Validación experimental de modelos numéricos con aplicación a reactores de sales fundidas / / Experimental validation of numerical models with application to molten salt reactors

Molina, Tomás (2023) Validación experimental de modelos numéricos con aplicación a reactores de sales fundidas / / Experimental validation of numerical models with application to molten salt reactors. Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
13Mb

Resumen en español

En esta tesis se implementó un modelo computacional basado en el método numérico de volúmenes finitos para simular el experimento de flujo de sal fundida en un canal rectangular realizado por el grupo Physique des Reacteurs Nucleaires en el Laboratoire de Physique Subatomique et Cosmologie. El experimento tiene como objetivo estudiar la transferencia de calor por radiación térmica en un flujo de la sal fundida FLiNaK. Para el desarrollo del modelo, primero se estudió el campo de velocidades en el circuito experimental realizando simulaciones numéricas y mediciones experimentales con la técnica PIV como validación del modelo. Con estos resultados se pudo confirmar la condición de desarrollo fluidodinámico en la zona de la sección de prueba en que se realizaron las mediciones de temperatura del experimento con sales fundidas. Luego, se desarrolló el modelo que simula la transferencia de calor en un canal rectangular, incorporando el mecanismo de transferencia de calor por radiación térmica. Se ajustaron los parámetros del modelo a los ensayos realizados en FLiNaK y se contrastaron los resultados con las mediciones obtenidas. El modelo fue capaz de reproducir parcialmente las mediciones experimentales.

Resumen en inglés

In this thesis, a computational model based on the finite volume numerical method was implemented to simulate the molten salt flow experiment in a rectangular channel performed by the Physique des R´eacteurs Nucl´eaires group at the Laboratoire de Physique Subatomique et Cosmologie. The experiment aims to study the heat transfer by thermal radiation in a flow of molten salt FLiNaK. For the development of the model, first the velocity field in the experimental circuit was studied by performing numerical simulations and experimental measurements with the PIV technique as validation of the model. With these results it was possible to confirm the fluid dynamic development condition in the area of the test section where the temperature measurements of the experiment with molten salts were performed. Then, the model that simulates heat transfer in a rectangular channel was developed, incorporating the mechanism of heat transfer by thermal radiation. The model parameters were adjusted to the tests performed in FLiNaK and the results were compared with the measurements obtained. The model was able to partially reproduce the experimental measurements.

Tipo de objeto:Tesis (Maestría en Ingeniería)
Palabras Clave:Fluid mechanics; Mecánica de fluidos; Thermal radiation; Radiación térmica; Molten salts; Sales fundidas; [ Numerical modeling; Modelado numérico]
Referencias:[1] Generation iv golas. https://www.gen-4.org/gif/jcms/c_9502/generation-iv-goals. Last Accessed: 2023-04-05. 4 [2] Dolan, T. F. Molten Sault Reactors and Thorium Energy, cap. 20. Woodhead Publishing, 2017. 4, 5 [3] Tano Retamales, M. Development of a multi-physical multiscale models for molten salts at high temperature and their experimental validation. Tesis Doctoral, Universite Grenoble Alpes, 2019. 4, 5, 70 [4] Lemmon, E. W., Bell, I. H., Huber, M. L., McLinden, M. O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology, 2018. URL https://www.nist.gov/srd/refprop. 4, 42 [5] Giraud, J. Swath mat´erieux. Inf. t´ec., LPSC, 2019. 4, 42, 69 [6] Forsberg, C., Peterson, P. F. Basis for fluoride salt–cooled high-temperature reactors with nuclear air-brayton combined cycles and firebrick resistance-heated energy storage. Nuclear Technology, 196 (1), 13–33, oct. 2016. URL https://doi.org/10.13182/nt16-28. 4 [7] Mathieu, L., Heuer, D., Merle-Lucotte, E., Brissot, R., Brun, C. L., Liatard, E., et al. Possible configurations for the thorium molten salt reactor and advantages of the fast nonmoderated version. Nuclear Science and Engineering, 161 (1), 78–89, ene. 2009. URL https://doi.org/10.13182/nse07-49. 5 [8] Aufiero, M. Development of advanced simulation tools for circulationg fuel reactors. Tesis Doctoral, Politecnico di Milano, 2014. URL http://rgdoi.net/10.13140/2.1.4455.1044. 5 [9] Rubiolo, P. R., Retamales, M. T., Ghetta, V., Giraud, J. High temperature thermal hydraulics modeling of a molten salt: application to a molten salt fast reactor (MSFR). ESAIM: Proceedings and Surveys, 58, 98–117, 2017. URL https://doi.org/10.1051/proc/201758098. 5 [10] Rubiolo, P., Tano, M., Giraud, J., Ghetta, V., Blanco, J. Numerical and experimental thermal hydraulics studies fo high temperature molten salts for generation iv nuclear reactos. GIF Symposium - Par´ıs, 2018. 8, 9 [11] Moukalled, F., Mangani, L., Darwish, M. The finite volume method. En: The Finite Volume Method in Computational Fluid Dynamics. Springer International Publishing, 2015. URL https://doi.org/10.1007/978-3-319-16874-6_5. 21, 22 [12] Patankar, S. Numerical Heat Transfer and Fluid Flow. Taylor Francis, 1980. 22 [13] Miolane, M., Giraud, J. Caract´erisation exp´erimentale de diffuseurs par piv. Inf. tec., LPSC, 2019. 28 [14] Raffel, M., Willert, C. E., Scarano, F., K¨ahler, C. J., Wereley, S. T., Kompenhans, J. Particle Image Velocimetry: a practical guide. Springer International Publishing, 2018. URL https://doi.org/10.1007/978-3-319-68852-7. 32 [15] Raffel, M., Willert, C. E., Scarano, F., K¨ahler, C. J., Wereley, S. T., Kompenhans, J. Particle Image Velocimetry: a practical guide. Springer International Publishing, 2018. URL https://doi.org/10.1007/978-3-319-68852-7. 33 [16] Drew, B., Charonko, J., Vlachos, P. Qi - Quantitative Imaging (PIV and more), 2015. URL https://sourceforge.net/projects/qi-tools/(Accessed: 6August2019). 46 [17] Eckstein, A., Vlachos, P. P. Digital particle image velocimetry (DPIV) robust phase correlation. Measurement Science and Technology, 20 (5), 055401, abr. 2009. URL https://doi.org/10.1088/0957-0233/20/5/055401. 46 [18] Lienhard, J. H., IV, Lienhard, J. H., V. A Heat Transfer Textbook. 5a ed. Cambridge, MA: Phlogiston Press, 2020. URL http://ahtt.mit.edu, version 5.10. 60, 61 [19] Howell, J. R., Menguc, M. P., Siegel, R. Thermal Radiation Heat Transfer. CRC Press, 2010. URL https://doi.org/10.1201/9781439894552. 62, 63, 64 [20] Modest, M. F., Mazumder, S. Radiative heat transfer. Academic press, 2021. 63, 70, 71 [21] Thynell, S. T. Discrete-ordinates method in radiative heat transfer. International Journal of Engineering Science, 36 (12-14), 1651–1675, sep. 1998. URL https: //doi.org/10.1016/s0020-7225(98)00052-4. 64 [22] Manual, U. Ansys fluent 12.0. Theory Guide, 2009. 64 [23] Coyle, C., Baglietto, E., Forsberg, C. Advancing radiative heat transfer modeling in high-temperature liquid salts. Nuclear Science and Engineering, 194 (8-9), 782–792, mar. 2020. URL https://doi.org/10.1080/00295639.2020.1723993. 69 [24] Chaleff, E. S., Blue, T., Sabharwall, P. Radiation heat transfer in the molten salt FLiNaK. Nuclear Technology, 196 (1), 53–60, oct. 2016. URL https://doi.org/10.13182/nt16-52. 69 [25] Chaleff, E. S., Antolin, N., Windl, W., Blue, T. Ab-initio calculation of spectral absorption coefficients in molten fluoride salts with metal impurities. Nuclear Technology, 204 (1), 59–65, jun. 2018. URL https://doi.org/10.1080/00295450.2018.1464288. 69, 70 [26] Shurtz, R. Total hemispherical emissivity of metals applicable to radiant heat testing. Inf. t´ec., Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2018. 72 [27] Liu, Y. F., Hu, Z. L., Shi, D. H., Yu, K. Experimental investigation of emissivity of steel. International Journal of Thermophysics, 34 (3), 496–506, mar. 2013. URL https://doi.org/10.1007/s10765-013-1421-3. 72 [28] Zhu, W., Shi, D., Zhu, Z., Sun, J. Normal spectral emissivity models of steel 304 at 800–1100 k with an oxide layer on the specimen surface. Transactions of the Indian Institute of Metals, 70 (4), 1083–1090, jun. 2016. URL https: //doi.org/10.1007/s12666-016-0907-7. 72 [29] Incropera, F. P. Fundamentals of heat and mass transfer. John Wiley Sons, 2011. 74
Materias:Ingeniería mecánica > Termohidráulica
Divisiones:Gcia. de área de Aplicaciones de la tecnología nuclear > Gcia. de Investigación aplicada > Materiales metálicos y nanoestructurados
Código ID:1191
Depositado Por:Tamara Cárcamo
Depositado En:14 Aug 2023 14:44
Última Modificación:14 Aug 2023 14:44

Personal del repositorio solamente: página de control del documento