Producción simple y doble del bosón de Higgs en modelos con nuevos fermiones / Single and double production of the Higgs boson in models with new fermions

Caviglia Roman, Franco (2022) Producción simple y doble del bosón de Higgs en modelos con nuevos fermiones / Single and double production of the Higgs boson in models with new fermions. Maestría en Ciencias Físicas, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
7Mb

Resumen en español

En este trabajo se estudian los efectos de modelos con física más allá del modelo estándar en la fenomenología del bosón de Higgs. En particular, se evalúan los efectos de modelos con resonancias fermiónicas extras en su sección eficaz de producción simple y doble en el proceso dado por la fusión de gluones a √s = 14TeV. Partiendo en una primera parte donde se desarrollan las motivaciones para la búsqueda de nueva física con énfasis en el problema de la jerarquía en el sector del Higgs, y dando cuenta de los aspectos teóricos que dan forma a los modelos que nos interesan, se desarrolla de manera breve la fenomenología conocida y los elementos teóricos que serán necesarios para los cálculos. Luego, se describen las herramientas utilizadas en los cómputos numéricos, yendo desde la implementación del modelo explicitando sus componentes y lagrangiano en FeynRules, pasando por su renormalización y compilación, y terminando con la simulación propiamente dicha, la cual se realizó con MadGraph. Finalmente se describen los resultados para los dos modelos utilizados: uno análogo al modelo estándar donde se dejan de lado los quarks livianos y se suman al top dos fermiones extras tipo up de mayor masa, y una versión del minimal composite Higgs model donde se añaden grados de libertad fermiónicos tipo quarks up y quarks down acomodados en dos multipletes 52/3 y un 102/3. La motivación principal para este ultimo modelo radica en el problema de la jerarquía. Para las simulaciones en ambos modelos, se obtuvieron primero conjuntos de parámetros a partir de hacer una exploración del espacio posible y extraer aquellos valores compatibles con la física conocida. En el primero de los modelos, que sirvió como base para verificar la implementación y ver efectos sencillos sin muchos grados de libertad adicionales, no se observaron correcciones significativas a las secciones eficaces de producción doble. En el segundo, en cambio, sí se observaron efectos importantes, y se identificaron diferencias entre incluir o no en los cálculos a los quarks tipo down y un operador que añade un vértice con dos Higgs y dos fermiones.

Resumen en inglés

In this thesis we study the effects of physics beyond the standard model in the phenomenology of the Higgs boson. In particular, the effects of models with extra fermionic resonances in their cross section of simple and double production in the process given by the fusion of gluons at √s = 14TeV are evaluated. Starting in a first part where the motivations for the search for new physics are developed, with emphasis on the hierarchy problem in the Higgs sector, and accounting for the theoretical aspects that shape the models that interest us, the known phenomenology and the theoretical elements that will be necessary for the calculations are briefly developed. Then, the tools used in the numerical computations are described, going from the implementation of the model by making its components and lagrangian explicit in FeynRules, going through its renormalization and compilation, and ending with the simulation itself, which was carried out with MadGraph. Finally, the results for the two models used are described: one analogous to the standard model where the light quarks are left out and two extra up-type fermions of greater mass are added to the top, and a version of the minimal composite Higgs model where new fermionic degrees of freedom are added as type up quarks and down quarks arranged in one 52/3 and one 102/3 multiplets. The main motivation for this last model lies in the hierarchy problem. For the simulations in both models, parameter sets were first obtained by making an exploration of the space possible and extracting those values compatible with known physics. In the first of the models, which served as the basis for verifying the implementation and seeing single effects without many additional degrees of freedom, no significant corrections to double production cross-sections were observed. In the second, however, significant effects were observed, and differences were identified between including or not including down quarks in the calculations and an operator that adds a vertex with two Higgs and two fermions.

Tipo de objeto:Tesis (Maestría en Ciencias Físicas)
Palabras Clave:Higgs bosons: Bosones de higgs; [Higgs; Standard model; Modelo estándar; Phenomenology; Fenomenología; Double production; Producción doble; Composite higgs; Higgs compuesto; Fermionic resonances; Resonancias fermiónicas]
Referencias:1] Weinberg, S. A model of leptons. Phys. Rev. Lett., 19, 1264–1266, Nov 1967. URL link.aps.org/doi/10.1103/PhysRevLett.19.1264. [2] Englert, F., Brout, R. Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett., 13, 321–323, Aug 1964. URL link.aps.org/doi/10.1103/PhysRevLett.13.321. [3] Pomarol, A. Beyond the standard model, 2012. [4] Buchm¨uller, W., Ludeling, C. Field theory and standard model, 2006. [5] Iliopoulos, J. Introduction to the Standard Model of the Electro-Weak interactions, 2013. [6] Kibble, T. W. B. Symmetry breaking in non-abelian gauge theories. Phys. Rev., 155, 1554–1561, 1967. URL link.aps.org/doi/10.1103/PhysRev.155.1554. [7] Pich, A. The standard model of electroweak interactions, 2007. [8] Higgs, P. W. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett., 13, 508–509, 1964. URL link.aps.org/doi/10.1103/PhysRevLett.13.508. [9] Higgs, P. W. Spontaneous symmetry breakdown without massless bosons. Phys. Rev., 145, 1156–1163, May 1966. URL link.aps.org/doi/10.1103/PhysRev.145.1156. [10] Griffiths, D. J. Introduction to elementary particles. Physics textbook, 2a ed. New York: Wiley, 2008. URL cds.cern.ch/record/111880. [11] Zyla, P., et al. Review of particle physics. PTEP, 2020 (8), 083C01, 2020. [12] Ellis, J., Gaillard, M. K., Nanopoulos, D. A phenomenological profile of the higgs boson. Nuclear Physics B, 106, 292–340, 1976. URL www.sciencedirect.com/science/article/pii/0550321376903825. [13] Resnick, L., Sundaresan, M. K., Watson, P. J. S. Is there a light scalar boson?Phys. Rev. D, 8, 172–178, Jul 1973. URL link.aps.org/doi/10.1103/PhysRevD.8.172. [14] Sirunyan, A. M., Tumasyan, A., Adam, W., Ambrogi, F., Asilar, E., Bergauer, T.,et al. Observation of Higgs boson decay to bottom quarks. Physical Review Letters,121 (12), Sep 2018. URL dx.doi.org/10.1103/PhysRevLett.121.121801. [15] Djouadi, A. The anatomy of electroweak symmetry breaking. Physics Reports, 457 (1-4), 1—-216, 2008. URL dx.doi.org/10.1016/j.physrep.2007.10.004. [16] Rizzo, T. G. Decays of Heavy Higgs Bosons. Phys. Rev. D, 22, 722, 1980. [17] Keung, W.-Y., Marciano, W. J. Higgs scalar decays: h → w±x. Phys. Rev. D, 30, 248, 1984. [18] Yang, C. N. Selection rules for the dematerialization of a particle into two photons. Phys. Rev., 77, 242–245, 1950. URL link.aps.org/doi/10.1103/PhysRev.77. 242. [19] Georgi, H. M., Glashow, S. L., Machacek, M. E., Nanopoulos, D. V. Higgs bosons from two-gluon annihilation in pp collisions. Phys. Rev. Lett., 40, 692–694, Mar 1978. URL link.aps.org/doi/10.1103/PhysRevLett.40.692. [20] Gunion, J. F., Haber, H. E., Kane, G. L., Dawson, S. The Higgs Hunter’s Guide, tomo 80. Frontier Physics, 2000. [21] Kunszt, Z., Stirling, W. J. The Standard model Higgs at LHC: Branching ratios and cross-sections. En: ECFA Large Hadron Collider (LHC) Workshop: Physics and Instrumentation, p´ags. 428–443. 1991. [22] Sirunyan, A. M., Tumasyan, A., Adam, W., Ambrogi, F., Asilar, E., Bergauer, T., et al. Observation of tth production. Physical Review Letters, 120 (23), Jun 2018. URL dx.doi.org/10.1103/PhysRevLett.120.231801. [23] Aaboud, M., Aad, G., Abbott, B., Abdinov, O., Abeloos, B., Abhayasinghe, D., et al. Observation of higgs boson production in association with a top quark pair at the LHC with the atlas detector. Physics Letters B, 784, 173–191, Sep 2018. URL dx.doi.org/10.1016/j.physletb.2018.07.035. [24] Evans, L., Bryant, P. LHC machine. Journal of Instrumentation, 3 (08), S08001–S08001, aug 2008. URL doi.org/10.1088/1748-0221/3/08/s08001. [25] LEP collaboration. Precision electroweak measurements and constraints on the standard model, 12 2010. [26] collaboration, L. Search for the standard model higgs boson at LEP. Physics Letters B, 565, 61–75, 2003. URL www.sciencedirect.com/science/article/pii/S0370269303006142. [27] ATLAS collaboration. Observation of a new particle in the search for the standard model higgs boson with the ATLAS detector at the LHC. Physics Letters B, 716 (1), 1–29, 2012. URL dx.doi.org/10.1016/j.physletb.2012.08.020. [28] CMS collaboration. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Physics Letters B, 716 (1), 30–61, 2012. URL www.sciencedirect.com/science/article/pii/S0370269312008581. [29] collaboration, A. Measurement of the higgs boson mass in the h → ZZ∗ → 4l and h → γγ channels with √s = 13TeV pp collisions using the ATLAS detector. Physics Letters B, 784, 345–366, 2018. URL www.sciencedirect.com/science/article/pii/S0370269318305884. [30] van den Bergh, S. The early history of dark matter. Publications of the Astronomical Society of the Pacific, 111 (760), 657, jun 1999. URL https://dx.doi.org/10.1086/316369. [31] Test of lepton universality in beauty-quark decays, 2021. [32] g-2 collaboration. Measurement of the positive muon anomalous magnetic moment to 0.46 ppm. Phys. Rev. Lett., 126, 141801, Apr 2021. URL link.aps.org/doi/10.1103/PhysRevLett.126.141801. [33] CDF collaboration. High-precision measurement of the ¡i¿w¡/i¿boson mass with the cdf ii detector. Science, 376 (6589), 170–176, 2022. URL www.science.org/doi/abs/10.1126/science.abk1781. [34] Kaplan, D. B. Flavor at ssc energies: A new mechanism for dynamically generated fermion masses. Nucl. Phys. B, 365, 259–278, 1991. [35] Panico, G., Wulzer, A. The Composite Nambu-Goldstone Higgs, tomo 913. Springer, 2016. [36] Carena, M., Rold, L. D., Pont´on, E. Minimal composite higgs models at the LHC. Journal of High Energy Physics, 2014 (6), jun 2014. URL doi.org/10.1007{%}2Fjhep06{%}282014{%}29159. [37] Alloul, A., Christensen, N. D., Degrande, C., Duhr, C., Fuks, B. Feynrules 2.0- a complete toolbox for tree-level phenomenology. Computer Physics Communications,185 (8), 2250–2300, 2014. URL www.sciencedirect.com/science/article/pii/S0010465514001350. [38] Semenov, A. Lanhep - a package for automatic generation of feynman rules from the lagrangian. version 3.2. Computer Physics Communications, 201, 167–170, 2016. URL www.sciencedirect.com/science/article/pii/S0010465516000199. [39] Staub, F. Sarah 4: A tool for (not only susy) model builders. Computer Physics Communications, 185 (6), 1773–1790, 2014. URL www.sciencedirect.com/science/article/pii/S0010465514000629. [40] Degrande, C., Duhr, C., Fuks, B., Grellscheid, D., Mattelaer, O., Reiter, T. UFO– the universal FeynRules output. Computer Physics Communications, 183 (6),1201–1214, jun 2012. URL doi.org/10.10162Fj.cpc.2012.01.022. [41] Alwall, J., Frederix, R., Frixione, S., Hirschi, V., Maltoni, F., Mattelaer, O., et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. Journal of High Energy Physics, 2014 (7), jul 2014. URL doi.org/10.1007Fjhep02820149079. [42] Maltoni, F., Stelzer, T. MadEvent: automatic event generation with MadGraph. Journal of High Energy Physics, 2003 (02), 027–027, feb 2003. URL doi.org/10.1088F112667082F20032F022F027. [43] Hirschi, V., Mattelaer, O. Automated event generation for loop-induced processes,2015. URL arxiv.org/abs/1507.00020. [44] Model database for FeynRules. Disponible en feynrules. irmp.ucl.ac.be/wiki/ModelDatabaseMainPage. [45] Frixione, S., Fuks, B., Hirschi, V., Mawatari, K., Shao, H.-S., Sunder, M. P. A., et al. Automated simulations beyond the standard model: supersymmetry. Journal of High Energy Physics, 2019 (12), dec 2019. URL doi.org/10.10072Fjhep1228201929008. [46] Alwall, J., Ballestrero, A., Bartalini, P., Belov, S., Boos, E., Buckley, A., et al. A standard format for les houches event files. Computer Physics Communications, 176 (4), 300–304, feb 2007. URL https://doi.org/10.10162Fj.cpc.2006.11.010. [47] Mattelaer, O. On the maximal use of monte carlo samples: re-weighting events at NLO accuracy. The European Physical Journal C, 76 (12), dec 2016. URL doi.org/10.1140{%}2Fepjc{%}2Fs10052-016-4533-7. [48] Hirschi, V. New developments in madloop, 2011. URL arxiv.org/abs/1111.2708. [49] Djouadi, A. The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model. Phys. Rept., 459, 1–241, 2008. [50] Aguilar-Saavedra, J. A. Numerical diagonalization of fermion mass matrices. International Journal of Modern Physics C, 08 (02), 147–154, apr 1997. URL doi.org/10.1142{%}2Fs0129183197000151. [51] Choi, S., Haber, H. E. The mathematics diagonalization of fermion mass matrices. Physics Reports, 2010. URL scipp.ucsc.edu/˜haber/ph218/ch2_short.pdf. [52] Caviglia, F. Fenomenología del bosón de Higgs en el Large Hadron Collider. Proyecto Fin de Carrera, Instituto Balseiro, Feb 2022. [53] Sikivie, P., Susskind, L., Voloshin, M., Zakharov, V. Isospin breaking in technicolor models. Nuclear Physics B, 173 (2), 189–207, 1980. URL www.sciencedirect.com/science/article/pii/055032138090214X.
Materias:Física > Física de partículas
Divisiones:Investigación y aplicaciones no nucleares > Física > Partículas y campos
Código ID:1193
Depositado Por:Tamara Cárcamo
Depositado En:08 Aug 2023 11:02
Última Modificación:08 Aug 2023 11:02

Personal del repositorio solamente: página de control del documento