Lanoël, , Lucio (2023) Origen, propiedades y efectos del avejentamiento en la superficie de monocristales del superconductor ꞵ-FeSe / Origin, properties and effects of ageing at the surface of single crystals of the ꞵ-FeSe superconductor. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 49Mb |
Resumen en español
El compuesto binario superconductor β-FeSe es un sistema laminar de hierros unidos con selenios en el plano mediante uniones de tipo covalentes, formando capas que están unidas por fuerzas de Van der Waals a lo largo del eje-c. Este sistema posee una estructura tetragonal simple, de tipo anti-PbO (grupo espacial P4_nmm) el cual posee una transición electrónica-estructural a una temperatura de ∼90 K, donde la estructura pasa a ser ortorrómbica y la transición de fase electrónica, llamada transición hemática, se caracteriza por la aparición de magnetoresistencia positiva cuando se aplica campo paralelo al eje-c. Este sistema, a diferencia de otros de su mismo tipo, no muestra transición de orden magnético hasta la temperatura de transición de fase superconductora que suele estar en Tc=8 K. Durante el proceso de caracterización de este sistema, observamos mediante espectroscopia Raman, la aparición de un modo vibracional en ≈250 cm"−1, el cual no es esperado para el sistema de bulto de este compuesto. En este trabajo se realizó un estudio exhaustivo mediante variadas técnicas en la búsqueda de entender este fenómeno que era promovido por el paso del tiempo. Se tomaron espectros Raman en un amplio rango de temperaturas, 5-773 K. Se hicieron ajustes Lorentzianos de todos los espectros tomados con los que se determinó la dependencia en temperatura tanto de la energía como de la sección eficaz Raman. Se estudió la composición química, en perfil de profundidad utilizando la técnica de comido iónico en un equipo de espectroscopia por fotoemisión de electrones, de muestras donde se observaba y otras donde no se observaba la nueva señal Raman. Se tomaron mediciones de transporte eléctrico en función de la temperatura en muestras que tenían esta característica propia del paso del tiempo, donde se observaron mejoras en las propiedades superconductoras, obteniendo una temperatura de inicio de la transición superconductora, TO_nset = 14K, y una temperatura crítica (temperatura a la que la resistencia de la muestra es cero), Tc=10 K. Se propuso un modelo para explicar el fenómeno, y se resolvieron mediante teoría de grupos los modos vibracionales esperados para una sola lámina de β-FeSe. Del modelo se desprende la aparición de un nuevo pico, que se debe a que en el nuevo grupo de simetría un modo que no es Raman activo en el bulto, si lo es para el sistema bidimensional. El ajuste teórico-experimental fue muy bueno (R"2 > 0.99) y las dependencias en polarización que se esperan están de acuerdo con las observadas. Además la energía de unión covalente que se obtiene del ajuste, es consistente con lo calculado en simulaciones de este compuesto. Además se observaron modos vibracionales interlaminares predichos en este sistema, pero que no fueron reportados al momento de escritura de este trabajo. A partir de la energía de este modo, mediante un modelo simple unidimensional, podemos calcular la constante de acoplamiento del sistema y la misma es razonable en relación a las que se obtienen en otros compuestos laminares. Finalmente, se tomaron espectros Raman en una muestra del compuesto β-FeTe, el cual tiene una estructura cristalina análoga al β-FeSe, en busca de un fenómeno similar al observado, y basándonos en trabajos presentes en la literatura, se determinó que en estas familias de compuestos calcogenuros y dicalcogenuros de metales de transición, se forman alótropos del calcógeno correspondiente en la superficie del mismo. En este trabajo se logró determinar cual es el proceso que da lugar al envejecimiento de este compuesto. ´Este, es un proceso de degradación de la superficie poco convencional en el que se observa un estadio intermedio formado por varios compuestos. La superficie avejentada está compuesta por una mezcla de ´oxido de hierro, selenio amorfo, FeSe en estado iónico y el compuesto original β-FeSe. El remanente de β-FeSe en esta capa avejentada resultaría desacoplado del bulto, lo que produciría la aparición de un nuevo modo Raman prohibido para el bulto, pero esperado para una sola lámina de β-FeSe, es decir, para β-FeSe bidimensional. Este resultado se deprende de resolver cuales serían los modos vibracionales esperados y sus energías, para β-FeSe bidimensional. La energía, actividad Raman y dependencia en polarización del nuevo pico en 250 cm"−1 se encuentra de acuerdo con lo observado mediante espectroscopia Raman y este desacoplamiento de las primeras capas superficiales explicaría además las mejoras en las propiedades superconductoras observadas en mediciones de transporte eléctrico. Además se observaron modos interlaminares de baja energía. Éstos, fueron predichos pero aun no reportados para este compuesto al momento de escritura de esta tesis. Estos resultados necesitan de más experimentos y modelos mas complejos para ser entendidos mejor. Por último observamos en experimentos Raman en cristales de β-FeTe el mismo fenómeno de avejentamiento, que en este caso, da lugar a señal de teluro amorfo en la superficie de cristales avejentados que al clivar se recupera la señal del compuesto original. Este resultado, junto con reportes de aparición de un pico en 250 cm"−1 en distintos seleniuros, como ser: Bi_2Se_3, MoSe_2, TiSe_2 y TaSe_2 sugiere que el proceso de envejecimiento y degradación de la superficie que resulta en señal Raman del calcógeno del que este formado el compuesto en estado amorfo en la superficie es ubicuo a todos los compuestos calcogenuros.
Resumen en inglés
The superconducting β-FeSe binary compound is a layered system of irons bounded with selenium atoms by covalent unions, forming layers that are bounded to each other by Van der Waals forces along the c-axis. This system has a simple tetragonal structure, of anti-PbO (space group P4_nmm) which has a structural-electronic phase transition at T ∼90 K. Below this temperature, the structure becomes orthorhombic and the electronic phase transition, called nematic transition, is characterized by the appearance of positive magnetoresistance when field is applied parallel to the c-axis. Particularly, this system, unlike others of the same type, does not show a magnetic order transition down to the superconducting phase transition temperature, which is usually at Tc=8 K. During the characterization process of this system, the appearance of a vibrational mode at ≈250 cm"−1 was observed by Raman spectroscopy. This feature is not expected for the bulk system of this compound. In this work, a comprehensive study was carried out, using various techniques, to understand this phenomenon, which was promoted by aging. Raman spectra were taken over a wide range of temperatures, 5-773 K. Lorentzian fits were made to all the spectra taken, from which the energy and the Raman cross section as a function of temperature, were determined. The chemical composition of the samples, with and without the new Raman signal, was studied using Argon ion sputtering depth profiling technique in an X-ray Electron Photoemission Spectroscopy (XPS) equipment. Electrical transport measurements were taken on aged samples as a function of temperature. Improvements in superconducting properties were observed, obtaining a superconducting transition temperature of Tc=10 K. A model was proposed to explain the phenomenon. The expected vibrational modes for a single β-FeSe sheet (bidimensional system) were solved by group theory. The model shows the appearance of a new peak, which, in the new symmetry group, is Raman active, but can not be observed for the bulk system. The theoretical-experimental fit was good (R"2 > 0.99) and the expected polarization dependencies agree with the observed ones. In addition, the covalent bonding energy obtained from the fit is consistent with the one obtained in simulations for this compound. In addition, predicted interlaminar vibrational modes were observed in this system, which were not reported up to the time this thesis was written. From the energy of these modes, using a simple one-dimensional model, the coupling constant of the system was calculated. The result is reasonable, in comparison with those obtained in ther laminar compounds. Finally, Raman spectra were taken on a β-FeTe sample, which has an analogous crystal structure to the β-FeSe one, in the search for a similar phenomenon to the observed one. Based on works present in the literature, and our results, we determined that in these families of transition metal chalcogenides and dichalcogenides compounds, allotropes of the corresponding chalcogenides are formed on the surface of the compound. In this work it was possible to determine which is the process that gives rise to aging of this compound. This is an unconventional process of degradation of the surface in which an intermediate stage formed by several compounds is observed. The aged surface is composed of a mixture of iron oxide, amorphous selenium, FeSe in ionic state and the original compound β-FeSe. The remaining β-FeSe in this aged layer would become unbonded from the bulk, which would produce the appearance of a new Raman mode prohibited for the bulk, but expected for a single sheet of β-FeSe, that is, for two-dimensional β-FeSe. This result is derived from resolving the expected vibrational modes and their energies for bidimensional β-FeSe. The energy, Raman activity and polarization dependence of the new peak at 250 cm"−1 is in agreement with that observed by Raman spectroscopy and this unbonding of the first superficial sheets would also explain the improvements in the superconducting properties observed in electrical transport measurements. In addition, low energy interlaminar modes were observed. These were predicted but not yet reported for this compound at the time of writing this thesis. These results need more experiments and more complex models to be better understood. Lastly, we observed in Raman experiments on β-FeTe crystals the same aging phenomenon, which in this case, gives rise to an amorphous tellurium signal on the surface of aged crystals which, when cleaving, recovers the signal of the original compound. This result, along with reports of the appearance of a peak at 250 cm"−1 in different selenium compounds such as: Bi_2Se_3, MoSe_2, TiSe_2 and TaSe_2 suggests that the process of aging and degradation of the surface that results in Raman signal of the chalcogen from which the compound is formed in the amorphous state at the surface, is ubiquitous to all chalcogenide compounds.
Tipo de objeto: | Tesis (Tesis Doctoral en Física) |
---|---|
Palabras Clave: | Raman spectroscopy; Espectroscopia raman; Superconductivity; Superconductividad;[Iron based superconductors; Superconductores basados en hierro] |
Referencias: | [1] Kamihara, Y., Hiramatsu, H., Hirano, M., Kawamura, R., Yanagi, H., Kamiya, T., et al. Iron-based layered superconductor: laofep. Journal of the American Chemical Society, 128 (31), 10012–10013, 2006. URL https://doi.org/10.1021/ja063355c, pMID: 16881620. 1, 2 [2] Hashimoto, T., Ota, Y., Yamamoto, H. Q., Suzuki, Y., Shimojima, T.,Watanabe, S., et al. Superconducting gap anisotropy sensitive to nematic domains in FeSe. Nature Communications, 9 (1), 282, Jan 2018. URL https://doi.org/10.1038/s41467-017-02739-y. 1 [3] Hsu, F.-C., Luo, J.-Y., Yeh, K.-W., Chen, T.-K., Huang, T.-W., Wu, P. M., et al. Superconductivity in the PbO-type structure α-FeSe. Proceedings of the National Academy of Sciences, 105 (38), 14262–14264, 2008. URL https://www.pnas.org/doi/abs/10.1073/pnas.0807325105. 1, 4 [4] Sun, J. P., Matsuura, K., Ye, G. Z., Mizukami, Y., Shimozawa, M., Matsubayashi, K., et al. Dome-shaped magnetic order competing with high-temperature superconductivity at high pressures in FeSe. Nature Communications, 7 (1), 12146, Jul 2016. URL https://doi.org/10.1038/ncomms12146. 4 [5] Yeh, K.-W., Huang, T.-W., lin Huang, Y., Chen, T.-K., Hsu, F.-C., Wu, P. M., et al. Tellurium substitution effect on superconductivity of the α-phase iron selenide. Europhysics Letters, 84 (3), 37002, oct 2008. URL https://dx.doi. org/10.1209/0295-5075/84/37002. 1 [6] Wang, H., Ye, Z., Zhang, Y., Wang, N. Band structure reconstruction across nematic order in high quality FeSe single crystal as revealed by optical spectroscopy study. Science Bulletin, 61 (14), 1126–1131, 2016. URL https://www.sciencedirect.com/science/article/pii/S2095927316300779. 1, 31 [7] Wang, D., Kong, L., Fan, P., Chen, H., Zhu, S., Liu, W., et al. Evidence for majorana bound states in an iron-based superconductor. Science, 362 (6412), 333–335, 2018. URL https://www.science.org/doi/abs/10.1126/science.aao1797. 1, 93 [8] Kreisel, A., Hirschfeld, P., Andersen, B. On the remarkable superconductivity of FeSe and its close cousins. Symmetry, 12 (9), 1402, aug 2020. URL https://doi.org/10.3390%2Fsym12091402. 1 [9] Bednorz, J. G., Muller, K. A. Possible high-Tc superconductivity in the BaLa-CuO system. Zeitschrift fur Physik B Condensed Matter, 64 (2), 189–193, Jun 1986. URL https://doi.org/10.1007/BF01303701. 1 [10] Kordyuk, A. A. Iron-based superconductors: Magnetism, superconductivity, and electronic structure (Review Article). Low Temperature Physics, 38 (9), 888–899, 09 2012. URL https://doi.org/10.1063/1.4752092. 2 [11] Chen, X., Dai, P., Feng, D., Xiang, T., Zhang, F.-C. Iron-based high transition temperature superconductors. National Science Review, 1 (3), 371–395, 07 2014.URL https://doi.org/10.1093/nsr/nwu007. 2 [12] Mousavi, T., Grovenor, C. R. M., Speller, S. C. Structural parameters affecting superconductivity in iron chalcogenides: a review. Materials Science and Technology, 30 (15), 1929–1943, 2014. URL https://doi.org/10.1179/1743284714Y. 0000000551. 2, 3, 4 [13] Fernandes, R. M., Coldea, A. I., Ding, H., Fisher, I. R., Hirschfeld, P. J., Kotliar, G. Iron pnictides and chalcogenides: a new paradigm for superconductivity. Nature, 601 (7891), 35–44, Jan 2022. URL https://doi.org/10.1038/s41586-021-04073-2. 2 [14] Wang, Q., Shen, Y., Pan, B., Zhang, X., Ikeuchi, K., Iida, K., et al. Magnetic ground state of FeSe. Nature Communications, 7 (1), 12182, Jul 2016. URL https://doi.org/10.1038/ncomms12182. 2 [15] Chubukov, A., Hirschfeld, P. J. Iron-based superconductors, seven years later. Physics Today, 68 (6), 46–52, 06 2015. URL https://doi.org/10.1063/PT.3. 2818. 3 [16] Si, W., Lin, Z.-W., Jie, Q., Yin, W.-G., Zhou, J., Gu, G., et al. Enhanced superconducting transition temperature in FeSe0.5Te0.5 thin films. Applied Physics Letters, 95 (5), 08 2009. URL https://doi.org/10.1063/1.3195076, 052504. 3 [17] Bohmer, A. E., Arai, T., Hardy, F., Hattori, T., Iye, T., Wolf, T., et al. Origin of the tetragonal-to-orthorhombic phase transition in FeSe: A combined thermodynamic and NMR study of nematicity. Phys. Rev. Lett., 114, 027001, Jan 2015. URL https://link.aps.org/doi/10.1103/PhysRevLett.114.027001. 3 [18] Nakata, S., Horio, M., Koshiishi, K., Hagiwara, K., Lin, C., Suzuki, M., et al. Nematicity in a cuprate superconductor revealed by angle-resolved photoemission spectroscopy under uniaxial strain. npj Quantum Materials, 6 (1), 86, Oct 2021. URL https://doi.org/10.1038/s41535-021-00390-x. 3 [19] Baek, S.-H., Efremov, D. V., Ok, J. M., Kim, J. S., van den Brink, J., Buchner, B. Orbital-driven nematicity in FeSe. Nature Materials, 14 (2), 210–214, Feb 2015. URL https://doi.org/10.1038/nmat4138. 3 [20] McQueen, T. M., Huang, Q., Ksenofontov, V., Felser, C., Xu, Q., Zandbergen, H., et al. Extreme sensitivity of superconductivity to stoichiometry in Fe1+δSe. Phys. Rev. B, 79, 014522, Jan 2009. URL https://link.aps.org/doi/10.1103/PhysRevB.79.014522. 3, 4, 9, 28, 40 [21] Ding, M.-C., Lin, H.-Q., Zhang, Y.-Z. Antiferromagnetism and its origin in iron-based superconductors (Review Article). Low Temperature Physics, 40 (2), 113–122, 02 2014. URL https://doi.org/10.1063/1.4865557. 3 [22] Fernandes, R. M., Chubukov, A. V., Schmalian, J. What drives nematic order in iron-based superconductors? Nature Physics, 10 (2), 97–104, Feb 2014. URL https://doi.org/10.1038/nphys2877. 3 [23] Wang, Q., Fanfarillo, L., B¨ohmer, A. E. Editorial: Nematicity in iron-based superconductors. Frontiers in Physics, 10, 2022. URL https://www.frontiersin.org/articles/10.3389/fphy.2022.1038127. 3 [24] Bartlett, J. M., Steppke, A., Hosoi, S., Noad, H., Park, J., Timm, C., et al. Relationship between transport anisotropy and nematicity in FeSe. Phys. Rev. X, 11, 021038, May 2021. URL https://link.aps.org/doi/10.1103/PhysRevX.11.021038. 3, 4 [25] Baek, S.-H., Ok, J. M., Kim, J. S., Aswartham, S., Morozov, I., Chareev, D., et al. Separate tuning of nematicity and spin fluctuations to unravel the origin of superconductivity in FeSe. npj Quantum Materials, 5 (1), 8, Jan 2020. URL https://doi.org/10.1038/s41535-020-0211-y. 4 [26] Chen, T., Yi, M., Dai, P. Electronic and magnetic anisotropies in FeSe family of iron-based superconductors. Frontiers in Physics, 8, 2020. URL https://www. frontiersin.org/articles/10.3389/fphy.2020.00314. 3 [27] Bohmer, A. E., Hardy, F., Eilers, F., Ernst, D., Adelmann, P., Schweiss, P., et al. Lack of coupling between superconductivity and orthorhombic distortion in stoichiometric single crystalline FeSe. Phys. Rev. B, 87, 180505, May 2013. URL https://link.aps.org/doi/10.1103/PhysRevB.87.180505. 4 [28] Vivanco, H. K., Rodriguez, E. E. The intercalation chemistry of layered iron chalcogenide superconductors. Journal of Solid State Chemistry, 242, 3–21, 2016. URL https://www.sciencedirect.com/science/article/pii/S0022459616301311. 4, 115 [29] Zhang, R., Gao, P., Wang, X., De Marzi, G. Self-doping effect in FeSe superconductor by pressure-induced charge transfer. Journal of Superconductivity and Novel Magnetism, 05 2020. 4 [30] Ghini, M., Bristow, M., Prentice, J. C. A., Sutherland, S., Sanna, S., Haghighirad, A. A., et al. Strain tuning of nematicity and superconductivity in single crystals of FeSe. Phys. Rev. B, 103, 205139, May 2021. URL https://link.aps.org/doi/10.1103/PhysRevB.103.205139. 4 [31] Wen, C. H. P., Xu, H. C., Chen, C., Huang, Z. C., Lou, X., Pu, Y. J., et al. Anomalous correlation effects and unique phase diagram of electron-doped FeSe revealed by photoemission spectroscopy. Nature Communications, 7 (1), 10840, Mar 2016. URL https://doi.org/10.1038/ncomms10840. 4 [32] Watson, M. D., Yamashita, T., Kasahara, S., Knafo, W., Nardone, M., Beard, J., et al. Dichotomy between the hole and electron behavior in multiband superconductor FeSe probed by ultrahigh magnetic fields. Phys. Rev. Lett., 115, 027006, Jul 2015. URL https://link.aps.org/doi/10.1103/PhysRevLett.115.027006. 4 [33] Bendele, M., Weyeneth, S., Puzniak, R., Maisuradze, A., Pomjakushina, E., Conder, K., et al. Anisotropic superconducting properties of single-crystalline FeSe0.5Te0.5. Phys. Rev. B, 81, 224520, Jun 2010. URL https://link.aps. org/doi/10.1103/PhysRevB.81.224520. 4 [34] Zhang, P., Qian, T., Richard, P., Wang, X. P., Miao, H., Lv, B. Q., et al. Observation of two distinct dxz/dyz band splittings in FeSe. Phys. Rev. B, 91, 214503, Jun 2015. URL https://link.aps.org/doi/10.1103/PhysRevB.91.214503. 5 [35] Coldea, A. I. Electronic nematic states tuned by isoelectronic substitution in bulk FeSe1−xSx. Frontiers in Physics, 8, 2021. URL https://www.frontiersin.org/articles/10.3389/fphy.2020.594500. 5 [36] Zhou, R., Scherer, D. D., Mayaffre, H., Toulemonde, P., Ma, M., Li, Y., et al. Singular magnetic anisotropy in the nematic phase of FeSe. npj Quantum Materials, 5 (1), 93, Dec 2020. URL https://doi.org/10.1038/s41535-020-00295-1. 6 [37] Yi, M., Pfau, H., Zhang, Y., He, Y., Wu, H., Chen, T., et al. Nematic energy scale and the missing electron pocket in FeSe. Physical Review X, 9 (4), 041049, 2019. 6 [38] Watson, M. D., Haghighirad, A. A., Rhodes, L. C., Hoesch, M., Kim, T. K. Electronic anisotropies revealed by detwinned angle-resolved photo-emission spectroscopy measurements of FeSe. New Journal of Physics, 19 (10), 103021, 2017. [39] Huh, S., Seo, J., Kim, B., Cho, S., Jung, J. K., Kim, S., et al. Absence of ypocket in 1-Fe brillouin zone and reversed orbital occupation imbalance in FeSe. Communications Physics, 3 (1), 52, 2020. 6 [40] Wang, Q., Zhang, W., Zhang, Z., Sun, Y., Xing, Y., Wang, Y., et al. Thickness dependence of superconductivity and superconductor-insulator transition in ultrathin FeSe films on SrTiO3(001) substrate. 2D Materials, 2 (4), 044012, nov 2015. URL https://dx.doi.org/10.1088/2053-1583/2/4/044012. 6 [41] Feng, Z., Yuan, J., He, G., Hu, W., Lin, Z., Li, D., et al. Tunable critical temperature for superconductivity in FeSe thin films by pulsed laser deposition. Scientific Reports, 8 (1), 4039, Mar 2018. URL https://doi.org/10.1038/s41598-018-22291-z. 6 [42] Sun, Y., Zhang, W., Xing, Y., Li, F., Zhao, Y., Xia, Z., et al. High temperature superconducting FeSe films on SrTiO3 substrates. Scientific Reports, 4 (1), 6040, Aug 2014. URL https://doi.org/10.1038/srep06040. 6 [43] Ge, J.-F., Liu, Z.-L., Liu, C., Gao, C.-L., Qian, D., Xue, Q.-K., et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. Nature Materials,14 (3), 285–289, Mar 2015. URL https://doi.org/10.1038/nmat4153.6 [44] Qing-Yan, W., Zhi, L., Wen-Hao, Z., Zuo-Cheng, Z., Jin-Song, Z., Wei, L., et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3. Chinese Physics Letters, 29 (3), 037402, mar 2012. URL https://dx.doi.org/10.1088/0256-307X/29/3/037402. 6 [45] Harada, T., Tsukazaki, A. A versatile patterning process based on easily soluble sacrificial bilayers. AIP Advances, 7 (8), 08 2017. URL https://doi.org/10.1063/1.4993660, 085011. 6 [46] Imai, Y., Sawada, Y., Nabeshima, F., Maeda, A. Suppression of phase separation and giant enhancement of superconducting transition temperature in FeS1−xTex thin films. Proceedings of the National Academy of Sciences, 112 (7), 1937–1940, 2015. URL https://www.pnas.org/doi/abs/10.1073/pnas.1418994112. 6 [47] Zhao, P. H., Yan, W., Han, Y. L., Shen, S. C., Aldica, G., Sandu, V., et al. Enhancement of superconductivity in quenched α-FeSe flakes. Journal of Superconductivity and Novel Magnetism, 26 (12), 3349–3353, Dec 2013. URL https://doi.org/10.1007/s10948-013-2194-4. 7 [48] Amigó, M. L., Crivillero, M. V. A., Franco, D. G., Badıa–Majos, A., Guimpel, J., Campo, J., et al. Intrinsic pinning by naturally occurring correlated defects in FeSe1xTex superconductors. Superconductor Science and Technology, 30 (8), 085010, jul 2017. URL https://dx.doi.org/10.1088/1361-6668/aa757c. 7 [49] Zhu, C. S., Lei, B., Sun, Z. L., Cui, J., Shi, M., Zhuo, W., et al. Evolution of transport properties in FeSe thin flakes with thickness approaching the twodimensional limit. Physical Review B, 2021. 7 [50] Farrar, L. S., Bristow, M., Haghighirad, A. A., McCollam, A., Bending, S. J., Coldea, A. I. Suppression of superconductivity and enhanced critical field anisotropy in thin flakes of FeSe. npj Quantum Materials, 5 (1), 29, May 2020. URL https://doi.org/10.1038/s41535-020-0227-3. 7 [51] Amigó, L. Propiedades electrónicas de los estados normal y superconductor de FeSe. Tesis Doctoral, Universidad Nacional de Cuyo. Instituto Balseiro, 2017. 9, 65 [52] Okamoto, H. The FeSe (ironselenium) system. Journal of Phase Equilibria, 12 (3), 383–389, Jun 1991. URL https://doi.org/10.1007/BF02649932. 9 [53] Amigó, M. L., Ale Crivillero, M. V., Franco, D. G., Guimpel, J., Nieva, G. Influence of the Fe concentration on the superconducting properties of Fe1−ySe. Journal of Low Temperature Physics, 179 (1), 15–20, Apr 2015. URL https://doi.org/10.1007/s10909-014-1255-9. 9 [54] Chareev, D., Osadchii, E., Kuzmicheva, T., Lin, J.-Y., Kuzmichev, S., Volkova, O., et al. Single crystal growth and characterization of tetragonal FeSe1x superconductors. CrystEngComm, 15, 1989–1993, 2013. URL http://dx.doi.org/10.1039/C2CE26857D. 10 [55] Bohmer, A. E., Taufour, V., Straszheim, W. E.,Wolf, T., Canfield, P. C. Variation of transition temperatures and residual resistivity ratio in vapor-grown FeSe. Phys. Rev. B, 94, 024526, Jul 2016. URL https://link.aps.org/doi/10.1103/PhysRevB.94.024526. 9 [56] Robelin, C., Chartrand, P., Pelton, A. D. Thermodynamic evaluation and optimization of the (NaCl+KCl+AlCl3) system. The Journal of Chemical Thermodynamics, 36 (8), 683–699, 2004. URL https://www.sciencedirect.com/science/article/pii/S0021961404000850. 10 [57] Yin, Z. P., Haule, K., Kotliar, G. Magnetism and charge dynamics in iron pnictides. Nature Physics, 7 (4), 294–297, Apr 2011. URL https://doi.org/10.1038/nphys1923. 12 [58] Nazarova, E., Balchev, N., Nenkov, K., Buchkov, K., Kovacheva, D., Zahariev, A., et al. Transport and pinning properties of Ag-doped FeSe0.94. Superconductor Science and Technology, 28 (2), 025013, jan 2015. URL https://dx.doi.org/10.1088/0953-2048/28/2/025013. 12 [59] Chen, T.-K., Chang, C.-C., Chang, H.-H., Fang, A.-H., Wang, C.-H., Chao, W.-H., et al. Fe-vacancy order and superconductivity in tetragonal βFe1−xSe. Proceedings of the National Academy of Sciences, 111 (1), 63–68, 2014. URL https://www.pnas.org/doi/abs/10.1073/pnas.1321160111. 12 [60] Bass, M., DeCusatis, C., Enoch, J., Lakshminarayanan, V., Li, G., MacDonald, C., et al. Handbook of Optics, Volume IV: Optical Properties of Materials, tomo 4. McGraw Hill Professional, 2009. 20 [61] Vandenabeele, P. Practical Raman Spectroscopy - An introduction. John Wiley Sons, Ltd, 2013. 20, 22, 24 [62] Allemand, C. D. Depolarization ratio measurements in raman spectrometry. Applied Spectroscopy, 24 (3), 348–353, 1970. URL https://doi.org/10.1366/000370270774371552. 24 [63] Stevie, F. A., Donley, C. L. Introduction to X-ray photoelectron spectroscopy. Journal of Vacuum Science & Technology A, 38 (6), 063204, 2020. URL https://doi.org/10.1116/6.0000412. 25, 57 [64] Wu, M. K., Yeh, K. W., Hsu, H. C., Huang, T. W., Chen, T. K., Luo, J. Y., et al. The development of the superconducting tetragonal PbO-type FeSe and related compounds. physica status solidi (b), 247 (3), 500–505, 2010. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/pssb.200983074. 27 [65] Margadonna, S., Takabayashi, Y., McDonald, M. T., Kasperkiewicz, K., Mizuguchi, Y., Takano, Y., et al. Crystal structure of the new FeSe1x superconductor. Chem. Commun., págs. 5607–5609, 2008. URL http://dx.doi.org/10.1039/B813076K. 29 [66] Knoner, S., Zielke, D., Kohler, S., Wolf, B., Wolf, T., Wang, L., et al. Resistivity and magnetoresistance of FeSe single crystals under helium-gas pressure. Phys. Rev. B, 91, 174510, May 2015. URL https://link.aps.org/doi/10.1103/PhysRevB.91.174510. 29 [67] Jiao, L., Huang, C.-L., Roßler, S., Koz, C., Roßler, U. K., Schwarz, U., et al. Superconducting gap structure of FeSe. Scientific Reports, 7 (1), 44024, Mar 2017. URL https://doi.org/10.1038/srep44024. 29 [68] Amigó, M. V. Propiedades electrónicas de los estados normal y superconductor de FeSe. Doctoral dissertation, Instituto Balseiro, UNCuyo, 2017. URL https://ricabib.cab.cnea.gov.ar/711/. 31 [69] Kumar, P., Kumar, A., Saha, S., Muthu, D., Prakash, J., Patnaik, S., et al. Anomalous raman scattering from phonons and electrons of superconducting FeSe0.82. Solid State Communications, 150 (13), 557–560, 2010. URL https://www.sciencedirect.com/science/article/pii/S0038109810000402. 31 [70] Gnezdilov, V., Pashkevich, Y. G., Lemmens, P., Wulferding, D., Shevtsova, T., Gusev, A., et al. Interplay between lattice and spin states degree of freedom in the FeSe superconductor: Dynamic spin state instabilities. Phys. Rev. B, 87, 144508, Apr 2013. URL https://link.aps.org/doi/10.1103/PhysRevB.87.144508. 32, 39, 40, 76 [71] Hsiung, H.-I., Chao, W., Hsu, H., Wang, M.-J., Liu, H.-L., Wu, M.-K. Observation of iron d-orbitals modifications in superconducting FeSe by raman spectra study. Physica C: Superconductivity and its Applications, 552, 61–63, 2018. URL https://www.sciencedirect.com/science/article/pii/S0921453417303301. 31 [72] Zakeri, K., Engelhardt, T., Wolf, T., Le Tacon, M. Phonon dispersion relation of single-crystalline β-FeSe. Phys. Rev. B, 96, 094531, Sep 2017. URL https://link.aps.org/doi/10.1103/PhysRevB.96.094531. 31, 74 [73] Schuster, W., Mikler, H., Komarek, K. L. Transition metal-chalcogen systems, VII.: The iron-selenium phase diagram. Monatshefte fur Chemie / Chemical Monthly, 110 (5), 1153–1170, Sep 1979. URL https://doi.org/10.1007/BF00910963. 31, 74 [74] Yuan, B., Hou, X., Han, Y., Luan, W., Tu, S.-t. Facile synthesis of flake-like FeSe2 particles in open-air conditions. New J. Chem., 36, 2101–2105, 2012. URL http://dx.doi.org/10.1039/C2NJ40369B. 42 [75] Shebanova, O. N., Lazor, P. Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum. Journal of Solid State Chemistry, 174 (2), 424–430, 2003. URL https://www.sciencedirect.com/science/ article/pii/S0022459603002949. 42 [76] Yamasaki, A., Matsui, Y., Imada, S., Takase, K., Azuma, H., Muro, T., et al. Electron correlation in the FeSe superconductor studied by bulk-sensitive photoemission spectroscopy. Phys. Rev. B, 82, 184511, Nov 2010. URL https://link.aps.org/doi/10.1103/PhysRevB.82.184511. 57 [77] Telesca, D., Nie, Y., Budnick, J. I., Wells, B. O., Sinkovic, B. Impact of valence states on the superconductivity of iron telluride and iron selenide films with incorporated oxygen. Phys. Rev. B, 85, 214517, Jun 2012. URL https://link.aps.org/doi/10.1103/PhysRevB.85.214517. 57, 98 [78] NIST X-ray Photoelectron Spectroscopy Database. Nist standard reference database number 20, national institute of standards and technology, 2000. URL https://srdata.nist.gov/xps/Default.aspx. 57 [79] Pavlosiuk, O., Kaczorowski, D., Fabreges, X., Gukasov, A., Wi´sniewski, P. Antiferromagnetism and superconductivity in the half-heusler semimetal HoPdBi. Scientific Reports, 6 (1), 18797, Jan 2016. URL https://doi.org/10.1038/srep18797. 65 [80] Quinn, J. J., Yi, K.-S. Solid State Physics. Principles and Modern Applications. Springer International Publishing AG, part of Springer Nature 2018, 2018. 70 [81] Wolfram Research Inc. Mathematica, Version 12.0. URL https://www.wolfram.com/wolfram-alpha-notebook-edition, champaign, IL, 2022. 72 [82] M. S. Dresselhaus, G. D., Jorio, A. Group Theory. Application to the Physics of Condensed Matter. Springer-Verlag Berlin Heidelberg, 2008. 75 [83] Project, T. M. Materials data on FeSe by materials project, 7 2020. URL https://www.osti.gov/servlets/purl/1195438. 80 [84] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., et al. Electric field effect in atomically thin carbon films. Science, 306 (5696), 666–669, oct. 2004. 83 [85] Shimizu, S., Shiogai, J., Takemori, N., Sakai, S., Ikeda, H., Arita, R., et al. Giant thermoelectric power factor in ultrathin FeSe superconductor. Nature Communications, 10 (1), 825, Feb 2019. URL https://doi.org/10.1038/s41467-019-08784-z. 83 [86] Liang, L., Zhang, J., Sumpter, B. G., Tan, Q.-H., Tan, P.-H., Meunier, V. Low-frequency shear and layer-breathing modes in raman scattering of twodimensional materials. ACS Nano, 11 (12), 11777–11802, 2017. URL https://doi.org/10.1021/acsnano.7b06551, pMID: 29099577. 83, 84, 85, 86 [87] Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.-Y., et al. Emerging photoluminescence in monolayer MoS2. Nano Letters, 10 (4), 1271–1275, 2010. URL https://doi.org/10.1021/nl903868w, pMID: 20229981. 84 [88] Yan, J., Xia, J., Wang, X., Liu, L., Kuo, J.-L., Tay, B. K., et al. Stackingdependent interlayer coupling in trilayer MoS2 with broken inversion symmetry. Nano Letters, 15 (12), 8155–8161, 2015. URL https://doi.org/10.1021/acs.nanolett.5b03597, pMID: 26565932. 84 [89] Cao, Y., Fatemi, V., Fang, S., Watanabe, K., Taniguchi, T., Kaxiras, E., et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 556 (7699), 43–50, Apr 2018. URL https://doi.org/10.1038/nature26160.84 [90] John R. Ferraro, K. N., Brown, C. W. Introductory Raman Spectroscopy, tomo 2. Elsevier, 2003. 85 [91] Tan, P. H., Han, W. P., Zhao, W. J., Wu, Z. H., Chang, K., Wang, H., et al. The shear mode of multilayer graphene. Nature Materials, 11 (4), 294–300, Apr 2012. URL https://doi.org/10.1038/nmat3245. 86 [92] Molas, M. R., Tyurnina, A. V., Zolyomi, V., Ott, A. K., Terry, D. J., Hamer, M. J., et al. Raman spectroscopy of GaSe and InSe post-transition metal chalcogenides layers. Faraday Discuss., 227, 163–170, 2021. URL http://dx.doi.org/10.1039/D0FD00007H. 86 [93] Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials, 1 (1), 07 2013. URL https://doi.org/10.1063/1.4812323, 011002. 86, 89, 90 [94] Maity, I., Maiti, P. K., Jain, M. Temperature-dependent layer breathing modes in two-dimensional materials. Phys. Rev. B, 97, 161406, Apr 2018. URL https: //link.aps.org/doi/10.1103/PhysRevB.97.161406. 89 [95] Kumar, J., Patbhaje, U., Shrivastava, M. Breathing mode’s temperature coefficient estimation and interlayer phonon scattering model of few-layer phosphorene. ACS Omega, 7 (48), 43462–43467, 2022. URL https://doi.org/10.1021/acsomega.2c03759. 89 [96] Pizzi, G., Milana, S., Ferrari, A. C., Marzari, N., Gibertini, M. Shear and breathing modes of layered materials. ACS Nano, 15 (8), 12509–12534, 2021. URL https://doi.org/10.1021/acsnano.0c10672, pMID: 34370440. 89, 90 [97] Talirz, L., Kumbhar, S., Passaro, E., Yakutovich, A. V., Granata, V., Gargiulo, F., et al. Materials cloud, a platform for open computational science. Scientific Data, 7 (1), 299, Sep 2020. URL https://doi.org/10.1038/s41597-020-00637-5. 89 [98] Zhang, P., Yaji, K., Hashimoto, T., Ota, Y., Kondo, T., Okazaki, K., et al. Observation of topological superconductivity on the surface of an iron-based superconductor. Science, 360 (6385), 182–186, 2018. URL https://www.science.org/doi/abs/10.1126/science.aan4596. 93 [99] Lauke, L., Heid, R., Merz, M., Wolf, T., Haghighirad, A.-A., Schmalian, J. Band engineering of dirac cones in iron chalcogenides. Phys. Rev. B, 102, 054209, Aug 2020. URL https://link.aps.org/doi/10.1103/PhysRevB.102.054209. 93 [100] Glinka, Y. D., Babakiray, S., Johnson, T. A., Lederman, D. Thickness tunable quantum interference between surface phonon and dirac plasmon states in thin films of the topological insulator Bi2Se3. Journal of Physics: Condensed Matter, 27 (5), 052203, jan 2015. URL https://dx.doi.org/10.1088/0953-8984/27/ 5/052203. 93 [101] Kung, H.-H., Salehi, M., Boulares, I., Kemper, A. F., Koirala, N., Brahlek, M., et al. Surface vibrational modes of the topological insulator Bi2Se3 observed by raman spectroscopy. Phys. Rev. B, 95, 245406, Jun 2017. URL https: //link.aps.org/doi/10.1103/PhysRevB.95.245406. 93 [102] Li, Y., Han, M., Zhou, Z., Xia, X., Chen, Q., Chen, M. Topological insulatorassisted MoSe2/Bi2Se3 heterostructure: Achieving fast reaction kinetics toward high rate sodium-ion batteries. ChemElectroChem, 8 (4), 697–704, 2021. URL https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/celc.202001409. 93 [103] Nam, D., Lee, J.-U., Cheong, H. Excitation energy dependent raman spectrum of MoSe2. Scientific Reports, 5 (1), 17113, Nov 2015. URL https://doi.org/10.1038/srep17113. 93 [104] Lioi, D. B., Gosztola, D. J., Wiederrecht, G. P., Karapetrov, G. Photon-induced selenium migration in TiSe2. Applied Physics Letters, 110 (8), 02 2017. URL https://doi.org/10.1063/1.4976745, 081901. 93 [105] Goli, P., Khan, J., Wickramaratne, D., Lake, R. K., Balandin, A. A. Charge density waves in exfoliated films of Van Der Waals materials: Evolution of raman spectrum in TiSe2. Nano Letters, 12 (11), 5941–5945, 2012. URL https://doi.org/10.1021/nl303365x, pMID: 23092208. 93 [106] Cartamil-Bueno, S. J., Steeneken, P. G., Tichelaar, F. D., Navarro-Moratalla, E., Venstra, W. J., van Leeuwen, R., et al. High-quality-factor tantalum oxide nanomechanical resonators by laser oxidation of TaSe2. Nano Research, 8 (9), 2842–2849, Sep 2015. URL https://doi.org/10.1007/s12274-015-0789-8. 93 [107] Carroll, P., Lannin, J. Inelastic light scattering from liquid and amorphous selenium. Journal of Non-Crystalline Solids, 35-36, 1277–1281, 1980. URL https://www.sciencedirect.com/science/article/pii/0022309380903737. 94 [108] Carroll, P., Lannin, J. Raman scattering of amorphous selenium films. Solid State Communications, 40 (1), 81–84, 1981. URL https://www.sciencedirect.com/science/article/pii/003810988190716X. 94, 95 [109] Goldan, A. H., Li, C., Pennycook, S. J., Schneider, J., Blom, A., Zhao, W. Molecular structure of vapor-deposited amorphous selenium. Journal of Applied Physics, 120 (13), 135101, 2016. URL https://doi.org/10.1063/1.4962315.95 [110] Lafuente B, D. R. T., Yang H, S. N. The power of databases: the rruff project. in: Highlights in mineralogical crystallography, 2015. URL https://rruff.info/.95 [111] Gobrecht, H., Willers, G., Wobig, D. Transformations of red amorphous and monoclinic selenium. Journal of Physics and Chemistry of Solids, 31 (9), 2145–2148, 1970. URL https://www.sciencedirect.com/science/article/pii/0022369770900168. 95 [112] Pinto, A. H., Leite, E. R., Longo, E., de Camargo, E. R. Crystallization at room temperature from amorphous to trigonal selenium as a byproduct of the synthesis of water dispersible zinc selenide. Materials Letters, 87, 62–65, 2012. URL https: //www.sciencedirect.com/science/article/pii/S0167577X12010506. 95 [113] Bandyopadhyay, A. K., Ming, L. C. Pressure-induced phase transformations in amorphous selenium by x-ray diffraction and raman spectroscopy. Phys. Rev. B, 54, 12049–12056, Nov 1996. URL https://link.aps.org/doi/10.1103/PhysRevB.54.12049. 95 [114] Yang, K., Cui, Q., Hou, Y., Liu, B., Zhou, Q., Hu, J., et al. Pressure-induced crystallization and phase transformation of amorphous selenium: Raman spectroscopy and x-ray diffraction studies. Journal of Physics: Condensed Matter, 19 (42), 425220, sep 2007. URL https://dx.doi.org/10.1088/0953-8984/19/42/425220. 95 [115] Yannopoulos, S. N. Structure and photo-induced effects in elemental chalcogens: a review on raman scattering. Journal of Materials Science: Materials in Electronics, 31 (10), 7565–7595, May 2020. URL https://doi.org/10.1007/s10854-020-03310-0. 95 [116] Yannopoulos, S. N., Andrikopoulos, K. S. Raman scattering study on structural and dynamical features of noncrystalline selenium. The Journal of Chemical Physics, 121 (10), 4747–4758, 08 2004. URL https://doi.org/10.1063/1.1780151. 95 [117] Hansen, F. Y., Alldredge, G. P., McMurry, H. L. Calculation of the phonon density of states and related thermodynamic properties for trigonal selenium. The Journal of Chemical Physics, 78 (2), 921–924, 01 1983. URL https://doi.org/10.1063/1.444795. 96 [118] Ale Crivillero, M. V. Influence of the crystalline structure and the mesostructure on the physical properties β-FeSe based thin films and heterostructures. Doctoral dissertation, Instituto Balseiro, UNCuyo, 2019. URL http: //ricabib.cab.cnea.gov.ar/864/. 97 [119] Maheshwari, P. K., Jha, R., Gahtori, B., Awana, V. P. S. Structural and magnetic properties of flux-free large FeTe single crystal. Journal of Superconductivity and Novel Magnetism, 28 (10), 2893–2897, Oct 2015. URL https://doi.org/10.1007/s10948-015-3173-8. 97 [120] Janaki, J., Kumary, T. G., Mani, A., Amaladass, E. P., Raveendran, N. R., Magudapathy, P., et al. Characterization and low temperature study of iron telluride thin films upon ageing and oxygen ion irradiation. Journal of Superconductivity and Novel Magnetism, 27 (11), 2639–2643, Nov 2014. URL https://doi.org/10.1007/s10948-014-2635-8. 98 [121] Khatun, S., Banerjee, A., Pal, A. J. Nonlayered tellurene as an elemental 2d topological insulator: experimental evidence from scanning tunneling spectroscopy. Nanoscale, 11, 3591–3598, 2019. URL http://dx.doi.org/10.1039/C8NR09760G. 98 [122] Xia, T.-L., Hou, D., Zhao, S. C., Zhang, A. M., Chen, G. F., Luo, J. L., et al. Raman phonons of α-FeTe and Fe1.03Se0.3Te0.7 single crystals. Phys. Rev. B, 79, 140510, Apr 2009. URL https://link.aps.org/doi/10.1103/PhysRevB.79.140510. 98 [123] Eaton, P., West, P. Atomic force microscopy. MRS Bulletin, 39 (4), 379–379, Apr 2014. URL https://doi.org/10.1557/mrs.2014.72. 109 [124] Ying, T., Chen, X., Wang, G., Jin, S., Lai, X., Zhou, T., et al. Superconducting phases in potassium-intercalated iron selenides. Journal of the American Chemical Society, 135 (8), 2951–2954, Feb 2013. URL https://doi.org/10.1021/ja312705x. 115 [125] Guo, J., Jin, S., Wang, G., Wang, S., Zhu, K., Zhou, T., et al. Superconductivity in the iron selenide KxFe2Se2 (0 ≤ x ≤ 1.0). Phys. Rev. B, 82, 180520, Nov 2010. URL https://link.aps.org/doi/10.1103/PhysRevB.82.180520. 115 [126] Fang, M.-H.,Wang, H.-D., Dong, C.-H., Li, Z.-J., Feng, C.-M., Chen, J., et al. Febased superconductivity with Tc=31K bordering an antiferromagnetic insulator in (Tl,K)FexSe2. Europhysics Letters, 94 (2), 27009, apr 2011. URL https://dx.doi.org/10.1209/0295-5075/94/27009. 115 |
Materias: | Física > Superconductividad |
Divisiones: | Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Materia condensada > Bajas temperaturas |
Código ID: | 1198 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 09 Aug 2023 13:04 |
Última Modificación: | 09 Aug 2023 13:04 |
Personal del repositorio solamente: página de control del documento