Mocciaro, Bruno (2023) Diseño y fabricación de una ortesis programable para desviaciones laterales de la rodilla pediátrica / Design and manufacturing of a programmable orthosis for pediatric lateral deviations knee. Proyecto Integrador Ingeniería Mecánica, Universidad Nacional de Cuyo, Instituto Balseiro.
| PDF (Tesis) Español 35Mb |
Resumen en español
Se diseñó y fabricó una ortesis programable para corregir desviaciones laterales de la rodilla, mediante la aplicación de cargas cíclicas especificadas por el personal de salud para cada paciente. Dicha carga es un momento sobre la articulación que contrarresta la desviación. Tanto el período, como los valores de carga máxima y mínima y las fracciones de tiempo que es aplicada cada una pueden programarse según se requiera. Se identificaron los requerimientos del dispositivo, entre ellos características ergonómicas, de funcionamiento, de seguridad y de facilidad de uso. En base a ello, se separó el diseño en tres sistemas: el actuador, el sistema electrónico y de control y el sistema de fijación. Se optó por la utilización de materiales con memoria de forma (MMF) como actuadores. Para el sistema electrónico y de control se implementó un control mediante sensado de temperatura, correlacionando esta variable con la carga aplicada a partir de una caracterización termomecánica del comportamiento del dispositivo. Se utilizó un controlador PI. Se realizó la electrónica de acondicionamiento necesaria para su correcto funcionamiento. Para la modificación de parámetros se programó una interfaz gráfica. Para el sistema de fijación, aparte de los requerimientos de comodidad y ergonomía, se tuvo en cuenta que debe vincular el actuador y el sistema electrónico y de control. Se caracterizó mecánicamente el actuador, verificando que es posible aplicar una carga variable entre 1,1 Nm y 1,5 Nm, en un rango de desviaciones de hasta 11º, cumpliendo el objetivo de diseño inicial.
Resumen en inglés
A programmable orthosis aimed to correct lateral deviations of the knee was designed and manufactured. It was required to be capable of applying cyclic loads that oscillate between values determined by healthcare professionals according to the patient’s needs. Generated loads are characterized as moments applied to the joint in order to compensate the deviation. The period, maximum and minimum load values, and the fractions of time during which each load is applied are programmable. The device requirements, including ergonomic features, functionality, safety, and ease of use, were identified. Based on this, the design was divided into three systems: the actuator, the electronic and control system, and the fixation system. First, the actuator was selected based on the specified requirements. The implementation of shape memory alloys (SMA) as actuators was chosen. The electronic and control system implemented temperature sensing control using a PI controller. The necessary conditioning electronics were developed for proper operation. A graphical user interface was programmed for parameter modification. For the fixation system, in addition to comfort and ergonomics, the integration of the actuator and the electronic and control system was considered. A mechanical characterization of the device was performed, and this allowed to verify that the applied load varies between 1.1 Nm and 1.5 Nm for an application angle of 11º, meeting the initial requirements.
Tipo de objeto: | Tesis (Proyecto Integrador Ingeniería Mecánica) |
---|---|
Palabras Clave: | Pediatrics; Pediatría; Design; Diseño; [Knee; Rodilla; Orthosis; Ortesis] |
Referencias: | [1] Facultad de Medicina. Terminologia anatomica. https://virtual. facultaddemedicina.org, 2015. [Accessed 18-May-2023]. 2 [2] Ergodinamica. Genu Valgo y Genu Varo: Causas, diagn´ostico y tratamiento- Blog Ergodin´amica — ergodinamica.com. https://www.ergodinamica.com/blog/genu-valgo-y-genu-varo-causas-diagnostico-y-tratamiento/. [Accessed 18-May-2023]. 2 [3] Sequoia. Cartílagos de crecimiento. https://centrosequoia.com.mx/cartilago-de-crecimiento/, 2022. [Accessed 18-May-2023]. 3 [4] Webster, J., Murphy, D. Atlas of Orthoses and Assistive Devices. 5a ed. Philadelphia, PA: Elsevier - Health Sciences Division, 2021. 3 [5] Sun, J., Yan, S., Jiang, Y., chi Wong, D. W., Zhang, M., Zeng, J., et al. Finite element analysis of the valgus knee joint of an obese child. BioMedical Engineering OnLine, 15 (S2), dic. 2016. URL https://doi.org/10.1186/s12938-016-0253-3. 3 [6] Villemure, I., Stokes, I. A. Growth plate mechanics and mechanobiology. a survey of present understanding. Journal of Biomechanics, 42 (12), 1793–1803, 2009. URL https://www.sciencedirect.com/science/article/pii/S002192900900270X. 3 [7] Peterson, H. A. Disuse. En: Physeal Injury Other Than Fracture, pags. 53–63. Springer Berlin Heidelberg, 2011. URL https://doi.org/10.1007/978-3-642-22563-5_2. 3 [8] Alsancak, S., Guner, S., Kınık, H. Improved gait parameters after orthotic treatment in children with infantile tibia vara. Scientific Reports, 10 (1), feb. 2020. URL https://doi.org/10.1038/s41598-020-59599-8. 4 [9] Valteau, B., Grimard, G., Londono, I., Moldovan, F., Villemure, I. In vivo dynamic bone growth modulation is less detrimental but as effective as static growth modulation. Bone, 49 (5), 996–1004, 2011. URL https://www.sciencedirect.com/science/article/pii/S8756328211010866. 4 [10] Alonso, M. G., Yawny, A., Bertolino, G. A numerical study towards shape memory alloys application in orthotic management of pediatric knee lateral deviations. Scientific Reports, 13 (1), 2134, Feb 2023. URL https://doi.org/10.1038/ s41598-023-29254-z. 4, 5 [11] Biewener, A. Tendons and ligaments: Structure, mechanical behavior and biological function. En: Collagen, p´ags. 269–284. Springer US, 2008. URL https://doi.org/10.1007/978-0-387-73906-9_10. 4 [12] Duerig, T. W., etc. Engineering aspects of shape memory alloys. Oxford, England: Butterworth-Heinemann, 1990. 8, 10, 13 [13] Ma, J., Huang, H., Huang, J. Characteristics analysis and testing of SMA spring actuator. Advances in Materials Science and Engineering, 2013, 1–7, 2013. URL https://doi.org/10.1155/2013/823594. 9 [14] Innovation, A. ¿qué son los materiales con memoria de forma? https://www.atriainnovation.com/que-son-los-materiales-con-memoria-de-forma/,2020. 11 [15] Stirling, L., Yu, C.-H., Miller, J., Hawkes, E., Wood, R., Goldfield, E., et al. Applicability of shape memory alloy wire for an active, soft orthotic. Journal of Materials Engineering and Performance, 20 (4-5), 658–662, jul. 2011. URL https://doi.org/10.1007/s11665-011-9858-7. 14 [16] Momentum SR. Knee medical bracing products. https://momentumsr.com.au/medical-product-type/knee/, 2023. [Accessed 18-May-2023]. 39 |
Materias: | Ingeniería mecánica > Diseño mecánico Medicina |
Divisiones: | Investigación y aplicaciones no nucleares > Física > Física de metales |
Código ID: | 1211 |
Depositado Por: | Tamara Cárcamo |
Depositado En: | 22 Aug 2023 14:09 |
Última Modificación: | 22 Aug 2023 14:09 |
Personal del repositorio solamente: página de control del documento