Termometría óptica en la microescala mediante nanosondas luminiscentes de tipo upconversión / Optical thermometry at the microscale using upconversion-type luminescent

Aguilar, Alfredo M. (2022) Termometría óptica en la microescala mediante nanosondas luminiscentes de tipo upconversión / Optical thermometry at the microscale using upconversion-type luminescent. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
38Mb

Resumen en español

La termometría luminiscente basada en iones trivalentes de lantánidos (Ln"3+) se ha convertido en una técnica popular durante la ultima década debido a su versatilidad, estabilidad, alta e- ciencia cuántica de emisión y su amplio rango espectral, cubriendo desde el ultravioleta hasta el infrarrojo. Este método permite medir con resoluciones espaciales y temporales que resultan inaccesibles para la termometría convencional, así como con una alta sensibilidad térmica relativa (~2%K"-1). En este trabajo se presenta el desarrollo de una plataforma robotizada para termometría óptica que utiliza nanopartículas de tipo upconversion (como sondas) de diámetros entre 10 nm y 300 nm, sintetizadas en la Sala Limpia perteneciente al Instituto de Nanociencia y Nanotecnología (INN) dentro del Centro Atómico San Carlos de Bariloche. Esta plataforma utiliza placas electrónicas de hardware Arduino que controlan diversos sensores y motores a través de una serie de rutinas interactivas escritas en Python. También cuenta con sistemas ópticos adaptados tanto para la emisión de la luz como para la colección de la misma por una fibra óptica hacia un espectrómetro USB. Se estudia principalmente la calibración térmica de las nanopartículas, su respuesta temporal en ciclos de calentamiento/enfriamiento en comparación a un termómetro externo de referencia, su resolución en temperatura y espacio-temporal en secuencias de barrido, y sus aplicaciones directas a sistemas de estudio diferentes, cuyos efectos térmicos resultan novedosos y son inaccesibles a través de otros métodos. Se realizaron pruebas para mejorar considerablemente la sensibilidad de estos nanotermometros, se trabajó en un diseño para un sensor térmico a partir de una fibra óptica con recubrimiento de nanopartículas, y se estudió una configuración posible mezclando las nanopartículas en cuestión con nanoestrellas de oro para medir en el futuro cultivos celulares in-vitro (Astrocitos), cuyos efectos de disipación térmica resultan desconocidos. La plataforma desarrollada posee una resolución en temperatura de (0,79 ± 0,01) K, una espacial de (1,0 ± 0,1) μm y una temporal de (0,44 ± 0,02) s.

Resumen en inglés

Luminescent thermometry based on trivalent lanthanide ions (Ln"3+) has become a popular technique during the last decade due to its versatility, stability, high emission quantum efficiency and wide spectral range, covering frome the ultraviolet to the infrared. This method allows measurements with spatial and temporal resolutions that are inaccessible to conventional thermometry, as well as with high relative thermal sensitivity (~2%K"-1). In this work we present the development of a motorized platform for optical thermometry that uses upconversion nanoparticles (as probes) with diameters between 10 nm and 300 nm, synthesized in the Clean Room from the institute of Nanoscience and Nanotechnology (INN) within the Bariloche Atomic Center. This platform uses Arduino hardware electronic boards that control various sensors and motors through a series of interactive routines written in Python. It has also optical systems adapted for both light emission and light collection through an optical ber to an USB spectrometer. We mainly studied the thermal calibration of the nanoparticles, their temporal response in heating/cooling cycles compared to an external reference thermometer, their temperature and spatio-temporal resolution in scanning sequences, and its direct applications to different systems, whose thermal effects are unknown and inaccessible through other methods. We performed tests to considerably improve the sensitivity of these nanothermometers, we worked on a thermal sensor based on an optical ber with embedded nanoparticles, and studied a possible conguration mixing the nanoparticles with gold nanostars to measure in the future in-vitro cell cultures (Astrocytes), whose thermal dissipation effects are unknown. The developed platform has a temperature resolution of (0.79 ± 0.01) K, a spatial resolution of (1.0 ± 0.1) μm and a temporal resolution of (0.44 ± 0.02) s.

Tipo de objeto:Tesis (Maestría en Ciencias Físicas)
Palabras Clave:[Optical thermometry; Termometría óptica; Luminescent nanoparticles; Nanopartículas luminiscentes; Upconversion; Nanothermometry; Nanotermometría]
Referencias:[1] Miroslav D. Dramicanin. Trends in luminescence thermometry. Journal of Applied Physics. 2020, 128, 040902. Pags. 1, 64, 75 [2] Meng Wang, Gopal Abbineni, April Clevenger, Chuanbin Mao, and Shukun Xu. Upconversion nanoparticles: synthesis, surface modication and biological applications. Nanomedicine: Nanotechnology, Biology, and Medicine. 2011, 7, 710 -729. Pags. 1, 12, 15, 23, 24 [3] Zhu, X., Zhang, J., Liu, J., Zhang, Y., Recent Progress of Rare-Earth Doped Upconversion Nanoparticles: Synthesis, Optimization, and Applications. Adv. Sci. 2019, 6, 1901358. Pag. 1 [4] Gu, Z., Yan, L., Tian, G., Li, S., Chai, Z. and Zhao, Y. Recent Advances in Design and Fabrication of Upconversion Nanoparticles and Their Safe Theranostic Applications. Adv.Mater. 2013, 25: 3758-3779. [5] E V Khaydukov et al. Enhanced spatial resolution in optical imaging of biotissues labelled with upconversion nanoparticles using a bre-optic probe scanning technique. Laser Phys. Lett. 2014, 11, 095602. [6] Wang, C., Cheng, L. A., Liu, Z. A. Biomaterials. Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. 2011, 32, 1110-1120. [7] Blanca del Rosal and Daniel Jaque. Upconversion nanoparticles for in vivo applications: limitations and future perspectives. Methods Appl. Fluoresc. 2019, 7, 022001. Pág. 13 [8] Carlos D. S. Brites, Maria Cecilia Fuertes, Paula C. Angelome, Eduardo D. Martinez, Patricia P. Lima, Galo J. A. A. SolerIllia, and Luis D. Carlos. Tethering Luminescent Thermometry and Plasmonics: Light Manipulation to Assess Real-Time Thermal Flow in Nanoarchitectures. Nano Letters. 2017, 17, 8, 4746-4752. [9] Bo-Tau Liu, Tse-Hao Huang, Tzong-Liu Wang, Chin-Chi Hsu. Enhanced efficiency of lowtemperature fabricated dye-sensitized solar cells by incorporating upconversion nanoparticles. Solar Energy. 2022, 227, 1-7. Pag. 13 [10] Kunmeng Li, Enlv Hong, Bing Wang, Zhiyu Wan, Liwen Zhang, Ruixia Hu, and Baiqi Wang. Advances in the application of upconversion nanoparticles for detecting and treating cancers. Photodiagnosis and Photodynamic Therapy. 2019, 25, 177-192. [11] Dulani Chandima Wimalachandra, et al. Micro fluidic-Based Immunomodulation of Immune Cells Using Upconversion Nanoparticles in Simulated Blood Vessel Tumor System. ACS Appl. Mater. Interfaces. 2019, 11, 41, 37513-37523. Pags. 1, 12, 15 [12] Li, Hua, et al. Size-tunable -NaYF4: Yb/Er up-converting nanoparticles with a strong green emission synthesized by thermal decomposition. Optical Materials. 2020, 108, 110- 144. Págs. 1, 24 [13] Xingchen Ye, Joshua E. Collins, Yijin Kang, Christopher B. Murray. Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed selfassembly. Proceedings of the National Academy of Sciences. 2010, 107(52), 22430-22435.Pag. 1 [14] Fan Zhang. Photon Upconversion Nanomaterials. Nanostructure Science and Technology. Springer. 2015, 978-3-662-45597-5. Págs. 2, 6, 8, 9, 10, 15, 18, 20, 23, 25, 26, 64 [15] Kumar Rajiv, Nyk Marcin, Ohulchanskyy Tymish Y., Flask Christopher A., Prasad Paras N. Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals. Advanced Functional Materials. 2009, 19 (6). Págs. 2, 77 [16] Xing H. Y., Zhang S. J. et al. Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging. Biomaterials. 2012, 33, 1079-1089. Págs. 2 [17] Sun Y., Yu M. X. et al. Fluorine-18 labeled rare-earth nanoparticles for positron emission tomography (PET) imaging of sentinel lymph node. Biomaterials. 2011, 32, 2999-3007. Pág. 2 [18] Yang Y., Sun Y. et al. Hydrothermal synthesis of NaLuF4: 153Sm, Yb, Tm nanoparticles and their application in dual-modality upconversion luminescence and SPECT bioimaging. Biomaterials. 2013, 34, 774-783. Págs. 2, 77 [19] E.D. Martinez, A. Prado, M. Gonzalez, S. Anguiano, L. Tosi, L. Salazar Alarcon, H. Pastoriza. Integrating photoluminescent nanomaterials with photonic nanostructures. Journal of Luminescence. 2021, Volume 233, 17870. Pag. 2 [20] Myeongsub Mike Kim et al. Microscale thermometry: A review. Microelectronic Engineering . 2015, 148, 129-142. Pags. 2, 4, 75 [21] L. Thierya, N. Marini, J.-P. Prenel, M. Spajer, C. Bainier, D. Courjon. Temperature profile measurements of near-field optical microscopy ber tips by means of sub-micronic thermocouple. Thermal Science. 2000, 39, 519-525. Pag. 3 [22] A. Majumdar. Scanning thermal microscopy. Rev. Mater. Sci. 1999, 29, 505-585. Pag. 3 [23] G. Wielgoszewskia, T. Gotszalka. Scanning Thermal Microscopy (SThM): How to Map Temperature and Thermal Properties at the Nanoscale. Adv. Imag. Elect. Physics. 2015, 190, 177-221. Pag. 3 [24] R.F. Szelocha, P. Janusb et al. Characterization of fatigued Al lines by means of SThM and XRD: Analysis using fast Fourier transform. Microelectron. Reliab. 2012, 52, 711-717. Págs.. 3, 4 [25] K. Kim, W. Jeong, W. Lee, P. Reddy. ACS Nano. Ultra-high vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry. 2012, 6, 4248-4257. Pág. 4 [26] M. Motosuke, D. Akutsu, S. Honami, J. Temperature measurement of microfluids with high temporal resolution by laser-induced fluorescence. Mech. Sci. Technol. 2009, 23 1821-1828. Pág. 4 [27] L. Lia, X. Lia, Z. Xiea, Z. Liaoc, F. Tuc, D. Liua. Simultaneous measurement of refractive index and temperature using thinned ber based Mach?Zehnder interferometer. Opt. Commun. 2012, 285, 3945-3949. Pág. 4 [28] J.A. Stasiek, T.A. Kowalewski. Thermochromic liquid crystals applied for heat transfer research. Opto-Electron. Rev. 2002, 10, 1-10. Pág.. 4 [29] K. Kyuma, S. Tai, T. Sawada, M. Nunoshita. Fiber-optic instrument for temperature measurement. IEEE T. Microw. Theory. 1982, 30, 522-525. Pág.. 4 [30] M. Saaripour, R. Culham, J. Measurement of Entropy Generation in Microscale Thermal-Fluid Systems. Heat Transf. 2010, 132, 121401. Pag. 5 [31] Brites C. D. S., Millan, A., Carlos L. D. Lanthanides in Luminescent Thermometry. Handb. Phys. Chem. Rare Earths. 2016, 49, 339-427. Pags. 5, 15, 16, 17, 18, 46, 54, 57, 61, 64, 75 [32] Chunfei Li. Nonlinear Optics - Principles and applications. Springer. 2017, 978-981-10-1487-1. Pag. 7 [33] Chen G.Y., Qju H.L., Prasad P.N., Chen X.Y. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 2014, 114, 5161-5214. Pags. 7, 8, 12, 14 [34] Li X.M., Zhang F., Zhao D.Y. Highly ecient lanthanide upconverting nanomaterials: progresses and challenges. Nano Today. 2013, 8, 643-676. Pag. 9 [35] Wang F., Liu X.G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 2009, 38, 976-989. Pags. 9, 10, 11, 12 [36] Chen G.Y., Ohulchanskyy T.Y., Kumar R., Agren H., Prasad P.N. Ultrasmall monodisperse NaYF4 :Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence. ACS Nano. 2010, 4, 3163-3168. Pag. 11 [37] Wang F., Liu X.G. Upconversion multicolor-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 2008, 130, 5642-5643. [38] Wang L.L., Qin W.P., Liu Z.Y., Zhao D., Qin G.S., Di W.H., He C.F. Improved 800 nm emission of Tm3+ sensitized by Yb3+ and Ho3+ in -NaYF4 nanocrystals under 980 nm excitation. Opt. Express. 2012, 20, 7602-7607. Pag. 11 [39] Haase M., Schafer H. Upconverting nanoparticles. Angew. Chem. Int. Ed. 2011, 50, 5808- 5829. Pag. 11 [40] Heer S., Kompe K., Gudel H.U., Haase M. Highly ecient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 2004, 16, 2102-2105. Pág. 12 [41] Auzel F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139-173. Pág. 12 [42] Wang F., Liu X. Upconversion multicolor-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 2008, 130, 5642-5643. Pág. 13 [43] Zhou B., Shi B., Jin D., Liu X. Controlling Upconversion Nanocrystals for Emerging Applications. Nat. Nanotechnol. 2015, 10 (11), 924-936. Pág. 13 [44] Li Z., Wang L., Wang Z., Liu X., Xiong Y. Modication of NaYF4 :Yb,Er@SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions. J. Phys. Chem. 2011, C 115, 3291-3296. Pág. 14 [45] Zhang F., Shi Q., Zhang Y., Shi Y., Ding K., Zhao D., Stucky G.D. Fluorescence upconversion microbarcodes for multiplexed biological detection: nucleic acid encoding. Adv. Mater. 2011, 23, 3775-3779. Pág. 14 [46] Vetrone F., Naccache R. et al. The active-core/active-shell approach: A strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Adv. Funct. Mater. 2009, 19, 2924-2929. Pág. 14 [47] Liu S., Yan L., Huang J., Zhang Q., Zhou B. Controlling Upconversion in Emerging Multilayer Core-Shell Nanostructures: From Fundamentals to Frontier Applications. Chem. Soc. Rev. 2022, 51 (5), 1729-1765. Pág. 14 [48] Kar A., Patra A. Impacts of core@shell structures on properties of lanthanide-based nanocrystals: crystal phase, lattice strain, downconversion, upconversion and energy transfer. Nanoscale. 2012, 4, 3608. Pág. 15 [49] Suta M., Meijerink A. A Theoretical Framework for Ratiometric Single Ion Luminescent Thermometers Thermodynamic and Kinetic Guidelines for Optimized Performance. Adv. Theory Simulations 2020, 3, 1-32. Pág. 15 [50] Brites C. D. S., Balabhadra S., Carlos L. D. Lanthanide Based Thermometers: At the Cutting Edge of Luminescence Thermometry. Adv. Opt. Mater. 2019, 7, 1801239. Págs. 15, 16, 17, 54 [51] Garcia-Flores A. et al. Crystal-eld effects in Er3+ and Yb3+-doped hexagonal NaYF4 nanoparticles. Physical Review B. 2017, 96, 10.1103. Pag. 17 [52] Joana Costa Martins et al. Primary Luminescent Nanothermometers for Temperature Measurements Reliability Assessment. Adv. Photonics Res. 2021, 2, 2000169. Pág.. 20 [53] Eduardo D. Martínez, Carlos D. S. Brites et al. Electrochromic Switch Devices Mixing Small- and Large-Sized Upconverting Nanocrystals. Adv. Funct. Mater. 2019, 1807758. Págs. 20, 21, 64 [54] Xugeng Guo, Wenpeng Wu et al. Recent research progress for upconversion assisted dyesensitized solar cells. Chin. Chem. Lett. 2021, 32, 1834-1846. Pág.. 24 [55] Liang X., Fan J., Zhao Y. et al. Core?Shell Structured NaYF4:Yb,Er Nanoparticles with Excellent Upconversion Luminescent for Targeted Drug Delivery. J. Clust. Sci.. 2021, 32, 1683?1691. Pág. 24 [56] Feng Wang, Renren Deng, Xiaogang Liu. Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes. Nature Protocols. 2014, 9, 1634-1644. Pág.. 24 [57] Meng Xia, Dacheng Zhou, Yong Yang, Zhengwen Yang, Jianbei Qiu. Synthesis of Ultrasmall Hexagonal NaGdF4: Yb3+Er3+@NaGdF4: Yb3+@NaGdF4: Nd3+ Active-Core/Active- Shell/Active-Shell Nanoparticles with Enhanced Upconversion Luminescence. ECS J. Solid State Sci. Technol.. 2017, 6, R41. [58] Martinez Eduardo D., Brites Carlos D. S., Carlos Luis D., Urbano Ricardo R., Rettori Carlos. Upconversion Nanocomposite Materials With Designed Thermal Response for Optoelectronic Devices. Frontiers in Chemistry. 2019, 7, 2296-2646. Pag. 24 [59] Raa Raque, Seung Hoon Baek et al. A facile hydrothermal synthesis of highly luminescent NaYF4:Yb3+/Er3+ upconversion nanoparticles and their biomonitoring capability. Mater. Sci. Eng. 2019, 99, 1067-1074. Pag. 25 [60] Speghini A., Pedroni M., Zaccheroni, N., Rampazzo, E. In Upconverting Nanomaterials. CRC Press. 2016, p 37. Pag. 25 [61] Martin Kaiser, Christian Wurth et al. Power-dependent upconversion quantum yield of NaYF4:Yb3+,Er3+ nano- and micrometer-sized particles - measurements and simulations. Nanoscale. 2017, 9, 10051-10058. Pág. 28 [62] Shi Rui, et al. Thermal enhancement of upconversion emission in nanocrystals: a comprehensive summary. Physical Chemistry Chemical Physics. 2021, 23, 1, 20-42. Pag. 28 [63] Wu Xiaofeng, et al. Nanoscale ultrasensitive temperature sensing based on upconversion nanoparticles with lattice self-adaptation. Nano Letters. 2020, 21, 1, 272-278. Pags. 28, 29 [64] J. I. Diaz Schneider. Sistemas neuromorcos basados en dispositivos memristores producidos por microfabricacion, autoesnsablados y mietodos sol-gel. Instituto de Nanociencia y Nanotecnologia (INN), Division Dispositivos y Sensores, 2021. Pags. 29, 30 [65] Eduardo D. Martínez, Carlos D.S. Brites et al. Hyperspectral imaging thermometry assisted by upconverting nanoparticles: Experimental artifacts and accuracy. Physica B: Condensed Matter. 2022, 629, 413639. Pag. 61 [66] Becker Philippe M., Olsson Anders A., Simpson, Jay R. Erbium-doped ber ampliers: fundamentals and technology. Elsevier, 1999. Pag. 66 [67] Diaz Silvia, Abad Silvia, Lopezamo Manuel. Fiberoptic sensor active networking with distributed erbium doped ber and Raman amplication. Laser & Photonics Reviews. 2008, 2, 6, 480-497. Pag. 66 [68] Hanyang Li, Feng Wei Yanzeng, Miao Yu, Yu Zhang, Lu Liu and Zhihai Liu J. Optical fiber sensor based on upconversion nanoparticles for internal temperature monitoring of Li-ion batteries. Mater. Chem. 2021, C, 9, 14757-14765. Pag. 66 [69] Blanca del Rosal, Diego Ruiz, Irene Chaves-Coira, Beatriz H. Juarez, Luis Monge, Guosong Hong, Nuria Fernandez, Daniel Jaque. In vivo contactless brain nanothermometry. Adv. Funct. Mater. 2018, 28: 1806088. Pag. 72 [70] B. S. Khakh, M. V. Sofroniew. Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 2015, 18, 942-952. Pag. 72 [71] Rodríguez-Oliveros R, Sánchez-Gil JA. Gold nanostars as thermoplasmonic nanoparticles for optical heating. Opt Express. 2012, 20:621. Pags. 72, 73 [72] Martínez Eduardo D., Urbano Ricardo R., Rettori Carlos. Thermoplasmonic enhancement of upconversion in small-size doped NaGd(Y)F4 nanoparticles coupled to gold nanostars. Nanoscale. 2018,10, 14687-14696. Pag. 72
Materias:Física > Ciencias de materiales
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Instituto de Nanociencia y Nanotecnología (INN) > Dispositivos y Sensores
Código ID:1178
Depositado Por:Tamara Cárcamo
Depositado En:07 Aug 2023 10:54
Última Modificación:07 Aug 2023 10:54

Personal del repositorio solamente: página de control del documento