 (314), 1–7, 2020. URL https://www.frontiersin.org/articles/10.3389/fphy.2020.00314/full. 11 [77] Amigó, M. L. Tesis de Carrera de Doctorado en F´ısica, Instituto Balseiro, UN-Cuyo. 2017. 12, 13, 69, 70, 113 [78] Lochner, F., Eremin, I. M., Hickel, T., Neugebauer, J. Ab initio study of the structural response to magnetic disorder and van der Waals interactions in FeSe. Phys. Rev. B, 103, 054506, Feb 2021. URL https://link.aps.org/doi/10.1103/PhysRevB.103.054506. 12, 58, 104, 105, 106, 109, 111, 112, 113 [79] Amigo, M. L., Crivillero, V. A., Franco, D. G., Nieva, G. Multiband character of β-FeSe: Angular dependence of the magnetoresistance and upper critical field. Journal of Physics: Conference Series, 568 (2), 022005, dec 2014. URL https: //doi.org/10.1088/1742-6596/568/2/022005. 11, 62, 63, 83, 145 [80] McQueen, T. M., Williams, A. J., Stephens, P. W., Tao, J., Zhu, Y., Ksenofontov, V., et al. Tetragonal-to-orthorhombic structural phase transition at 90 K in the superconductor Fe1.01Se. Phys. Rev. Lett., 103, 057002, Jul 2009. URL https://link.aps.org/doi/10.1103/PhysRevLett.103.057002. 12 [81] Muratov, A., Sadakov, A., Gavrilkin, S., Prishchepa, A., Epifanova, G., Chareev, D., et al. Specific heat of FeSe: Two gaps with different anisotropy in supercon- ducting state. Physica B: Condensed Matter, 536, 785–789, 2018. URL https: //www.sciencedirect.com/science/article/pii/S0921452617307743. 13 [82] Imai, T., Ahilan, K., Ning, F. L., McQueen, T. M., Cava, R. J. Why does undoped FeSe become a high-Tc superconductor under pressure? Phys. Rev. Lett., 102, 177005, Apr 2009. URL https://link.aps.org/doi/10.1103/PhysRevLett.102.177005. 13 [83] Watson, M. D., Yamashita, T., Kasahara, S., Knafo, W., Nardone, M., B´´eard, J., et al. Dichotomy between the hole and electron behavior in multiband su- perconductor FeSe probed by ultrahigh magnetic fields. Phys. Rev. Lett., 115, 027006, Jul 2015. URL https://link.aps.org/doi/10.1103/PhysRevLett. 115.027006. 13, 15, 17, 62, 63 [84] Suguru, H., Kohei, M., Kousuke, I., Hao, W., Yuta, M., Tatsuya, W., et al. Ne- matic quantum critical point without magnetism in FeSe1−xSx superconductors. Proceedings of the National Academy of Sciences, 113 (29), 8139–8143, 2016. URL https://www.pnas.org/doi/abs/10.1073/pnas.1605806113. 13, 187 [85] Watson, M. D., Kim, T. K., Haghighirad, A. A., Blake, S. F., Davies, N. R., Hoesch, M., et al. Suppression of orbital ordering by chemical pressure in FeSe1−xSx. Phys. Rev. B, 92, 121108, Sep 2015. URL https://link.aps.org/doi/10.1103/PhysRevB.92.121108. 14, 15, 16, 17 [86] Rhodes, L., Eschring, M., Kim, T., Watson, M. FeSe and the missing eletron pocket problem. Frontiers in Physics, 10, 859017, May 2022. URL https: //www.frontiersin.org/articles/10.3389/fphy.2022.859017/full. 14, 15,16, 19, 23, 104 [87] Suzuki, Y., Shimojima, T., Sonobe, T., Nakamura, A., Sakano, M., Tsuji, H., et al. Momentum-dependent sign inversion of orbital order in superconducting FeSe. Phys. Rev. B, 92, 205117, Nov 2015. URL https://link.aps.org/doi/10.1103/PhysRevB.92.205117. 15 [88] Huang, W., Lin, H., Zheng, C., Yin, Y., Chen, X., Ji, S.-H. Superconducting FeSe monolayer with millielectronvolt Fermi energy. Phys. Rev. B, 103, 094502, Mar 2021. URL https://link.aps.org/doi/10.1103/PhysRevB.103.094502.15 [89] Coldea, A. I., Watson, M. D. The key ingredients of the electronic structure of FeSe. Annual Review of Condensed Matter Physics, 9 (1), 125–146, 2018. URLhttps://doi.org/10.1146/annurev-conmatphys-033117-054137. 15, 18, 23 [90] Rhodes, L. C., Watson, M. D., Haghighirad, A. A., Eschrig, M., Kim, T. K. Strongly enhanced temperature dependence of the chemical potential in FeSe. Phys. Rev. B, 95, 195111, May 2017. URL https://link.aps.org/doi/10.1103/PhysRevB.95.195111. 15 [91] Watson, M. D., Haghighirad, A. A., Rhodes, L. C., Hoesch, M., Kim, T. K. Elec- tronic anisotropies revealed by detwinned angle-resolved photo-emission spectros- copy measurements of FeSe. New Journal of Physics, 19 (10), 103021, oct 2017. URL https://doi.org/10.1088/1367-2630/aa8a04. 16, 17 [92] Rhodes, L. C., Watson, M. D., Haghighirad, A. A., Evtushinsky, D. V., Kim, T. K. Revealing the single electron pocket of FeSe in a single orthorhombic domain. Phys. Rev. B, 101, 235128, Jun 2020. URL https://link.aps.org/ doi/10.1103/PhysRevB.101.235128. 15, 17 [93] Shimojima, T., Motoyui, Y., Taniuchi, T., Bareille, C., Onari, S., Kontani, H., et al. Discovery of mesoscopic nematicity wave in iron-based superconductors. Science, 373 (6559), 1122–1125, 2021. URL https://www.science.org/doi/ abs/10.1126/science.abd6701. 15 [94] Hoesch, M., Kim, T. K., Dudin, P., Wang, H., Scott, S., Harris, P., et al. A facility for the analysis of the electronic structures of solids and their surfaces by synchrotron radiation photoelectron spectroscopy. Review of Scientific Instruments, 88 (1), 013106, 2017. URL https://doi.org/10.1063/1.4973562.15 [95] Huh, S. S., Seo, J. J., Kim, B. S., et al. Absence of Y-pocket in 1-Fe Brillouin zone and reversed orbital occupation imbalance in FeSe. Communica- tions Physics, 3 (52), 52, Feb 2020. URL https://www.nature.com/articles/ s42005-020-0319-1. 17, 18, 23 [96] Fedorov, A., Yaresko, T. K., A. Kim, Kushnirenko, Y., Haubold, E., Wolf, T., Hoesch, M., et al. Effect of nematic ordering on electronic structure of FeSe. Scientific reports, 3, 52, oct 2016. URL https://www.nature.com/articles/srep36834. 18 [97] Yi, M., Pfau, H., Zhang, Y., He, Y., Wu, H., Chen, T., et al. Nematic energy scale and the missing electron pocket in FeSe. Phys. Rev. X, 9, 041049, Dec 2019. URL https://link.aps.org/doi/10.1103/PhysRevX.9.041049. 19, 23 [98] Cai, C., Han, T. T., Wang, Z. G., Chen, L., Wang, Y. D., Xin, Z. M., et al. Anomalous spectral weight transfer in the nematic state of iron-selenide su- perconductor. Chinese Physics B, 29 (7), 077401, aug 2020. URL https: //doi.org/10.1088/1674-1056/ab90ec. 19, 23 [99] Katayama, N., Ji, S., Louca, D., Lee, S., Fujita, M., J. Sato, T., et al. Investiga- tion of the spin-glass regime between the antiferromagnetic and superconducting phases in Fe1+y SexTe1−x. Journal of the Physical Society of Japan, 79 (11), 113702, 2010. URL https://doi.org/10.1143/JPSJ.79.113702. 20 [100] Margadonna, S., Takabayashi, Y., Ohishi, Y., Mizuguchi, Y., Takano, Y., Ka- gayama, T., et al. Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe (Tc = 37 K). Phys. Rev. B, 80, 064506, Aug 2009. URL https://link.aps.org/doi/10.1103/PhysRevB.80.064506.20, 111, 113, 115 [101] Medvedev, S., McQueen, T. M., Troyan, I. A., Palasyuk, T., Eremets, M. I., Cava, R. J., et al. Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7 K under pressure. Nature Materials, 8 (8), 630–633, Aug 2009. URL https://doi.org/10.1038/nmat2491. 20, 145, 146 [102] Ying, T. P., Chen, X. L., Wang, G., Jin, S. F., Zhou, T. T., Lai, X. F., et al. Observation of superconductivity at 30∼46 K in AxFe2Se2(A=Li, Na, Ba, Sr, Ca, Yb and Eu). Scientific Repots, 2 (426), May 2012. URL https://www.nature.com/articles/srep00426. 20 [103] Hrovat, M. c. v. M., Jegliˇc, P., Klanjˇsek, M., Hatakeda, T., Noji, T., Tanabe, Y., et al. Enhanced superconducting transition temperature in hyper-interlayer- expanded FeSe despite the suppressed electronic nematic order and spin fluctua- tions. Phys. Rev. B, 92, 094513, Sep 2015. URL https://link.aps.org/doi/10.1103/PhysRevB.92.094513. 20 [104] Wang, Q.-Y., Li, Z., Zhang, W.-H., Zhang, Z.-C., Zhang, J.-S., Li, W., et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3.Chinese Physics Letters, 29 (3), 037402, mar 2012. URL https://doi.org/10.1088/0256-307x/29/3/037402. 20 [105] Sun, Y., Zhang, W., Xing, Y., Li, F., Zhao, Y., Xia, Z., et al. High temperature superconducting FeSe films on SrTiO3 substrates. Scientific reports, 4 (6040), Aug 2014. URL https://www.nature.com/articles/srep06040. 20 [106] Ge, J.-J., Liu, Z.-L., Liu, C., Gao, C.-L., Qian, D., Xue, Q.-K., et al. Superconduc- tivity above 100 K in single layer FeSe films on doped SrTiO3. Nature Materials, 14, 285–289, Nov 2015. URL https://www.nature.com/articles/nmat4153.20 [107] Miyata, Y., Nakayama, K., Sugawara, K., Sato, T., T., T. High-temperature superconductivity in potassium-coated multilayer FeSe thin films. Nature Mate- rials, 14, 775–779, Jun 2015. URL https://rdcu.be/cUl1I. 20, 94 [108] Wang, Q., Shen, Y., Pan, B., Hao, Y., Ma, M., Zhou, F., et al. Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe. Na- ture Materials, 15, 159–163, Feb 2016. URL https://rdcu.be/cSmVn. 20, 63,122 [109] Sprau, P. O., Kostin, A., Kreisel, A., Bohmer, A. E., Taufour, V., Canfield, P. C., et al. Discovery of orbital-selective Cooper pairing in FeSe. Science, 357 (6346), 75–80, 2017. URL https://www.science.org/doi/abs/10.1126/science.aal1575. 20 [110] Hirschfeld, P. J., Altenfeld, D., Eremin, I., Mazin, I. I. Robust determination of the superconducting gap sign structure via quasiparticle interference. Phys. Rev. B, 92, 184513, Nov 2015. URL https://link.aps.org/doi/10.1103/ PhysRevB.92.184513. [111] Martiny, J. H. J., Kreisel, A., Hirschfeld, P. J., Andersen, B. M. Robustness of a quasiparticle interference test for sign-changing gaps in multiband superconduc- tors. Phys. Rev. B, 95, 184507, May 2017. URL https://link.aps.org/doi/10.1103/PhysRevB.95.184507. [112] Jiao, L., Roßler, S., Koz, C., Schwarz, U., Kasinathan, D., Roßler, U. K., et al. Impurity-induced bound states inside the superconducting gap of FeSe. Phys. Rev. B, 96, 094504, Sep 2017. URL https://link.aps.org/doi/10.1103/ PhysRevB.96.094504. 20 [113] Gerber, S., Yang, S.-L., Zhu, D., Soifer, H., Sobota, J. A., Rebec, S., et al. Fem- tosecond electron-phonon lock-in by photoemission and X-ray free-electron laser. Science, 357 (6346), 71–75, 2017. URL https://www.science.org/doi/abs/10.1126/science.aak9946. 20 [114] Song, C.-L., Wang, Y.-L., Jiang, Y.-P., Li, Z., Wang, L., He, K., et al. Molecular- beam epitaxy and robust superconductivity of stoichiometric FeSe crystalline films on bilayer graphene. Phys. Rev. B, 84, 020503, Jul 2011. URL https: //link.aps.org/doi/10.1103/PhysRevB.84.020503. 20, 147 [115] Putilov, A. V., Di Giorgio, C., Vadimov, V. L., Trainer, D. J., Lechner, E. M., Curtis, J. L., et al. Vortex-core properties and vortex-lattice transformation in FeSe. Phys. Rev. B, 99, 144514, Apr 2019. URL https://link.aps.org/doi/10.1103/PhysRevB.99.144514. 21, 22, 24, 67, 68, 145, 147, 158, 159, 173, 174,222 [116] Hussey, N. E. Low-energy quasiparticles in high-Tc cuprates. Advances in Physics, 51 (8), 1685–1771, 2002. URL https://doi.org/10.1080/00018730210164638.21 [117] Hanaguri, T., Kasahara, S., Boker, J., Eremin, I., Shibauchi, T., Matsuda, Y. Quantum vortex core and missing pseudogap in the multiband BCS-BEC cros- sover superconductor FeSe. Phys. Rev. Lett., 122, 077001, Feb 2019. URL https://link.aps.org/doi/10.1103/PhysRevLett.122.077001. 21, 24, 78,131, 132, 145, 147, 173, 222 [118] Song, C.-L., Wang, Y.-L., Cheng, P., Jiang, Y.-P., Li, W., Zhang, T., et al. Direct observation of nodes and twofold symmetry in FeSe superconductor. Science, 332 (6036), 1410–1413, 2011. URL https://www.science.org/doi/abs/10.1126/science.1202226. 24, 104, 145, 173, 174 [119] Lu, D.-C., Lv, Y.-Y., Li, J., Zhu, B.-Y., Wang, Q.-H., Wang, H.-B., et al. Elliptical vortex and oblique vortex lattice in the FeSe superconductor based on the nematicity and mixed superconducting orders. npj Quantum Materials, 3 (1),12, Mar 2018. URL https://doi.org/10.1038/s41535-018-0087-2. 21, 145, 147 [120] Kogan, V. G., Bullock, M., Harmon, B., Miranovic-acute, P., Dobrosavljevicacute Grujic-acute, L., Gammel, P. L., et al. Vortex lattice transitions in boro- carbides. Phys. Rev. B, 55, R8693–R8696, Apr 1997. URL https://link.aps.org/doi/10.1103/PhysRevB.55.R8693. 22, 145, 172 [121] De Wilde, Y., Iavarone, M., Welp, U., Metlushko, V., Koshelev, A. E., Aranson, I., et al. Scanning tunneling microscopy observation of a square Abrikosov lattice in LuNi2B2C. Phys. Rev. Lett., 78, 4273–4276, Jun 1997. URL https://link. aps.org/doi/10.1103/PhysRevLett.78.4273. [122] Bianchi, A. D., Kenzelmann, M., DeBeer-Schmitt, L., White, J. S., Forgan, E. M., Mesot, J., et al. Superconducting vortices in CeCoIn5: Toward the Pauli-limiting field. Science, 319 (5860), 177–180, 2008. URL https://www.science.org/ doi/abs/10.1126/science.1150600. [123] White, J. S., Das, P., Eskildsen, M. R., DeBeer-Schmitt, L., Forgan, E. M., Bian- chi, A. D., et al. Observations of Pauli paramagnetic effects on the flux line lattice in CeCoIn5. New Journal of Physics, 12 (2), 023026, feb 2010. URL https://dx.doi.org/10.1088/1367-2630/12/2/023026. [124] Kawano-Furukawa, H., Bowell, C. J., White, J. S., Heslop, R. W., Cameron, A. S., Forgan, E. M., et al. Gap in KFe2As2 studied by small-angle neutron scattering observations of the magnetic vortex lattice. Phys. Rev. B, 84, 024507, Jul 2011. URL https://link.aps.org/doi/10.1103/PhysRevB.84.024507. 22 [125] Kogan, V. G. Elastic contribution to interaction of vortices in uniaxial super- conductors. Phys. Rev. B, 88, 144514, Oct 2013. URL https://link.aps.org/ doi/10.1103/PhysRevB.88.144514. 146, 175, 176, 180, 185, 198 [126] Das, P., White, J. S., Holmes, A. T., Gerber, S., Forgan, E. M., Bianchi, A. D., et al. Vortex lattice studies in CeCoIn5 with H ⊥ c. Phys. Rev. Lett., 108, 087002, Feb 2012. URL https://link.aps.org/doi/10.1103/PhysRevLett.108.087002. 22 [127] Lin, S.-Z., Kogan, V. G. Strain-induced intervortex interaction and vortex lattices in tetragonal superconductors. Phys. Rev. B, 95, 054511, Feb 2017. URL https: //link.aps.org/doi/10.1103/PhysRevB.95.054511. 22, 145, 146, 175, 176, 180, 185, 187, 198, 215 [128] G. Binnig, C. G., H. Rohrer, Weibel, E. Vacuum tunneling. Physica B+C, 109, 2075–2077, 1982. 27 [129] G. Binnig, C. G., H. Rohrer, Weibel, E. Tunneling through a controllable vacuum gap. Applied Physics Letters, 40 (2), 178–180, 1982. [130] Binnig, G., Rohrer, H., Gerber, C., Weibel, E. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett., 49, 57–61, Jul 1982. URL https://link.aps.org/doi/10.1103/PhysRevLett.49.57. [131] Binnig, G., Rohrer, H. Scanning tunneling microscopy. Surface Science, 126 (1), 236–244, 1983. URL https://www.sciencedirect.com/science/article/pii/0039602883907161. 27 [132] Chen, C. J. Introduction to Scanning Tunnneling Microscopy: Second Edition. Monographs on the physics and chemistry of materials. Oxford: Oxford University Press, 2008. URL https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780199211500.001.0001/acprof-9780199211500#. 28,29 [133] Rajput, R., Vaid, R. Flash memory devices with metal floating gate/metal na- nocrystals as the charge storage layer: A status review. Facta universitatis - series: Electronics and Energetics, 33, 155–167, 01 2020. 29 [134] Berthod, C., Fasano, Y., Maggio-Aprile, I., Piriou, A., Giannini, E., Levy de Castro, G., et al. Strong-coupling analysis of scanning tunneling spectra in Bi2Sr2Ca2Cu3O10+δ . Phys. Rev. B, 88, 014528, Jul 2013. URL https://link.aps.org/doi/10.1103/PhysRevB.88.014528. 29 [135] Bardeen, J. Tunnelling from a many-particle point of view. Phys. Rev. Lett., 6, 57–59, Jan 1961. URL https://link.aps.org/doi/10.1103/PhysRevLett.6. 57. 29, 30 [136] Tersoff, J., Hamann, D. R. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett., 50, 1998–2001, Jun 1983. URL https://link. aps.org/doi/10.1103/PhysRevLett.50.1998. 29, 58, 116 [137] Tersoff, J., Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B, 31, 805–813, Jan 1985. URL https://link.aps.org/doi/10.1103/ PhysRevB.31.805. 29, 58, 116 [138] Giaever, I., Megerle, K. Study of superconductors by electron tunneling. Phys. Rev., 122, 1101–1111, May 1961. URL https://link.aps.org/doi/10.1103/PhysRev.122.1101. 33 [139] Meservey, R., Tedrow, P. Spin-polarized electron tunneling. Physics Reports, 238 (4), 173–243, 1994. URL https://www.sciencedirect.com/science/article/pii/0370157394901058. 33 [140] Carlson, T. A. Auger Electron Spectroscopy, p´ags. 279–335. Boston, MA: Springer US, 1975. URL https://doi.org/10.1007/978-1-4757-0118-0_6. 37 [141] Azaroff, L. V. Overview of X-Ray diffraction methods for nondestructive testing. En: J. J. Burke, V. Weiss (eds.) Nondestructive Evaluation of Materials, págs. 1–19. Boston, MA: Springer US, 1979. 37 [142] Turner, D. W., Al-Joboury, M. L. Journal of Chemical Physics, 37, 3007, 1962. 37 [143] Nordling, C., Sokolowski, E., Siegbahn, K. Precision method for obtaining abso- lute values of atomic binding energies. Phys. Rev., 105, 1676–1677, Mar 1957. URL https://link.aps.org/doi/10.1103/PhysRev.105.1676. 37 [144] Martinez, E. Tesis de Maestría en Ciencias Físicas, Instituto Balseiro, UNCuyo. 2018. 39 [145] Seah, M. P., Dench, W. A. Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surface and Inter- face Analysis, 1 (1), 2–11, 1979. URL https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/sia.740010103. 39 [146] Fasano, Y., Menghini, M. Magnetic-decoration imaging of structural transitions induced in vortex matter. Supercond. Sci. Tech., 21 (023001), 2008. 40, 41 [147] Eskildsen, M. R., Forgan, E. M., Kawano-Furukawa, H. Vortex structures, pene- tration depth and pairing in iron-based superconductors studied by small-angle neutron scattering. Reports on Progress in Physics, 74 (12), 124504, sep 2011. URL https://doi.org/10.1088/0034-4885/74/12/124504. 40, 159 [148] Hess, H., Robinson, R., Waszczak, J. STM spectroscopy of vortex cores and the flux lattice. Physica B: Condensed Matter, 169 (1), 422–431, 1991. URL https://www.sciencedirect.com/science/article/pii/092145269190262D. 41, 42 [149] Eskildsen, M. R. Vortex lattices in type-II superconductors studied by small- angle neutron scattering. Frontiers of Physics, 6 (4), 398, 2011. URL https://academic.hep.com.cn/fop/EN/abstract/article_2662.shtml. 42 [150] Herrera, E., Guillam´on, I., Galvis, J. A., Correa, A., Fente, A., Luccas, R. F., et al. Magnetic field dependence of the density of states in the multiband su- perconductor β-Bi2Pd. Phys. Rev. B, 92, 054507, Aug 2015. URL https: //link.aps.org/doi/10.1103/PhysRevB.92.054507. 42 [151] Bitter, F. On inhomogeneities in the magnetization of ferromagnetic materials. Phys. Rev., 38, 1903–1905, Nov 1931. URL https://link.aps.org/doi/10.1103/PhysRev.38.1903. 43 [152] Dolz, M. I., Fasano, Y., Pastoriza, H., Mosser, V., Li, M., Konczykowski, M. Latent heat and nonlinear vortex liquid in the vicinity of the first-order phase transition in layered high-Tc superconductors. Phys. Rev. B, 90, 144507, Oct 2014. URL https://link.aps.org/doi/10.1103/PhysRevB.90.144507. 46,202, 203 [153] Parr, R. G., Weitao, Y. Density-Functional Theory of Atoms and Molecu- les. Oxford University Press, 1995. URL https://doi.org/10.1093/oso/9780195092769.001.0001. 49 [154] Dreizler, R., Gross, E. Density Functional Theory: An Approach to the Quantum Many-Body Problem. Springer Berlin Heidelberg, 2012. URL https://books. google.com.ar/books?id=t6PvCAAAQBAJ. 49 [155] Rademaker, L. A practical introduction to density functional theory, 11 2020. 49, 53 [156] Born, M., Oppenheimer, R. Zur quantentheorie der molekeln. Annalen der Physik, 389 (20), 457–484, 1927. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.19273892002. 49 [157] Hohenberg, P., Kohn, W. Inhomogeneous electron gas. Phys. Rev., 136, B864– B871, Nov 1964. URL https://link.aps.org/doi/10.1103/PhysRev.136. B864. 50 [158] Kohn, W., Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, A1133–A1138, Nov 1965. URL https://link.aps.org/doi/10.1103/PhysRev.140.A1133. 51 [159] Hartree, D. R. The wave mechanics of an atom with a non-coulomb central field. part II. Some results and discussion. Mathematical Proceedings of the Cambridge Philosophical Society, 24 (1), 111–132, 1928. 51 [160] Monkhorst, H. J., Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B, 13, 5188–5192, Jun 1976. URL https://link.aps.org/doi/10.1103/ PhysRevB.13.5188. 53 [161] Perdew, J. P., Burke, K., Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865–3868, Oct 1996. URL https://link.aps.org/doi/10.1103/PhysRevLett.77.3865. 53, 57, 106 [162] Perdew, J. P., Schmidt, K. Jacob’s ladder of density functional approximations for the exchange-correlation energy. AIP Conference Proceedings, 577 (1), 1–20, 2001. URL https://aip.scitation.org/doi/abs/10.1063/1.1390175. 53 [163] Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A., Joannopoulos, J. D. Ite- rative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys., 64, 1045–1097, Oct 1992. URL https://link.aps.org/doi/10.1103/RevModPhys.64.1045. 54 [164] Phillips, J. C., Kleinman, L. New method for calculating wave functions in crystals and molecules. Phys. Rev., 116, 287–294, Oct 1959. URL https:// link.aps.org/doi/10.1103/PhysRev.116.287. 54 [165] Blochl, P. E. Projector augmented-wave method. Phys. Rev. B, 50, 17953–17979, Dec 1994. URL https://link.aps.org/doi/10.1103/PhysRevB.50.17953. 54 [166] Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 41, 7892–7895, Apr 1990. URL https://link.aps. org/doi/10.1103/PhysRevB.41.7892. 54 [167] Laasonen, K., Car, R., Lee, C., Vanderbilt, D. Implementation of ultrasoft pseu- dopotentials in ab initio molecular dynamics. Phys. Rev. B, 43, 6796–6799, Mar 1991. URL https://link.aps.org/doi/10.1103/PhysRevB.43.6796. [168] Laasonen, K., Pasquarello, A., Car, R., Lee, C., Vanderbilt, D. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys. Rev. B, 47, 10142–10153, Apr 1993. URL https://link.aps.org/doi/10.1103/PhysRevB. 47.10142. 54 [169] Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., et al. QUANTUM ESPRESSO: a modular and open-source software project for quan- tum simulations of materials. Journal of Physics: Condensed Matter, 21 (39), 395502, sep 2009. URL https://doi.org/10.1088/0953-8984/21/39/395502.55, 57, 106 [170] Kresse, G., Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54, 11169–11186, Oct 1996. URL https://link.aps.org/doi/10.1103/PhysRevB.54.11169. 55 [171] Blaha, P., Schwarz, K., Sorantin, P., Trickey, S. Full-potential, linearized aug- mented plane wave programs for crystalline systems. Computer Physics Com- munications, 59 (2), 399–415, 1990. URL https://www.sciencedirect.com/ science/article/pii/0010465590901876. 55 [172] Woods, N. D., Payne, M. C., Hasnip, P. J. Computing the self-consistent field in Kohn-Sham density functional theory. Journal of Physics: Condensed Mat- ter, 31 (45), 453001, aug 2019. URL https://doi.org/10.1088/1361-648x/ab31c0. 55 [173] Sun, W., Ceder, G. Efficient creation and convergence of surface slabs. Surface Science, 617, 53–59, 2013. URL https://www.sciencedirect.com/science/article/pii/S003960281300160X. 56 [174] Dal Corso, A. Pseudopotentials periodic table: From H to Pu. Computational Materials Science, 95, 337–350, 2014. URL https://www.sciencedirect.com/ science/article/pii/S0927025614005187. 57, 106 [175] Grimme, S., Antony, J., Ehrlich, S., Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 132 (15), 154104, 2010. URL https://doi.org/10.1063/1.3382344. 58, 106, 107 [176] Grimme, S. Semiempirical GGA-type density functional constructed with a long- range dispersion correction. Journal of Computational Chemistry, 27 (15), 1787–1799, 2006. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20495. 58, 106 [177] Tkatchenko, A., Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett., 102,073005, Feb 2009. URL https://link.aps.org/doi/10.1103/PhysRevLett. 102.073005. 58, 106 [178] de-la Roza, A. O., Blanco, M., Pend´´´´´as, A. M., Luannnnña, V. Critic: a new program for the topological analysis of solid-state electron densities. Computer Physics Communications, 180 (1), 157–166, 2009. URL https://www.sciencedirect. com/science/article/pii/S0010465508002865. 58, 116, 118 [179] Choudary, K., Garrity, K. F., Camp, C., Kalinin, S. V., Vasudevan, R., Ziatdi- nov, M., et al. Computational scanning tunneling microscope image database. Scientific data, 8 (57), Feb 2021. URL https://www.nature.com/articles/ s41597-021-00824-y. 58, 118 [180] Aragón Sánchez, J., Amig´o, M. L., Belussi, C. H., Ale Crivillero, M. V., Su´arez, S., Guimpel, J., et al. Impact of atomic defects in the electronic states of FeSe1−xSx superconducting crystals. Journal of Physics: Materials, 2022. URL http:// iopscience.iop.org/article/10.1088/2515-7639/ac9dc1. 62 [181] Ale Crivillero, M. V., Amig´o, M. L., Haberkorn, N., Nieva, G., Guimpel, J. Microstructural control of the transport properties of β-FeSe films grown by sputtering. Journal of Applied Physics, 126 (11), 115303, 2019. URL https: //doi.org/10.1063/1.5094131. 62, 63 [182] Mayer, M. Simnra code: Computer simulation of rbs, erda, nra, meis and pge. URL https://mam.home.ipp.mpg.de. 64 [183] McQueen, T. M., Huang, Q., Ksenofontov, V., Felser, C., Xu, Q., Zandbergen, H., et al. Extreme sensitivity of superconductivity to stoichiometry in Fe1+δ Se. Phys. Rev. B, 79, 014522, Jan 2009. URL https://link.aps.org/doi/10.1103/PhysRevB.79.014522. 65 [184] Hanaguri, T., Iwaya, K., Kohsaka, Y., Machida, T., Watashige, T., Kasahara, S., et al. Two distinct superconducting pairing states divided by the nematic end point in FeSe1−xSx. Science Advances, 4 (5), eaar6419, 2018. URL https: //www.science.org/doi/abs/10.1126/sciadv.aar6419. 68 [185] Ziegler, J. F., Biersack, J. P., Ziegler, J. P. The stopping and range of ions in solids, 2008. URL http://www.srim.org/. 70, 71 [186] Querales-Flores, J. D., Amig´o, M. L., Nieva, G., Ventura, C. I. Normal-state magnetotransport properties of β-FeSe superconductors. EPL (Europhysics Let- ters), 113 (1), 17005, jan 2016. URL https://doi.org/10.1209/0295-5075/113/17005. 83 [187] Shimojima, T., Suzuki, Y., Sonobe, T., Nakamura, A., Sakano, M., Omachi, J., et al. Lifting of xz/yz orbital degeneracy at the structural transition in detwinned FeSe. Phys. Rev. B, 90, 121111, Sep 2014. URL https://link.aps.org/doi/10.1103/PhysRevB.90.121111. 83 [188] Feng, Q., Shen, D., Zhang, J., Shan, C., Lu, Y., Liu, Y., et al. High oriented FeSe thin film on GaAs(100) substrate prepared by low-pressure metalorganic chemical vapor deposition. Journal of Magnetism and Magnetic Materials, 279 (2), 435–439, 2004. URL https://www.sciencedirect.com/science/article/pii/S0304885304002264. 87, 89 [189] Wu, X., Zhang, Z., Zhang, J., Ju, Z., Shen, D., Li, B., et al. Structural and electrical characterizations of single tetragonal FeSe on Si substrate. Journal of Crystal Growth, 300 (2), 483–485, 2007. URL https://www.sciencedirect. com/science/article/pii/S0022024806015831. 89 [190] Yoshida, R., Wakita, T., Okazaki, H., Mizuguchi, Y., Tsuda, S., Takano, Y., et al. Electronic structure of superconducting FeSe studied by high-resolution photoemission spectroscopy. Journal of the Physical Society of Japan, 78 (3), 034708, 2009. URL https://doi.org/10.1143/JPSJ.78.034708. [191] Chen, T.-K., Luo, J.-Y., Ke, C.-T., Chang, H.-H., Huang, T.-W., Yeh, K.-W., et al. Low-temperature fabrication of superconducting FeSe thin films by pulsed laser deposition. Thin Solid Films, 519 (5), 1540–1545, 2010. URL https:// www.sciencedirect.com/science/article/pii/S0040609010008321, 37th In- ternational Conference on Metallurgical Coatings and Thin Films (ICMCTF). 88, 89, 91 [192] Tsukada, A., Luna, K. E., Hammond, R. H., Beasley, M. R., Zhao, J. F., Rissbud, S. H. Pulsed laser deposition conditions and superconductivity of FeSe thin films. Applied Physics A, 104, 311–318, 2011. URL https://link.springer.com/ article/10.1007/s00339-010-6136-8. 88 [193] Qi, X., Wang, J.-Y., Kuo, J.-C., Yates, K. A., Cohen, L. F. Superconducting pro- perty and Fe valence state of FeSe thick films grown from high temperature solu- tion. Journal of Alloys and Compounds, 509 (22), 6350–6353, 2011. URL https: //www.sciencedirect.com/science/article/pii/S0925838811006244. 89 [194] Telesca, D., Nie, Y., Budnick, J. I., Wells, B. O., Sinkovic, B. Impact of valence states on the superconductivity of iron telluride and iron selenide films with incorporated oxygen. Phys. Rev. B, 85, 214517, Jun 2012. URL https://link. aps.org/doi/10.1103/PhysRevB.85.214517. 91 [195] Chaluvadi, S. K., Mondal, D., Bigi, C., Fujii, J., Adhikari, R., Ciancio, R., et al. Direct-ARPES and STM investigation of FeSe thin film growth by Nd:YAG laser.Coatings, 11 (3), 2021. URL https://www.mdpi.com/2079-6412/11/3/276. 87,88, 89, 91 [196] Moulder, J. F., Stickle, W. F., Sobol, W. M., Bomben, K. D. Handbook of X-RayPho [197] Yamasaki, A., Matsui, Y., Imada, S., Takase, K., Azuma, H., Muro, T., et al. Electron correlation in the FeSe superconductor studied by bulk-sensitive pho- toemission spectroscopy. Phys. Rev. B, 82, 184511, Nov 2010. URL https: //link.aps.org/doi/10.1103/PhysRevB.82.184511. 88, 91, 97 [198] Subedi, A., Zhang, L., Singh, D. J., Du, M. H. Density functional study of FeS, FeSe, and FeTe: Electronic structure, magnetism, phonons, and superconducti- vity. Phys. Rev. B, 78, 134514, Oct 2008. URL https://link.aps.org/doi/10.1103/PhysRevB.78.134514. 88, 173 [199] Singh, D. Electronic structure of Fe-based superconductors. Physica C: Su- perconductivity, 469 (9), 418–424, 2009. URL https://www.sciencedirect. com/science/article/pii/S0921453409000768, superconductivity in IronPnictides. 88 [200] Yeh, J., Lindau, I. Atomic subshell photoionization cross sections and asym- metry parameters: 1 :( Z :( 103. Atomic Data and Nuclear Data Tables, 32 (1),1–155, 1985. URL https://www.sciencedirect.com/science/article/pii/0092640X85900166. 90 [201] Shirley, D. A. High-Resolution X-Ray Photoemission Spectrum of the valence bands of gold. Phys. Rev. B, 5, 4709–4714, Jun 1972. URL https://link.aps. org/doi/10.1103/PhysRevB.5.4709. 91 [202] Guillamon, I., Suderow, H., Vieira, S., Fern´´´andez-Pacheco, A., Sese, J., Cordoba, R., et al. Nanoscale superconducting properties of amorphous W-based deposits grown with a focused-ion-beam. New Journal of Physics, 10 (9), 093005, sep 2008. URL https://doi.org/10.1088/1367-2630/10/9/093005. 96 [203] Bu, K., Wang, B., Zhang, W., Fei, Y., Zheng, Y., Ai, F., et al. Study of intrinsic defect states of FeSe with scanning tunneling microscopy. Phys. Rev. B, 100, 155127, Oct 2019. URL https://link.aps.org/doi/10.1103/PhysRevB.100. 155127. 104, 132, 138, 222 [204] Yee Lin, T., Abu Kassim, H., Shrivastava, K. N. DFT computation of the elec- tronic band structure of FeSe. AIP Conference Proceedings, 1169 (1), 283–288, 2009. URL https://aip.scitation.org/doi/abs/10.1063/1.3243266. 104 [205] Ricci, F., Profeta, G. van der Waals interaction in iron-chalcogenide superconductors. Phys. Rev. B, 87, 184105, May 2013. URL https://link.aps.org/doi/10.1103/PhysRevB.87.184105. 104 toelectron Spectroscopy. 1992. 87, 88, 90 [206] Guterding, D., Jeschke, H. O., Valentí, R. Basic electronic properties of ironselenide under variation of structural parameters. Phys. Rev. B, 96, 125107, Sep 2017. URL https://link.aps.org/doi/10.1103/PhysRevB.96.125107. 105 [207] Li, Y.-F., Zhu, L.-F., Guo, S.-D., Xu, Y.-C., Liu, B.-G. Distorted magnetic orders and electronic structures of tetragonal FeSe from first principles. Journal of Physics: Condensed Matter, 21 (11), 115701, feb 2009. URL https://doi. org/10.1088/0953-8984/21/11/115701. 104, 105 [208] Liu, K., Lu, Z.-Y., Xiang, T. Nematic antiferromagnetic states in bulk FeSe. Phys. Rev. B, 93, 205154, May 2016. URL https://link.aps.org/doi/10.1103/PhysRevB.93.205154. 105 [209] Bohmer, A. E., Kothapalli, K., Jayasekara, W. T., Wilde, J. M., Li, B., Sapkota, A., et al. Distinct pressure evolution of coupled nematic and magnetic orders in FeSe. Phys. Rev. B, 100, 064515, Aug 2019. URL https://link.aps.org/doi/10.1103/PhysRevB.100.064515. 105 [210] Goerigk, L. Chapter 6 - A comprehensive overview of the DFT-D3 London- dispersion correction. En: A. Otero de la Roza, G. A. DiLabio (eds.) Non- Covalent Interactions in Quantum Chemistry and Physics, págs. 195–219. Elsevier, 2017. URL https://www.sciencedirect.com/science/article/pii/ B9780128098356000074. 106, 107 [211] Vinet, P., Ferrante, J., Rose, J. H., Smith, J. R. Compressibility of solids. Journal of Geophysical Research: Solid Earth, 92 (B9), 9319–9325, 1987. URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/ JB092iB09p09319. 109, 110, 111 [212] Latimer, K., Dwaraknath, S., Mathew, K., Winston, D., Persson, K. A. Eva- luation of thermodynamic equations of state across chemistry and structure in the materials project. npj Computational Materials, 4 (40), 7, 2018. URL https://rdcu.be/cTaPZ. 110 [213] Hofer, W. A., Foster, A. S., Shluger, A. L. Theories of scanning probe microscopes at the atomic scale. Rev. Mod. Phys., 75, 1287–1331, Oct 2003. URL https: //link.aps.org/doi/10.1103/RevModPhys.75.1287. 118, 120 [214] Fang, C., Yao, H., Tsai, W.-F., Hu, J., Kivelson, S. A. Theory of electron nematic order in LaFeAsO. Phys. Rev. B, 77, 224509, Jun 2008. URL https://link.aps.org/doi/10.1103/PhysRevB.77.224509. 145 [215] Chowdhury, D., Berg, E., Sachdev, S. Nematic order in the vicinity of a vortex in superconducting FeSe. Phys. Rev. B, 84, 205113, Nov 2011. URL https://link.aps.org/doi/10.1103/PhysRevB.84.205113. 145, 173 [216] Tanatar, M. A., Bohmer, A. E., Timmons, E. I., Schu¨tt, M., Drachuck, G., Tau- four, V., et al. Origin of the resistivity anisotropy in the nematic phase of FeSe. Phys. Rev. Lett., 117, 127001, Sep 2016. URL https://link.aps.org/doi/10.1103/PhysRevLett.117.127001. [217] Baek, S.-H., Efremov, D. V., Ok, J. M., Kim, J. S., van den Brink, J., Buchner, B. Orbital-driven nematicity in FeSe. Nature Materials, 14, 210–214, Feb 2015. URL https://www.nature.com/articles/nmat4138. 145 [218] Watashige, T., Tsutsumi, Y., Hanaguri, T., Kohsaka, Y., Kasahara, S., Furu- saki, A., et al Evidence for time-reversal symmetry breaking of the super- conducting state near twin-boundary interfaces in FeSe revealed by scanning tunneling spectroscopy. Phys. Rev. X, 5, 031022, Aug 2015. URL https://link.aps.org/doi/10.1103/PhysRevX.5.031022. 145, 173 [219] Man, W., Florescu, M., Williamson, E. P., He, Y., Hashemizad, S. R., Leung, B. Y. C., et al. Isotropic band gaps and freeform waveguides observed in hy- peruniform disordered photonic solids. Proc. Natl. Acad. Sci. USA, 110 (40), 15886–15891, 2013. URL https://www.pnas.org/content/110/40/15886. 147 [220] Le Thien, Q., McDermott, D., Reichhardt, C. J. O., Reichhardt, C. Enhanced pinning for vortices in hyperuniform pinning arrays and emergent hyperuniform vortex configurations with quenched disorder. Phys. Rev. B, 96, 094516, Sep 2017. URL https://link.aps.org/doi/10.1103/PhysRevB.96.094516. [221] Zheng, Y., Liu, L., Nan, H., Shen, Z.-X., Zhang, G., Chen, D., et al. Disordered hyperuniformity in two-dimensional amorphous silica. Science Advances, 6 (16), eaba0826, 2020. URL https://www.science.org/doi/abs/10.1126/sciadv.aba0826. 159 [222] Chen, D., Torquato, S. Designing disordered hyperuniform two-phase materials with novel physical properties. Acta Materialia, 142, 152–161, 2018. URL https://www.sciencedirect.com/science/article/pii/S1359645417308194. [223] Froufe-Perez, L. S., Engel, M., Damasceno, P. F., Muller, N., Haberko, J., Glotzer, S. C., et al. Role of short-range order and hyperuniformity in the formation of band gaps in disordered photonic materials. Phys. Rev. Lett., 117, 053902, Jul 2016. URL https://link.aps.org/doi/10.1103/PhysRevLett.117.053902. 147 [224] Jiao, Y., Lau, T., Hatzikirou, H., Meyer-Hermann, M., Corbo, J. C., Torquato, S. Avian photoreceptor patterns represent a disordered hyperuniform solution to a multiscale packing problem. Phys. Rev. E, 89, 022721, Feb 2014. URL https://link.aps.org/doi/10.1103/PhysRevE.89.022721. 147 [225] Mayer, A., Balasubramanian, V., Mora, T., Walczak, A. M. How a well-adapted immune system is organized. Proceedings of the National Academy of Sciences, 112 (19), 5950–5955, 2015. URL https://www.pnas.org/doi/abs/10.1073/pnas.1421827112. [226] Chieco, A. T., Durian, D. J. Quantifying the long-range structure of foams and other cellular patterns with hyperuniformity disorder length spectroscopy. Phys. Rev. E, 103, 062609, Jun 2021. URL https://link.aps.org/doi/10.1103/ PhysRevE.103.062609. [227] Klatt, M. A., Lovri´c, J., Chen, D., Kapfer, S. C., Schaller, F. M., Sch¨onh¨ofer, P. W. A., et al. Universal hidden order in amorphous cellular geometries. Nature Comm., 10 (1), 811, Feb 2019. URL https://doi.org/10.1038/ s41467-019-08360-5. 147 [228] Torquato, S. Hyperuniform states of matter. Physics Reports, 745, 1–95, 2018. URL https://www.sciencedirect.com/science/article/pii/ S037015731830036X, hyperuniform States of Matter. 147, 158 [229] Shibauchi, T., Hanaguri, T., Matsuda, Y. Exotic superconducting states in FeSe- based materials. Journal of the Physical Society of Japan, 89 (10), 102002, 2020. URL https://doi.org/10.7566/JPSJ.89.102002. 147 [230] Zhang, I. P., Palmstrom, J. C., Noad, H., Bishop-Van Horn, L., Iguchi, Y., Cui, Z., et al. Imaging anisotropic vortex dynamics in FeSe. Phys. Rev. B, 100, 024514, Jul 2019. URL https://link.aps.org/doi/10.1103/PhysRevB.100.024514.147 [231] Bolecek, N. R. C., Kolton, A. B., Konczykowski, M., Pastoriza, H., Dom´ınguez, D., Fasano, Y. Vortex matter freezing in Bi2Sr2CaCu2O8 samples with a very dense distribution of columnar defects. Phys. Rev. B, 93, 054505, Feb 2016. URL https://link.aps.org/doi/10.1103/PhysRevB.93.054505. 149, 150,199, 202, 207 [232] Ito, Y. Delaunay Triangulation, págs. 332–334. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. URL https://doi.org/10.1007/978-3-540-70529-1_ 314. 151 [233] Fasano, Y., Seta, M. D., Menghini, M., Pastoriza, H., de la Cruz, F. Commensurability and stability in nonperiodic systems. Proceedings of the National Academy of Sciences, 102 (11), 3898–3902, 2005. URL https://www.pnas.org/doi/abs/10.1073/pnas.0408016102. 153 [234] Torquato, S., Kim, J., Klatt, M. A. Local number fluctuations in hyperuniform and nonhyperuniform systems: Higher-order moments and distribution functions. Phys. Rev. X, 11, 021028, May 2021. URL https://link.aps.org/doi/10.1103/PhysRevX.11.021028. 158 [235] Kim, J., Torquato, S. Effect of imperfections on the hyperuniformity of many- body systems. Phys. Rev. B, 97, 054105, Feb 2018. URL https://link.aps. org/doi/10.1103/PhysRevB.97.054105. 159 [236] Olszewski, M. W., Eskildsen, M. R., Reichhardt, C., Reichhardt, C. J. O. Structural transitions in vortex systems with anisotropic interactions. New Journal of Physics, 20 (2), 023005, feb 2018. URL https://doi.org/10.1088/1367-2630/aaa472. 159, 181 [237] Zhang, S. S., Yin, J.-X., Dai, G., Zheng, H., Chang, G., Belopolski, I., et al. Vector field controlled vortex lattice symmetry in LiFeAs using scanning tunneling microscopy. Phys. Rev. B, 99, 161103, Apr 2019. URL https://link.aps.org/ doi/10.1103/PhysRevB.99.161103. 159 [238] Lu, D.-C., Lv, Y.-Y., Zhu, B.-Y., Wang, Q.-H., Wang, H.-B., Wu, P.-H. Ellip- tical vortex and oblique vortex lattice in the FeSe superconductor based on the nematicity and mixed superconducting orders. npj Quantum Materials, 3, 1–8, March 2018. URL https://rdcu.be/cTFvb. 159 [239] Rumi, G., Aragón Sánchez, J., Elías, F., Cortes Maldonado, R., Puig, J., Cejas Bolecek, N. R., et al. Hyperuniform vortex patterns at the surface of type-II superconductors. Phys. Rev. Res., 1, 033057, Oct 2019. URL https: //link.aps.org/doi/10.1103/PhysRevResearch.1.033057. 159, 164, 172 [240] Torquato, S., Stillinger, F. H. Local density fluctuations, hyperuniformity, and order metrics. Phys. Rev. E, 68, 041113, Oct 2003. URL https://link.aps. org/doi/10.1103/PhysRevE.68.041113. 164 [241] Hess, H. F., Murray, C. A., Waszczak, J. V. Scanning-tunneling-microscopy study of distortion and instability of inclined flux-line-lattice structures in the anisotropic superconductor 2H-NbSe2. Phys. Rev. Lett., 69, 2138–2141, Oct 1992. URL https://link.aps.org/doi/10.1103/PhysRevLett.69.2138. 165, 212 [242] Kogan, V. G., Bulaevskii, L. N., Miranovi´c, P., Dobrosavljevic-Gruji´c, L. Vortex- induced strain and flux lattices in anisotropic superconductors. Phys. Rev. B, 51, 15344–15350, Jun 1995. URL https://link.aps.org/doi/10.1103/PhysRevB.51.15344. 175 [243] Sun, J. P., Matsuura, K., Ye, G. Z., Mizukami, Y., Shimozawa, M., Matsubayashi, K., et al. Dome-shaped magnetic order competing with high-temperature superconductivity at high pressures in FeSe. Comm. Phys. Nat., 7, 12146, Jul2016. 187 [244] Li, T., Kes, P., Hien, N., Franse, J., Menovsky, A. Growth of Bi2Sr2CaCu2O8+x single crystals at different oxygen ambient pressures. Journal of Crystal Growth,135 (3), 481–486, 1994. URL https://www.sciencedirect.com/science/ article/pii/0022024894901384. 198 [245] Konczykowski, M., van der Beek, C. J., Koshelev, A. E., Mosser, V., Li, M., Kes, P. H. Vortex matter in Bi2Sr2CaCu2O8 with pointlike disorder. Journal of Physics: Conference Series, 150 (5), 052119, mar 2009. URL https://dx.doi. org/10.1088/1742-6596/150/5/052119. 198, 199, 202 [246] van der Beek, C. J., Konczykowski, M., Drost, R. J., Kes, P. H., Chikumoto, N., Bouffard, S. Entropy, vortex interactions, and the phase diagram of heavy- ion-irradiated Bi2Sr2CaCu2O8+δ . Phys. Rev. B, 61, 4259–4269, Feb 2000. URL https://link.aps.org/doi/10.1103/PhysRevB.61.4259. 199, 202 [247] Menghini, M., Fasano, Y., de la Cruz, F., Banerjee, S. S., Myasoedov, Y., Zeldov, E., et al. First-Order phase transition from the vortex liquid to an amorphous solid. Phys. Rev. Lett., 90, 147001, Apr 2003. URL https://link.aps.org/doi/10.1103/PhysRevLett.90.147001. 201 |
Materias: | Física > Superconductividad |
Divisiones: | Investigación y aplicaciones no nucleares > Física > Bajas temperaturas |
Código ID: | 1177 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 10 Aug 2023 16:11 |
Última Modificación: | 10 Aug 2023 16:11 |
Personal del repositorio solamente: página de control del documento