Oliva Trevisan, Andrés (2023) Desarrollo de un dispositivo de sensores integrados para el estudio del comportamiento animal / Development of an integrated sensor device for the study of animal behavior. Maestría en Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 20Mb |
Resumen en español
El monitoreo del comportamiento de la tortuga terrestre Chelonoidis chilensis en su hábitat natural, es esencial para recopilar información sobre su movimiento y elaborar directrices para la conservación de la especie, debido a que actualmente se encuentra en estado vulnerable. En esta Tesis, se presenta el desarrollo de una familia de dispositivos de bajo costo y bajo consumo de energía, formada por un dispositivo de monitoreo que se coloca sobre el animal, una estación colectora y un rastreador de radio frecuencia. Sus diseños fueron elaborados de forma de ser fácilmente adaptables para el monitoreo de otras especies animales en otros contextos. Cada dispositivo de la familia está compuesto por un transceptor compatible con protocolos de internet de las cosas (IoT) en la banda de frecuencia Sub-1 GHz, un receptor de sistema de navegación por satélite global (GNSS), un magnetómetro, así como sensores de temperatura e inercia. El dispositivo no supera el 5% del peso del animal para evitar perturbar su comportamiento. El peso de la placa de circuito impreso, junto a la batería y el receptor GNSS, es de 44,9 g y sus dimensiones son de 48,7 mm x 63,7 mm. La autonomía que puede variar entre una semana y un mes, dependiendo de las tasas de muestreo de los sensores, la tasa de la señal de radio frecuencia y la del receptor GNSS. La placa fue diseñada para funcionar como un dispositivo de monitoreo, una estación de recopilación de datos y un rastreador, mediante la adición de pequeñas piezas de hardware. Se presenta aquí el diseño del circuito electrónico y del firmware asociado, pensados para permitir la extensión de las funciones del dispositivo. Se realizaron mediciones en el laboratorio y en el campo para evaluar la autonomía y el alcance del enlace de radio frecuencia, así como el consumo de energía y el error de posicionamiento asociado. Se informan esos valores y discuten las limitaciones y ventajas del dispositivo, publicando este desarrollo abierto para su uso por parte de otros grupos de investigación que trabajan en proyectos similares.
Resumen en inglés
The monitoring of the behavior of the Chelonoidis chilensis tortoise in its natural habitat is essential for gathering information about its movement and developing guidelines for the conservation of the species, as it is currently classified as vulnerable. This thesis presents the development of a family of low-cost and low-power devices, which consists of a monitoring device placed on the animal, a data collection station, and a radio frequency tracker. These designs were made to be easily adaptable for monitoring other animal species in different contexts. Each device in the family is composed of a transceiver compatible with Internet of Things (IoT) protocols in the Sub-1 GHz frequency band, a global navigation satellite system (GNSS) receiver, a magnetometer, as well as temperature and inertial sensors. The device does not exceed 5% of the animal's weight to avoid disrupting its behavior. The weight of the printed circuit board (PCB), along with the battery and GNSS receiver, is 44.9 g, and its dimensions are 48.7 mm x 63.7 mm. The autonomy of the device can vary between one week and one month, depending on the sensor sampling rates, radio frequency signal rate, and GNSS receiver rate. The PCB was designed to function as a monitoring device, data collection station, and tracker by adding small hardware components. The design of the electronic circuits and associated firmware is presented, intended to allow for the extension of the device's functions. Measurements were conducted in the laboratory and in the field to evaluate autonomy, radio frequency link range, power consumption, and associated positioning error. These values are reported, and the limitations and advantages of the device are discussed, making this development openly available for use by other research groups working on similar projects.
Tipo de objeto: | Tesis (Maestría en Ingeniería) |
---|---|
Palabras Clave: | Monitoring; Vigilancia; Global positioning system; Sistema Posicionamiento global; Accelerometer; Acelerómetros; Behavior; Comportamiento; Sensors; Sensores; [Animal movement; Movimiento animal] |
Referencias: | [1] Morales, J. M., Fortin, D., Frair, J. L., Merrill, E. H. Adaptive models for large herbivore movements in heterogeneous landscapes. Landscape Ecology, 20 (3), 301–316, 2005. 3 [2] Smouse, P. E., Focardi, S., Moorcroft, P. R., Kie, J. G., Forester, J. D., Morales, J. M. Stochastic modelling of animal movement. Philosophical Transactions of the Royal Society B: Biological Sciences, 365 (1550), 2201–2211, 2010. 3 [3] Baratchi, M., Meratnia, N., Havinga, P. J. M., Skidmore, A. K., Toxopeus, B. A. G. Sensing solutions for collecting spatio-temporal data for wildlife monitoring applications: A review. Sensors, 13 (5), 6054–6088, 2013. URL https://www.mdpi.com/1424-8220/13/5/6054. 3 [4] Hebblewhite, M., Haydon, D. T. Distinguishing technology from biology: a critical review of the use of gps telemetry data in ecology. Philosophical Transactions of the Royal Society B: Biological Sciences, 365 (1550), 2303–2312, 2010. 3, 4 [5] Marin, F. Human and animal motion tracking using inertial sensors. Sensors, 20 (21), 6074, 2020. 3 [6] Cain, P. W., Cross, M. D. An open-source hardware gps data logger for wildlife radio-telemetry studies: a case study using Eastern box turtles. HardwareX, 3, 82–90, 2018. 4 [7] Barbuti, R., Chessa, S., Micheli, A., Pallini, D., Pucci, R., Anastasi, G. Tortoise@: a system for localizing tortoises during the eggs deposition phase. Atti Societa Toscana Scienze Naturali, memorie B, 119, 89–95, 2012. 4 [8] Barbuti, R., Chessa, S., Micheli, A., Pucci, R. Localizing tortoise nests by neural networks. PloS one, 11 (3), e0151168, 2016. 4 [9] Cei, J. M. Reptiles del centro, centro-oeste y sur de la Argentina: Herpetofauna de las zonas áridas y semiáridas, tomo 4. Museo regionale di scienze naturali Torino, 1986. 4 [10] Richard, E. Espectro trófico de Chelonoidis chilensis (Chelonii: Testudinidae) en la provincia fitogeográfica del Monte (Mendoza, Argentina). Cuadernos d Herpetología, 8, 1994. 4 [11] Richard, E. Tortugas de las regiones áridas de Argentina. L.O.L.A., 1999. 4 [12] Waller, T., Micucci, P. Land use and grazing in relation to the genus Geochelone in Argentina. En: Proceedings: Conservation, Restoration, and Management of Tortoises and Turtles-An International Conference, págs. 2–9. 1997. [13] Sánchez, J., Alcalde, L., Bolzan, A. D., Sánchez, R. M., del Valle Lazcoz, M. Abundance of Chelonoidis chilensis (Gray, 1870) within protected and unprotected areas from the Dry Chaco and Monte Eco-regions (Argentina), 2014. 4 [14] Burkart, R., Bárbaro, N., S´anchez, R., Gómez, D. Ecorregiones de la Argentina. Administración de Parques Nacionales y Secretaría de Recursos Naturales y Desarrollo Sustentable. Argentina: Buenos Aires. Ecological Engineering, (30), Pp–43, 1999. 4 [15] Prado, W. S., Waller, T., Albareda, D. A., Cabrera, M. R., Etchepare, E. G., Giraudo, A. R., et al. Categorización del estado de conservación de las tortugas de la Republica Argentina. Cuadernos de herpetología, 26, 2012. 4 [16] IUCN. The iucn red list of threatened species, n.d. URL https://www.iucnredlist.org/species/9007/1294968/. 4 [17] Zhang, Y., Li, Z., Liu, W., et al. A comprehensive analysis of the 2021 global chip shortage. IEEE Access, 9, 55825–55838, 2021.13 [18] Wei, Q., Jiang, Z., Xie, Y., et al. Understanding the impact of COVID-19 on the global semiconductor industry. Journal of Electronic Materials, 50 (6), 3475–3482, 2021. [19] Su, X., Zeng, X., Wang, Y., et al. A survey on the 2021 global semiconductor shortage: Causes, impacts, and solutions. IEEE Transactions on Semiconductor Manufacturing, 34 (2), 163–179, 2021. 13 [20] Shin, W., Lee, S., Kim, S., Lee, S., Kim, H.-j., Lee, S., et al. TinyML design challenges: Opportunities and risks. arXiv preprint arXiv:2009.07161, 2020. 15, 20, 25 [21] Maarouf, A., Jong, T. v. d. EdgeImpulse: A platform for Tiny Machine Learning on edge devices. IEEE Consumer Electronics Magazine, 10 (3), 48–54, 2021. 15 [22] Bai, H., Gao, J., Wang, Y., Liu, J., Li, M., Zhang, F. TinyML on OS-Enabled MCUs: Challenges, opportunities, and tools. IEEE Embedded Systems Letters, 12 (4), 100–103, 2020. 20, 25 [23] Dostert, K., Boubekeur, M., Chen, L., Winkelmann, S. Cortex-M4 processor optimization for real-time digital signal processing. IEEE Transactions on Industrial Electronics, 65 (1), 248–256, 2018. [24] Hemmati, H. R., Amiri, A. Real-time digital signal processing on ARM Cortex- M4-based microcontrollers. International Journal of Electronics, 103 (4), 648–663, 2016. 20, 25 [25] Bisio, A., Sciarrone, A., Lavagetto, F., Sabella, R. Evaluation of NB-IoT and LoRa for smart city applications. IEEE Internet of Things Journal, 5 (2), 858–867, 2018. 24 [26] Maniezzo, D., Cominelli, L., Palazzi, V., Mamei, M. Design and evaluation of a narrowband IoT system for environmental monitoring. IEEE Internet of Things Journal, 4 (6), 1752–1762, 2017. 24 [27] Lora alliance® overview. URL https://lora-alliance.org/about-lorawan/. 24 [28] Lorawan™ specification. URL https://lora-alliance.org/resource_hub/lorawan-specification-v1-1/. [29] Lorawan technology overview. URL https://www.semtech.com/lora/lora-applications. 24 [30] Douglass. Design Patterns for Embedded Systems in C: An Embedded Software Engineering Toolkit. Newnes, 2010. 45, 46 [31] Buttazzo, G. Hard real-time computing systems: predictable scheduling algorithms and applications. Springer, 2011. 47, 56, 63 [32] Xiang, M., Zhou, M. A survey of scheduling algorithms in real-time embedded systems. IEEE Access, 5, 11178–11193, 2017. [33] Baruah, S. Response time analysis of real-time systems. Foundations and Trends in Real-Time Systems, 1 (1), 1–144, 2011. 47 [34] TI-RTOS Wiki. URL https://processors.wiki.ti.com/index.php/TI-RTOS. 47 [35] Texas Instruments. TI-RTOS User’s Guide. 2021. URL https://www.ti.com/lit/ug/spruhd4s/spruhd4s.pdf. [36] Ravindran, S., Srikantan, N. Analysis of TI-RTOS on TI’s Sitara AM335x Processor. En: 2018 International Conference on Embedded Systems (ICES). 2018.47 [37] Texas Instruments. SimpleLink MSP432 SDK user’s guide. https://software-dl.ti.com/simplelink/esd/simplelink_msp432_sdk/2.40. 00.10/docs/tiposix/Users_Guide.html, 2018. 48 [38] LinuxHint. Posix standard explained, n.d. URL https://linuxhint.com/posix-standard/. 48 [39] Yakindu statechart tools. URL https://www.itemis.com/en/yakindu/state-machine/. 50 [40] Rajkumar, R., Lee, I. Real-time computing: the challenge of future automotive systems. Proceedings of the IEEE, 85 (3), 366–377, 1997. 59 [41] Liu, J. W. S. Real-Time Systems. Wiley, 2017. 63 [42] Clements, A. An Introduction to Real-Time Systems: From Design to Networking with C/C++. Springer, 2011. 63 [43] Fatfs - generic fat filesystem module tools. URL http://elm-chan.org/fsw/ff/00index_e.html. 70 [44] Kazimierski, L., Oliva Trevisan, A., Kubisch, E., Laneri, K., Catalano, N. Design and development of a family of integrated devices to monitor animal movement in the wild. Sensors, 23 (7), 3684, 2023. Oliva Trevisan and Kazimierski contribuyeron igualmente. 101 [45] Kazimierski, L., Kolton, A., Kubisch, E., Laneri, K., Echave, M., Catalano, N., et al. Study of animal movement equipment design and development, 2022. URL https://www.hackster.io/471203/ study-of-animal-movement-equipment-design-and-development-febb17. 101 |
Materias: | Ingeniería en telecomunicaciones |
Divisiones: | Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Sistemas complejos y altas energías > Física estadística interdisciplinaria |
Código ID: | 1196 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 14 Aug 2023 15:11 |
Última Modificación: | 14 Aug 2023 15:11 |
Personal del repositorio solamente: página de control del documento