Bombeo de espín en bicapas FeCo/Ta con amortiguamiento magnético ultra-bajo / Spin pumping in FeCo/Ta bilayers with ultra-low magnetic damping

Velázquez Rodríguez, Daniel (2023) Bombeo de espín en bicapas FeCo/Ta con amortiguamiento magnético ultra-bajo / Spin pumping in FeCo/Ta bilayers with ultra-low magnetic damping. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
50Mb

Resumen en español

La espintrónica ha surgido como la principal candidata a resolver los problemas de consumo energético de almacenamiento y de procesamiento de datos ya que las corrientes de espín involucradas no tendrían pérdidas por efecto Joule. La intensidad de las corrientes de espín se puede medir de manera indirecta a través del efecto Hall de espín inverso como un voltaje. Los sistemas más estudiados para la generación y detección de corrientes de espín son bicapas del tipo ferromagneto/metal paramagnético pesado (FM/NM). La intensidad de las corrientes de espín en bicapas del tipo FM/NM depende fuertemente del parámetro de amortiguamiento magnético del material ferromagnético. Por consiguiente, la búsqueda de materiales con constante de amortiguamiento pequeñas α ∼ 10"−3 se ha vuelto exhaustiva y uno de los objetivos de esta tesis ha sido el estudio detallado del transporte de corrientes de espín en bicapas Fe_1−xCo_x/Ta con potenciales aplicaciones en dispositivos espintrónicos. Las muestras estudiadas en esta tesis doctoral fueron fabricadas por la técnica de pulverización catódica asistida por magnetrón. Se encontró una condición óptima de depósito mediante la cual se obtuvieron películas delgadas monocristalinas de Fe_1−xCo_x y se lograron obtener valores de α_tot ≈ 3 × 10"−3 para la concentración Fe_80Co_20. Haciendo uso de la técnica de FMR y mediante modelos fenomenológicos se lograron identificar y cuantificar los distintos mecanismos de relajación involucrados (amortiguamiento intrínseco tipo Gilbert y scattering de dos magnones) que contribuyen al valor de α_tot estimado. Mediante una serie de muestras variando el espesor de la capa ferromagnética entre 4 nm y 12 nm se logró separar la contribución de bombeo de espín obteniéndose entonces un valor de amortiguamiento intrínseco α_int ≈ 1.3 × 10"−3. Se determinaron los parámetros de transporte de espín λ_sd (longitud de difusión de espín) y Θ_SH (ángulo Hall de espín) haciendo uso de la serie de muestras mencionada y de otra serie variando el espesor de la capa de Ta entre 3 nm y 11 nm, manteniendo el espesor de FeCo fijo en 10 nm. Se desarrolló una novedosa expresión para cuantificar la eficiencia del fenómeno de bombeo de espín en bicapas FM/NM, mostrando que el sistema FeCo/Ta es hasta un orden de magnitud más eficiente que otras bicapas ferromagnéticas metálicas. Con el objetivo de estudiar el comportamiento magnético y su influencia en el bombeo de espín en función de la concentración relativa de Fe y Co, se fabricó una serie de seis bicapas del tipo Fe_1−xCo_x/Ta (x= 0, 15, 20, 25, 30 y 35) y espesores fijos de las capas de FeCo y Ta de 20 nm y 10 nm, respectivamente. Del análisis del ancho de línea de resonancias ΔH_r en función de frecuencia ω para las bicapas Co30 y Co35 se encontró una anisotropía en el parámetro α cuando el campo es aplicado a lo largo de las direcciones de fácil y difícil magnetización de 330% y 420% , respectivamente, coincidente con el cambio de signo en la constante de anisotropía magnetocristalina cúbica. El análisis de la dependencia del parámetro α con la concentración arrojó que el valor mínimo se encuentra para la aleación Fe_85Co_15/Ta. El estudio del fenómeno de bombeo de espín en esta serie de muestras arrojó diferentes dependencias entre la intensidad de la corriente de espín y α según los mecanismos de relajación predominantes. En el transcurso de esta tesis doctoral se lograron identificar y cuantificar los principales mecanismos de relajación en bicapas magnéticas Fe_1−xCo_x/Ta y cómo influyen en las corrientes de espín generadas mediante el fenómeno de bombeo de espín. Se obtuvo un parámetro de amortiguamiento excepcionalmente bajo para ferromagnetos conductores y consecuentemente una alta eficiencia de bombeo de espín. Estos resultados y la calidad de las muestras fabricadas permiten corroborar que la aleación FeCo es un excelente material FM para aplicaciones espintrónicas en donde sean necesarios ferromagnetos conductores.

Resumen en inglés

Spintronics has emerged as the main candidate to solve the energy consumption of large storage and data processing capacities, since the pure spin currents involved should have no losses due to the Joule effect. Spin currents intensity can be measured indirectly as a voltage through the inverse spin Hall effect. The most studied systems for the generation and detection of spin currents are ferromagnetic/paramagnetic heavy metal bilayers (FM/NM). The spin current intensity in FM/NM bilayers strongly depends on the magnetic damping parameter of the ferromagnetic material. Therefore, the search for materials with small damping constants, α ∼ 10"−3, has become exhaustive and the study of the spin pumping phenomenon in Fe_1−xCo_x/Ta with potential applications in spintronic devices is the main objective of this Ph.D. thesis. The samples studied in this work were fabricated by magnetron sputtering techniques. We found an optimal deposition condition by which Fe_1−xCo_x monocrystalline thin films were obtained and α_tot ≈ 3 × 10"−3 values were obtained for Fe_80Co_20 concentration. Using the FMR technique and phenomenological models, it was possible to identify and quantify the different relaxation mechanisms involved (Gilbert damping and two magnon scattering) that contribute to the estimated α_tot value. In a series of samples with FM thickness between 4 nm and 12 nm, it was possible to separate the intrinsic contribution of α from spin pumping and an intrinsic damping value α ≈ 1.3×10"−3 obtained. The spin transport parameters λ_sd (spin diffusion lenght) and Θ_SH (spin Hall angle) were determined using this series of samples and another series with Ta thickness between 3 nm and 11 nm and keeping the FeCo thickness fixed at 10 nm. A novel expression was developed to quantify the efficiency of the spin pumping phenomenon in FM/NM bilayers, showing that the FeCo/Ta system is up to an order of magnitude more efficient than other metallic ferromagnetic bilayers. With the objective to study the magnetic behavior and its influence in the spin pumping phenomenom as a function of Fe and Co relative concentrations, we fabricated a series of six bilayers of the type Fe_1−xCo_x/Ta (x= 0, 15, 20, 25, 30 y 35) and fixed thicknesses of FeCo (20 nm) and Ta (10 nm) layers. Studying the FMR linewidth ΔH_r as a function of the frequency ω for the bilayers Co30 and Co35 bilayers, when the field was applied along the easy and hard magnetization directions, a strong anisotropic α parameter was found with variations of 330 % and 420 %, respectively, coincident with the cubic magnetocrystalline anisotropy constant sign change. The analysis of the dependence of the α parameter with concentration showed that the minimum value is found for the Fe_85Co_15/Ta bilayer. The study of the spin pumping phenomenon in this series of samples showed different dependencies between the spin current intensity and α according to the predominant relaxation mechanisms. During this Ph.D. thesis it was possible to identify and quantify the relaxation mechanisms involved in Fe_1−xCo_x/Ta bilayers and their influence in the spin currents generated by spin pumping phenomenom. We found an ultra-low damping parameter compared to other conductive ferromagnets and consequently, a high spin pumping effeciency. These results and the goood quality of the fabricated samples indicate that FeCo alloy is an excelent material for spintronic aplications when conductive ferromagnets are required.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Anisotropy; Anisotropía; [Ferromagnetic thin films; Películas delgadas ferromagnéticas; Magnetic anisotropies; Anisotropías magnéticas Magnetic damping; Amortiguamiento magnético; Spin currents; Corrientes de espín; Spin pumping; Bombeo de espín; Inverse spin hall effect; Efecto hall de espín inverso]
Referencias:[1] Cowburn, R. P. Change of direction. Nature materials, 6 (4), 255–256, 2007. 1 [2] Bhatti, S., Sbiaa, R., Hirohata, A., Ohno, H., Fukami, S., Piramanayagam, S. Spintronics based random access memory: a review. Materials Today, 20 (9), 530–548, 2017. 2 [3] Joshi, V. K. Spintronics: A contemporary review of emerging electronics devices. Engineering science and technology, an international journal, 19 (3), 1503–1513, 2016. [4] Eschrig, M. Spin-polarized supercurrents for spintronics: a review of current progress. Reports on Progress in Physics, 78 (10), 104501, 2015. [5] Hirohata, A., Yamada, K., Nakatani, Y., Prejbeanu, I.-L., Dieny, B., Pirro, P., et al. Review on spintronics: Principles and device applications. Journal of Magnetism and Magnetic Materials, 509, 166711, 2020. 1, 2, 3 [6] Puebla, J., Kim, J., Kondou, K., Otani, Y. Spintronic devices for energy-efficient data storage and energy harvesting. Communications Materials, 1 (1), 1–9, 2020. 1 [7] Speliotis, D. Magnetic recording beyond the first 100 years. Journal of Magnetism and Magnetic Materials, 193 (1-3), 29–35, 1999. 1 [8] Binasch, G., Grunberg, P., Saurenbach, F., Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B, 39 (7), 4828, 1989. 1 [9] Baibich, M. N., Broto, J. M., Fert, A., Van Dau, F. N., Petroff, F., Etienne, P., et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett., 61 (21), 2472, 1988. 1 [10] Thomson, W. XIX. on the electro-dynamic qualities of metals: Effects of magnetization on the electric conductivity of nickel and of iron. Proceedings of the Royal Society of London, (8), 546–550, 1857. 1 [11] McGuire, T., Potter, R. Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Transactions on Magnetics, 11 (4), 1018–1038, 1975. 1 [12] Wang, Z., Victora, R. Enhancement of giant magnetoresistance and oscillation by wave-vector filtering in Fe/Ag/Fe/InAs/Ag. Phys. Rev. B, 94 (24), 245415, 2016. 2 [13] Julliere, M. Tunneling between ferromagnetic films. Physics Letters A, 54 (3), 225–226, 1975. 2 [14] Moodera, J. S., Kinder, L. R., Wong, T. M., Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett., 74 (16), 3273, 1995. 2 [15] Ikeda, S., Hayakawa, J., Ashizawa, Y., Lee, Y., Miura, K., Hasegawa, H., et al. Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Appl. Phys. Lett., 93 (8), 082508, 2008. 2 [16] Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B, 54 (13), 9353, 1996. 2, 21 [17] Slonczewski, J. C. Current-driven excitation of magnetic multilayers. Journal of Magnetism and Magnetic Materials, 159 (1-2), L1 L7, 1996. 2 [18] Bader, S., Parkin, S. Spintronics. Annu. Rev. Condens. Matter Phys., 1 (1), 71–88, 2010. 2 [19] Chandrasekar, L. B., Gnanasekar, K., Karunakaran, M. Spintronics: A mini review. Superlattices and Microstructures, 136, 106322, 2019. [20] Felser, C., Fecher, G. H., Balke, B. Spintronics: a challenge for materials science and solid-state chemistry. Angewandte Chemie International Edition, 46 (5), 668–699, 2007. 2 [21] Wang, C., Seinige, H., Tsoi, M. Ferromagnetic resonance driven by an ac current: A brief review. Low Temperature Physics, 39 (3), 247–251, 2013. 3, 21, 27 [22] Tserkovnyak, Y., Brataas, A., Bauer, G. E. Spin pumping and magnetization dynamics in metallic multilayers. Phys. Rev. B, 66 (22), 224403, 2002. 21, 22, 23 [23] Azevedo, A., Vilela-Leao, L., Rodrıguez-Suarez, R., Santos, A. L., Rezende, S. Spin pumping and anisotropic magnetoresistance voltages in magnetic bilayers: Theory and experiment. Phys. Rev. B, 83 (14), 144402, 2011. [24] Vlaminck, V., Pearson, J. E., Bader, S. D., Hoffmann, A. Dependence of spinpumping spin Hall effect measurements on layer thicknesses and stacking order. Phys. Rev. B, 88 (6), 064414, 2013. 3, 21 [25] Ando, K., Takahashi, S., Ieda, J., Kajiwara, Y., Nakayama, H., Yoshino, T., et al. Inverse spin-Hall effect induced by spin pumping in metallic sistem. J. Appl. Phys., 109, 103913, 2011. 3, 26, 75, 78, 82, 85, 86, 90 [26] Gómez, J. E., Zerai Tedlla, B., ´Alvarez, N. R., alejandro, G., Goovaerts, E., Butera, A. Spin transport parameters in Ni80Fe20/Ru and Ni80Fe20/Ta bilayers. Phys. Rev. B, 90, 184401, 2014. 3, 26, 58, 74, 75, 85, 86, 88, 90 [27] Schoen, M. A. W., Thonig, D., Schneider, M. L., Silva, T. J., Nembach, H. T., Eriksson, O., et al. Ultra-low magnetic damping of a metallic ferromagnet. Nature Phys., 12, 839, 2016. 3, 4, 40, 60, 90, 98, 101, 107, 114, 117, 134 [28] Getzlaff, M. Fundamentals of Magnetism. Springer, 2008. 4, 8, 10, 12, 14, 49, 101, 102, 104 [29] Pelzl, J., Meckenstock, R., Spoddig, D., Schreiber, F., Pflaum, J., Frait, Z. Spin–orbit-coupling effects on g-value and damping factor of the ferromagnetic resonance in Co and Fe films. Journal of Physics: Condensed Matter, 15 (5), S451, 2003. 4, 102, 107 [30] Tserkovnyak, Y., Brataas, A., Bauer, G. E. Enhanced Gilbert damping in thin ferromagnetic films. Phys. Rev. Lett., 88 (11), 117601, 2002. 4 [31] Liu, C., Mewes, C. K., Chshiev, M., Mewes, T., Butler, W. H. Origin of low Gilbert damping in half metals. Phys. Rev. Lett., 95 (2), 022509, 2009. [32] Liu, Y., Yuan, Z., Wesselink, R. J., Starikov, A. A., Kelly, P. J. Interface enhancement of Gilbert damping from first principles. Phys. Rev. Lett., 113 (20), 207202, 2014. 4 [33] Howe, B. M., Emori, S., Jeon, H.-M., Oxholm, T. M., Jones, J. G., Mahalingam, K., et al. Pseudomorphic yttrium iron garnet thin films with low damping and inhomogeneous linewidth broadening. Ieee Magnetics Letters, 6, 1–4, 2015. 4 [34] Mizukami, S., Ando, Y., Miyazaki, T. The study on ferromagnetic resonance linewidth for NM/80NiFe/NM (NM= Cu, Ta, Pd and Pt) films. Japanese journal of applied physics, 40 (2R), 580, 2001. 4 [35] Butera, A., Weston, J. L., Barnard, J. A. Ferromagnetic resonance of epitaxial Fe81Ga19 (110) thin films. J. Magn. Magn. Mat., 288, 17, 2004. 4, 67 [36] Goryunov, Y. V., Garifyanov, N. N., Khaliullin, G. G., Garifullin, I. A., Tagirov, L. R., Schreiber, F., et al. Magnetic anisotropies of sputtered Fe films on MgO substrates. Phys. Rev. B, 52, 13450, 1995. [37] Fermin, J. R., Azevedo, A., de Aguiar, F. M., Li, B., Rezende, S. M. Ferromagnetic resonance linewidth and anisotropy dispersions in thin Fe films. J. Appl. Phys., 85, 7316, 1999. 4, 67 [38] Zakeri, K., Lindner, J., Barsukov, I., Meckenstock, R., Farle, M., von Horsten, U., et al. Spin dynamics in ferromagnets: Gilbert damping and two-magnon scattering. Phys. Rev. B, 76, 104416, 2007. 4, 19, 61, 63 [39] Lenz, K., Wende, H., Kuch, W., Baberschke, K. Two-magnon scattering and viscous Gilbert damping in ultrathin ferromagnets. Phys. Rev. B, 73, 144424, 2006. 61, 63 [40] Arias, R., Mills, D. L. Extrinsic contributions to the ferromagnetic resonance response of ultrathin films. Phys. Rev. B, 60, 7395, 1999. 61, 62 [41] Hurben, M. J., Patton, C. E. Theory of two magnon scattering microwave relaxation and ferromagnetic resonance linewidth in magnetic thin films. J. Appl. Phys., 83, 4344, 1998. 4, 19, 63 [42] Mattis, D. C. History of magnetism. En: The Theory of Magnetism I, págs. 1–38. Springer, 1981. 7 [43] Stohr, J., Siegmann, H. C. Magnetism. Solid-State Sciences. Springer, Berlin, Heidelberg, 5, 2006. 8 [44] Darrigol, O. Electrodynamics from Ampere to Einstein. Oxford University Press, 2003. 8 [45] Uhlenbeck, G. E., Goudsmit, S. Spinning electrons and the structure of spectra. Nature, 117 (2938), 264–265, 1926. 8 [46] Gurevich, A. G., Melkov, G. A. Magnetization Oscillations and Waves. CRC Press, 1996. 8, 10, 41, 53, 61 [47] Coey, J. M. D. Magnetism and magnetic materials, 2nd ed. Cambridge University Press, 2010. 8, 10, 15, 40, 97, 98 [48] Álvarez, N. R., G´omez, J. E., Moya Riffo, A. E., Vicente ´Alvarez, M. A., Butera, A. Critical thickness for stripe domain formation in FePt thin films: Dependence on residual stress. J. Appl. Phys., 119, 083906, 2016. 14, 54 [49] Chikazumi, S., Graham, C. D. Physics of Ferromagnetism 2e. 94. Oxford University Press on Demand, 2009. 14 [50] Couderchon, G., Tiers, J. F. Some aspects of magnetic properties of Ni-Fe and Co-Fe alloys. J. Magn. Magn. Mag., 26, 654, 1982. 15, 49, 55, 86, 100 [51] Landau, L., Lifshitz, E. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. En: Perspectives in Theoretical Physics, p´ags. 51–65. Elsevier, 1992. 15 [52] Gilbert, T. L. A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Magn., 40, 3443 – 3449, 2004. 15, 76 [53] Makarov, A. Modeling of Emerging Resistive Switching Based Memory Cells. Tesis Doctoral, Technischen Universit¨at Wien, 1985. 16 [54] Vittoria, C. Microwave properties of magnetic films. World Scientific, 1993. 16, 52 [55] Li, Y., Zeng, F., Zhang, S. S.-L., Shin, H., Saglam, H., Karakas, V., et al. Giant anisotropy of Gilbert damping in epitaxial CoFe films. Phys. Rev. Lett., 122 (11), 117203, 2019. 18, 102, 104, 107 [56] Brataas, A., Tserkovnyak, Y., Bauer, G. E. Scattering theory of Gilbert damping. Phys. Rev. Lett., 101 (3), 037207, 2008. 18 [57] Liu, Y., Starikov, A. A., Yuan, Z., Kelly, P. J. First-principles calculations of magnetization relaxation in pure Fe, Co, and Ni with frozen thermal lattice disorder. Phys.l Rev. B, 84 (1), 014412, 2011. 18 [58] Zhang, S., Li, Z. Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys. Rev. Lett., 93 (12), 127204, 2004. 18 [59] Hankiewicz, E., Vignale, G., Tserkovnyak, Y. Inhomogeneous Gilbert damping from impurities and electron-electron interactions. Phys. Rev. B, 78 (2), 020404, 2008. 18 [60] Gómez, J., Butera, A. Ferromagnetic resonance line width in Co(x)-SiO2(1-x) granular films. Physica B, 354, 145, 2004. 18, 58 [61] Czeschka, F. D. Spin currents in metallic nanostructures, 2011. 19, 20, 25, 26, 28 [62] Liu, Q., Yuan, H., Xia, K., Yuan, Z. Mode-dependent damping in metallic antiferromagnets due to intersublattice spin pumping. Physical Review Materials, 1 (6), 061401, 2017. 21 [63] Jeon, K.-R., Ciccarelli, C., Kurebayashi, H., Cohen, L. F., Montiel, X., Eschrig, M., et al. Exchange-field enhancement of superconducting spin pumping. Phys. Rev. B, 99 (2), 024507, 2019. [64] Li, M., Zhang, H., Rao, Y., Hong, C., Zhong, Z., Yang, Q., et al. Giant damping enhancement induced by exchange coupling in y3fe5o12/co2feal0. 5si0. 5 bilayers. Journal of Alloys and Compounds, 767, 398–402, 2018. 21 [65] Buttiker, M., Thomas, H., Pretre, A. Current partition in multiprobe conductors in the presence of slowly oscillating external potentials. Zeitschrift fur Physik B Condensed Matter, 94 (1-2), 133–137, 1994. 21 [66] Brouwer, P. Scattering approach to parametric pumping. Phys. Rev. B, 58 (16), R10135, 1998. 21 [67] Yu, J., Bang, D., Mishra, R., Ramaswamy, R., Oh, J. H., Park, H.-J., et al. Long spin coherence length and bulk-like spin-orbit torque in ferrimagnetic multilayers. Nature Materials, 18 (1), 29–34, 2019. 22 [68] Meservey, R., Tedrow, P. Spin-polarized electron tunneling. Physics reports, 238 (4), 173–243, 1994. [69] Brataas, A., Nazarov, Y. V., Bauer, G. E. Spin-transport in multi-terminal normal metal-ferromagnet systems with non-collinear magnetizations. The European Physical Journal B-Condensed Matter and Complex Systems, 22 (1), 99–110, 2001. 22 [70] Brataas, A., Tserkovnyak, Y., Bauer, G. E., Halperin, B. I. Spin battery operated by ferromagnetic resonance. Phys. Rev. B, 66 (6), 060404, 2002. 24 [71] Wang, X., Bauer, G. E., Van Wees, B. J., Brataas, A., Tserkovnyak, Y. Voltage generation by ferromagnetic resonance at a nonmagnet to ferromagnet contact. Phys. Rev. Lett., 97 (21), 216602, 2006. 24 [72] Tokac, M., Bunyaev, S. A., Kakazei, G. N., Schmool, D. S., Atkinson, D., Hindmarch, A. T. Interfacial structure dependent spin mixing conductance in cobalt thin films. Phys. Rev. Lett., 115, 056601, 2015. 24, 75 [73] Pham, T. K. H., Ribeiro, M., Park, J. H., Lee, N. J., Kang, K. H., Park, E., et al. Interface morphology effect on the spin mixing conductance of Pt/Fe3O4bilayers. Sci. Rep., 8, 13907, 2018. [74] Zhu, L., Ralph, D. C., Buhrman, R. A. Effective spin-mixing conductance of heavy-metal-ferromagnet interfaces. Phys. Rev. Lett., 123, 057203, 2019. 24, 75 [75] Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C., Jungwirth, T. Spin Hall effects. Reviews of modern physics, 87 (4), 1213, 2015. 25 [76] Sinitsyn, N., MacDonald, A., Jungwirth, T., Dugaev, V., Sinova, J. Anomalous Hall effect in a two-dimensional Dirac band: The link between the Kubo-Streda formula and the semiclassical Boltzmann equation approach. Phys. Rev. B, 75 (4), 045315, 2007. 25 [77] Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H., Ong, N. P. Anomalous hall effect. Reviews of modern physics, 82 (2), 1539, 2010. 25 [78] Sahoo, B., Roy, K., Gupta, P., Mishra, A., Satpati, B., Singh, B. B., et al. Spin pumping and inverse spin Hall effect in iridium oxide. Advanced Quantum Technologies, 4 (9), 2000146, 2021. 27 [79] Harder, M., Gui, Y., Hu, C.-M. Electrical detection of magnetization dynamics via spin rectification effects. Physics Reports, 661, 1–59, 2016. [80] Soh, W. T., Peng, B., Ong, C. An angular analysis to separate spin pumpinginduced inverse spin Hall effect from spin rectification in a Py/Pt bilayer. Journal of Physics D: Applied Physics, 47 (28), 285001, 2014. 27 [81] Juretschke, H. Electromagnetic theory of dc effects in ferromagnetic resonance. Journal of Applied Physics, 31 (8), 1401–1406, 1960. 27 [82] Andreeta, M. R. B. Thin film growth through sputtering technique and its applications. En: Crystallization – science and technology, págs. 397–433. INTECH, 2012. 31 [83] Ohring, M. Magnetron sputtering. En: Materials Sciencie of thin films, págs. 222–233. Academic Press, Inc., 1991. 31 [84] de Graef, M., McHenry, M. E. Structure of Materials. CAMBRIDGE UNIVERSITY PRESS, 2007. 33 [85] Colonia Surichaqui, R. C. S´ıntesis y caracterizaci´on de nanopart´ıculas de ZnO2 y su actividad antimicrobiana, 2013. 34 [86] Siddiqui, M. R. H., Adil, S., Nour, K., Assal, M., Al-Warthan, A. Ionic liquid behavior and high thermal stability of silver chloride nanoparticles: Synthesis and characterization. Arabian Journal of Chemistry, 6 (4), 435–438, 2013. 34 [87] Suryanarayana, C., Grant Norton, M. X-Ray Diffraction A Practical Approach. Springer Science+Business Media, LLC, 1998. 34 [88] Cullity, B. D. Elements of X-ray diffraction. ADDISON-WESLEY PUBLISHING COMPANY, INC., 1956. 34 [89] Rosales Rivera, A., Restrepo, J. A., Sanin, M. A., Patiño, O. E. Desarrollo de un magnetómetro de muestra vibrante. Revista Colombiana de Física, 38, 2006. 36 [90] Neff, H. P. J. Introductory electromagnetics. John Wiley & Sons, 1930. 36 [91] Popovi´c, Z., Popovic, B. Introductory electromagnetics. Prentice Hall, 2000. 36 [92] Hubert, A., Schafer. Magnetic Domains. Springer, 2009. 38 [93] Mannan, A. Growth and study of magnetostrictive FeSiBC thin films for device applications. Tesis Doctoral, University of Sheffield, 1999. 38 [94] Torres, J. I. Efecto Kerr magnetóptico antecedentes y aplicaciones. Scientia et Technica, 32, 437–442, 2006. 38 [95] P˚ust, L., Frait, Z. Precise g-factor determination of Fe-3wtSi single crystals in the temperature range 3.5-300 K by electron FMR and FMAR measurements. Phys. Lett., 86A, 1986. 40 [96] Heinrich, B., Cochran, J. F., Baartman, R. Ferromagnetic resonance absorption in Supermalloy at 9, 24, and 38 GHz. Can. J. Phys., 55, 806, 1977. [97] He, Y. Q., Wigen, P. E. Determination of magnetic anisotropy constants for garnet films from angular dependence of FMR. J. Magn. Magn. Mat., 53, 115, 1985. 40 [98] Bailleul, M. Shielding of the electromagnetic field of a coplanar waveguide by a metal film: Implications for broadband ferromagnetic resonance measurements. Appl. Phys. Lett., 103, 192405, 2013. 41 [99] Micheli, D., Pastore, R., Vricella, A., Delfini, A., Marchetti, M., Santoni, F. Electromagnetic characterization of materials by vector network analyzer experimental setup. En: Spectroscopic Methods for Nanomaterials Characterization, págs. 195–236. Elsevier, 2017. 42 [100] Pusenkov, V. M., Moskalev, K., Pleshanov, N., Schebetov, A., Syromyatnikov, V., Ul’yanov, V., et al. The effect of oxygen presence in sputtering chamber on magnetization of thin FeCo films. Phys. B, 276, 654, 2000. 49 [101] Zhan, Q., Van Haesendonck, C., Vandezande, S., Temst, K. Surface morphology and magnetic anisotropy of Fe/MgO(001) films deposited at oblique incidence. Appl. Phys. Lett., 94, 042504, 2009. 49 [102] Weber, W., Allenspach, R., Bischof, A. Determining magnetic anisotropies from hysteresis loops. Appl. Phys. Lett., 70, 520, 1997. [103] Cowburn, R. P., Gray, S. J., Ferré, J., Bland, J. A. C., Miltat, J. Magnetic switching and in-plane uniaxial anisotropy in ultrathin Ag/Fe/Ag(100) epitaxial films. J. Appl. Phys., 78, 7210, 1995. 51 [104] Mallik, S., Chowdhury, N., Bedanta, S. Interplay of uniaxial and cubic anisotropy in epitaxial Fe thin films on MgO(001) substrate. AIP Adv., 4, 097118, 2014. [105] Zhan, Q., Van Haesendonck, C., Vandezande, S., Temst, K. Manipulation of inplane uniaxial anisotropy in Fe/MgO(001) films by ion sputtering. Appl. Phys. Lett., 91, 122510, 2007. 49 [106] Kumar, H., Cornejo, D. R., Morelhao, S. L., ´Alvarez, N. R., Alejandro, G., Butera, A. Strain effects on the magnetic order of epitaxial FeRh thin films. J. Appl. Phys., 124, 085306, 2018. 57 [107] Jiménez, M. J., Cabeza, G., Gómez, J. E., Velázquez Rodríguez, D., Leiva, L., Milano, J., et al. Thickness dependence of the magnetoelectric coupling in Fe89 Ga11 thin films deposited on ferroelectric PMN-PT single crystals. J. Magn. Magn. Mag., 501, 166361, 2020. [108] Alvarez, N., Alejandro, G., G´omez, J., Goovaerts, E., Butera, A. Relaxation dynamics of ferromagnetic FePt thin films in a broad frequency range. J. Phys. D: Appl. Phys., 46, 505001, 2013. 57, 60, 61 [109] Mizukami, S., Watanabe, D., Oogane, M., Ando, Y., Miura, Y., Shirai, M., et al. Low damping constant for Co2FeAl Heusler alloy films and its correlation with density of states. J. Appl. Phys., 105, 07D306, 2009. 60 [110] Zhao, Y., Song, Q., Yang, S. H., Su, T., Yuan, W., Parkin, S. S. P., et al. Experimental Investigation of Temperature-Dependent Gilbert Damping in Permalloy Thin Films. Sci. Rep., 6, 22890, 2016. 74 [111] Kanada, I., Cruce, A., Mewes, T., Shuang, W., Mewes, C., Mankey, G., et al. Soft magnetic properties and damping parameter of (FeCo)-Al alloy thin films. AIP Adv., 7, 056105, 2017. 60 [112] Vittoria, C., Yoon, S. D., Widom, A. Relaxation mechanism for ordered magnetic materials. Phys. Rev. B, 81, 014412, 2010. 61 [113] Meckenstock, R., Spoddig, D., Frait, Z., Kambersky, V., Pelzl, J. Anisotropic Gilbert damping in epitaxial Fe films on InAs(0 0 1). J. Magn. Magn. Mat, 272-276, 1203, 2004. 61 [114] Sparks, M., Loudon, R., Kittel, C. Ferromagnetic relaxation. I. Theory of the relaxation of the uniform precession and the degenerate spectrum in insulators at low temperatures. Physical Review, 122 (3), 791, 1961. 61 [115] Mills, D., Arias, R. The damping of spin motions in ultrathin films: Is the Landau-Lifschitz-Gilbert phenomenology applicable? Physica B: Condensed Matter, 384 (1-2), 147–151, 2006. 62 [116] McMichael, R. D., Stiles, M. D., Chen, P., Egelhoff Jr, W. F. Ferromagnetic resonance linewidth in thin films coupled to NiO. J. Appl. Phys., 83 (11), 7037–7039, 1998. 62, 63 [117] Gómez, J. E., Guillen, M., Butera, A., Albaugh, N. P. High performance electronic device for the measurement of the inverse spin hall effect. Rev. Sci., 87, 024705, 2016. 72 [118] Wang, H. L., Du, C. H., Pu, Y., Adur, R., Hammel, P. C., Yang, F. Y. Scaling of spin Hall Angle in 3d, 4d and 5d metals from Y3Fe5O12/metal Spin Pumping. Phys. Rev. Lett., 112, 197201, 2014. 75, 86, 90 [119] Montoya, E., Omelchenko, P., Coutts, C., Lee-Hone, N. R., H¨ubner, R., Broun, D., et al. Spin transport in tantalum studied using magnetic single and double layers. Phys. Rev. B, 94, 054416, 2016. 75 [120] Hahn, C., Loubens, G., Klein, O., Viret, M., Naletov, V. V., Ben Youssef, J. Comparative measurements of inverse spin Hall effects and magnetoresistance in YIG/Pt and YIG/Ta. Phys. Rev. B, 87, 174417, 2013. 75 [121] Valenzuela, S. O., Tinkham, M. Direct electronic measurement of the spin hall effect. Nature, 442, 176, 2006. 79, 82 [122] Ohe, J. I., Takeuchi, A., Tatara, G. Charge current driven by spin dynamics in disordered rashba spin-orbit system. Phys. Rev. Lett., 99, 266603, 2007. [123] Seki, T., Hasegawa, I., Mitani, S., Takahashi, S., Imamura, H., Maekawa, S., et al. Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices. Nat. Mater., 7, 125, 2008. 79, 82 [124] Rojas-Sánchez, J. C., Reyren, N., Laczkowski, P., Savero, W., Attane, J. P., Deranlot, C., et al. Spin Pumping and Inverse Spin Hall Effect in Platinum: The Essential Role of Spin-Memory Loss at Metallic Interfaces. Phys. Rev. Lett., 112, 106602, 2014. 85 [125] Brustolon, M., Giamello, E. Electron Paramagnetic Resonance a Practitioner’s Toolkit. New York: Wiley, 2009. 85 [126] Sundar, R. S., Deevi, S. C. Soft magnetic FeCo alloys: alloy development, processing, and properties. Int. Mater. Rev., 50, 157–192, 2005. 86 [127] Lin, J., Moore, J. J., Sproul, W. D., Lee, S. L., Wang, J. Effect of negative substrate bias on the structure and properties of Ta coatings deposited using modulated pulse power magnetron sputtering. IEEE Trans. Plasma Sci., 38, 3071, 2010. 86 [128] Kovaleva, N., Chvostova, D., Dejneka, A. Localization phenomena in disordered tantalum films. Metals, 7 (7), 257, 2017. 86 [129] Schumacher, D. New evidence for the validity of the Fuchs-Sondheimer theory. Thin Solid Films, 152 (3), 499–510, 1987. [130] Reale, C. Properties of the conduction electrons in the metals of group VIII. Journal of Materials Science, 6 (1), 33–38, 1971. [131] Sharma, N., Joy, A., Mishra, A. K., Verma, R. K. Fuchs Sondheimer-Drude Lorentz model and Drude model in the study of SPR based optical sensors: A theoretical study. Optics Communications, 357, 120–126, 2015. 86 [132] Yu, R., Miao, B., Sun, L., Liu, Q., Du, J., Omelchenko, P., et al. Determination of spin hall angle and spin diffusion length in β-phase-dominated tantalum. Physical Review Materials, 2 (7), 074406, 2018. 86 [133] Tao, X., Liu, Q., Miao, B., Yu, R., Feng, Z., Sun, L., et al. Self-consistent determination of spin Hall angle and spin diffusion length in Pt and Pd: The role of the interface spin loss. Science advances, 4 (6), eaat1670, 2018. 90 [134] Bjorck, M., Andersson, G. GenX: an extensible X-ray reflectivity refinement program utilizing differential evolution. Journal of Applied Crystallography, 40 (6), 1174–1178, 2007. 94 [135] Westwood, W., Livermore, F. Phase composition and conductivity of sputtered tantalum. Thin Solid Films, 5 (5-6), 407–420, 1970. 98 [136] Frydrych, H., Romanski, A., Konstanty, J. The influence of iron content and powder metallurgy processing route on microstructure and mechanical properties of cobalt-iron materials. Archives of Metallurgy and Materials, 49 (4), 973–980, 2004. 101 [137] Chen, L., Mankovsky, S., Wimmer, S., Schoen, M., Korner, H., Kronseder, M., et al. Emergence of anisotropic Gilbert damping in ultrathin Fe layers on GaAs (001). Nature Physics, 14 (5), 490–494, 2018. 104, 107 [138] Seib, J., Steiauf, D., Fahnle, M. Linewidth of ferromagnetic resonance for systems with anisotropic damping. Phys. Rev. B, 79 (9), 092418, 2009. [139] Baker, A., Figueroa, A., Love, C., Cavill, S. A., Hesjedal, T., Van Der Laan, G. Anisotropic absorption of pure spin currents. Phys. Rev. Lett., 116 (4), 047201, 2016. 104, 107 [140] Mankovsky, S., Kodderitzsch, D., Woltersdorf, G., Ebert, H. First-principles calculation of the gilbert damping parameter via the linear response formalism with application to magnetic transition metals and alloys. Phys. Rev. B, 87 (1), 014430, 2013. 108 [141] Maksymov, I. S., Kostylev, M. Broadband stripline ferromagnetic resonance spectroscopy of ferromagnetic films, multilayers and nanostructures. Physica E., 69, 253–293, 2015. 123, 124 [142] Chaudhuri, U., Mahendiran, R., Adeyeye, A. O. Observation of phase dependent voltage signals in microwave spin pumping experiments. Appl. Phys. Lett., 115, 022406, 2019. [143] Martín-Rio, S., Pomar, A., Balcells, L., Bozzo, B., Frontera, C., Martínez, B. Temperature dependence of spin pumping and inverse spin hall effect in permalloy/ pt bilayers. J. Magn. Magn. Mat., 500, 166319, 2020. 123, 124 [144] Stancil, D. D., Prabhakar, A. Spin Waves: Theory and Application. Springer, 2009. 124
Materias:Física
Divisiones:Investigación y aplicaciones no nucleares > Física > Resonancias magnéticas
Código ID:1189
Depositado Por:Tamara Cárcamo
Depositado En:10 Aug 2023 10:18
Última Modificación:10 Aug 2023 10:18

Personal del repositorio solamente: página de control del documento