Desarrollo de misiones en vehículos aéreos no Tripulados (VANT) con planning reactivo para aplicaciones agrarias / Mission development in unmanned aerial vehicles (UAV) with reactive planning for rural applications

Zudaire, Sebastián A. (2023) Desarrollo de misiones en vehículos aéreos no Tripulados (VANT) con planning reactivo para aplicaciones agrarias / Mission development in unmanned aerial vehicles (UAV) with reactive planning for rural applications. Tesis Doctoral en Ciencias de la Ingeniería, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
25Mb

Resumen en español

En este trabajo presentamos una interfaz alternativa para la planificación de misiones en vehículos aéreos no tripulados (VANT), basada en la síntesis de controladores de eventos discretos. La síntesis de controladores ha tenido un uso creciente en el ´ultimo tiempo como mecanismo automático para producir planes de misión en sistemas robóticos a partir de especificaciones de alto nivel. Mostramos como diseñamos y construimos una arquitectura de control híbrido que permite modelar el comportamiento del VANT y su entorno, especificar requerimientos de misión en lenguajes lógicos formales, sintetizar controladores que satisfacen estos requerimientos, y luego implementar estos controladores en sistemas VANT reales y simulados. Este marco de planificación que proponemos cuenta con la posibilidad de escalar la cantidad de locaciones discretas muy por encima de otros enfoques, permite predecir y prevenir escenarios de violación de asunciones que podría llevar a fallos en la misión, y adaptar la misión del VANT en vuelo.

Resumen en inglés

In this work we present an alternative interface for mission planning of unmanned aerial vehicle (UAV) applications, based on discrete event controller synthesis. Recently, controller synthesis has had a great growth in popularity as a means for the automatic generation of mission plans for robot systems from high level specifications. We show how we designed and built a hybrid control architecture that allows modelling of the UAV and its environment, specifying mission requirements in formal logic languages, synthesising controllers that satisfy these requirements, and implementing these controllers in real and simulated UAV systems. The planning framework we propose supports scaling the number of discrete locations well above other approaches, prediction and prevention of assumption violation scenarios that could lead to mission failure, and in-flight mission adaptation.

Tipo de objeto:Tesis (Tesis Doctoral en Ciencias de la Ingeniería)
Palabras Clave:Unmanned aerial vehicles; Vehículo aéreo no tripulado; [Controller synthesis; Síntesis de control; Temporal planning; Planificación temporal; Hybrid control;Control híbrido; Assured adaptation; Adaptación segura; Runtime verification; Verificación en tiempo de ejecución]
Referencias:[1] Tariq, A., Osama, S. M., Gillani, A. Development of a low cost and light weight uav for photogrammetry and precision land mapping using aerial imagery. En: 2016 ICFIT, págs. 360–364. 2016. 1, 23, 24, 42 [2] Beachly, E., Detweiler, C., Elbaum, S., Twidwell, D., Duncan, B. Uas-rx interface for mission planning, fire tracking, fire ignition, and real-time updating. En: 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), págs. 67–74. 2017. 1, 24, 25, 91 [3] Charalampidou, S., Lygouras, E., Dokas, I., Gasteratos, A., Zacharopoulou, A. A sociotechnical approach to uav safety for search and rescue missions. En: 2020 International Conference on Unmanned Aircraft Systems (ICUAS), pags.1416–1424. 2020. 1, 24 [4] Atoev, S., Kwon, K., Lee, S., Moon, K. Data analysis of the mavlink communication protocol. En: 2017 International Conference on Information Science and Communications Technologies (ICISCT), págs. 1–3. 2017. 1, 24 [5] Ye, C. L. K., Jo, H. S., Jo, R. S. Development of uav -based automated vehicle recognition system for parking enforcement. En: 2019 4th International Conference on Robotics and Automation Engineering (ICRAE), págs. 111–115. 2019. 1 [6] Ramadge, P. J., Wonham, W. M. The control of discrete event systems. Proc. of the IEEE, 77 (1), 81–98, 1989. 2 [7] Pnueli, A., Rosner, R. On the synthesis of a reactive module. En: Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL ’89, págs. 179–190. New York, NY, USA: ACM, 1989. 2 [8] Fikes, R. E., Nilsson, N. J. STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving. En: Proceedings of the 2nd International Joint Conference on Artificial Intelligence, IJCAI’71, págs. 608–620. 1971. 2 [9] Kress-Gazit, H., Fainekos, G., Pappas, G. Translating structured english to robot controllers. Advanced Robotics, 22, 1343–1359, 2008. 2, 19, 27 [10] Belta, C., Bicchi, A., Egerstedt, M., Frazzoli, E., Klavins, E., Pappas, G. J. Symbolic planning and control of robot motion. IEEE Robotics Automation Magazine, 14 (1), 61–70, 2007. 2, 19, 23, 27, 45 [11] Maniatopoulos, S., Schillinger, P., Pong, V., Conner, D., Kress-Gazit, H. Reactive high-level behavior synthesis for an atlas humanoid robot. En: ICRA, págs. 4192– 4199. 2016. 19, 27 [12] Kress-Gazit, H., Fainekos, G. E., Pappas, G. J. Temporal-logic-based reactive mission and motion planning. IEEE Transactions on Robotics, 25 (6), 1370–1381, 2009. 2, 4, 19, 23, 43, 44, 52, 53 [13] Sebasti´an Zudaire - Canal de Youtube, https://www.youtube.com/channel/UCZSEEhRxlIelQHs5ItfsltQ, feb. 2023. 4, 38, 93 [14] Zudaire, S. A., Garrett, M., Uchitel, S. Iterator-based temporal logic task planning. En: 2020 IEEE International Conference on Robotics and Automation (ICRA), págs. 11472–11478. 2020. 4, 52, 55, 101 [15] Sánchez, C. Online and offline stream runtime verification of synchronous systems. En: RV’18, tomo 11237 de LNCS, págs. 138–163. Springer, 2018. 4 [16] Zudaire, S. A., Gorostiaga, F., Sánchez, C., Schneider, G., Uchitel, S. Assumption monitoring using runtime verification for uav temporal task plan executions. En: 2021 IEEE International Conference on Robotics and Automation (ICRA), págs. 6824–6830. 2021. 4, 102 [17] Zudaire, S. A., Nahabedian, L., Uchitel, S. Assured mission adaptation of uavs. ACM Trans. Auton. Adapt. Syst., 16 (3–4), jul 2022. 5, 102 [18] D’Ippolito, N. R. Synthesis of Event-Based Controllers for Software Engineering. Tesis Doctoral, Imperial College of Science, Technology and Medicine, UK, 2013. 7, 13 [19] D’Ippolito, N. R., Braberman, V., Piterman, N., Uchitel, S. Synthesis of live behaviour models. En: Proceedings of the eighteenth ACM SIGSOFT international symposium on Foundations of software engineering, FSE ’10, págs. 77–86. New York, NY, USA: ACM, 2010. 7, 13 [20] Keller, R. Formal verification of parallel programs. Communications of the ACM, 19, 371–384, 07 1976. 7 [21] Giannakopoulou, D., Magee, J. Fluent model checking for event-based systems. En: ESEC/FSE, págs. 257–266. 2003. 11 [22] Pnueli, A. The temporal logic of programs. En: Proc. of the 18th IEEE Symp. on Foundations of Computer Science (FOCS’77), págs. 46–67. IEEE Computer Society Press, 1977. 11 [23] Baier, C., Katoen, J.-P. Principles of Model Checking (Representation and Mind Series). The MIT Press, 2008. 12, 41 [24] Piterman, N., Pnueli, A., Sa’ar, Y. Synthesis of reactive (1) designs. LNCS, 3855, 364–380, 2006. 13, 98 [25] Havelund, K., Ro¸su, G. Synthesizing monitors for safety properties. En: TACAS’ 02, LNCS 2280, págs. 342–356. Springer, 2002. 14 [26] D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B., Sipma, H. B., et al. LOLA: runtime monitoring of synchronous systems. En: TIME’05, págs. 166–174. IEEE, 2005. 14 [27] Gorostiaga, F., S´anchez, C. Striver: Stream runtime verification for real-time event-streams. En: Proc. of the 18th Int’l Conf. on Runtime Verification (RV’18), tomo 11237 de LNCS, págs. 282–298. Springer, 2018. 14 [28] Gorostiaga, F., Sanchez, C. Hlola: a very functional tool for extensible stream runtime verification. En: Tools and Algorithms for the Construction and Analysis of Systems. 2021. 15 [29] Nahabedian, L., Braberman, V., D’Ippolito, N., Honiden, S., Kramer, J., Tei, K., et al. Dynamic update of discrete event controllers. IEEE Transactions on Software Engineering, págs. 1–1, 2018. 16, 17, 18, 22, 74, 76 [30] Guo, M., Andersson, S., Dimarogonas, D. V. Human-in-the-loop mixed-initiative control under temporal tasks. En: IEEE ICRA’18, págs. 6395–6400. 2018. 19, 22 [31] Livingston, S. C., Murray, R. M. Just-in-time synthesis for reactive motion planning with temporal logic. En: 2013 IEEE International Conference on Robotics and Automation, págs.5048–5053. 2013. 20, 43 [32] Wolff, E. M., Topcu, U., Murray, R. M. Efficient reactive controller synthesis for a fragment of linear temporal logic. En: 2013 IEEE International Conference on Robotics and Automation, págs. 5033–5040. 2013. 19, 43, 51 [33] Jing, G., Tosun, T., Yim, M., Kress-Gazit, H. An end-to-end system for accomplishing tasks with modular robots: Perspectives for the ai community. En: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, págs. 4879–4883. 2017. 19, 27 [34] Finucane, C., Gangyuan Jing, Kress-Gazit, H. Ltlmop: Experimenting with language, temporal logic and robot control. En: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, págs. 1988–1993. 2010. 19, 20 [35] Wong, K. W., Kress-Gazit, H. From high-level task specification to robot operating system (ros) implementation. En: 2017 First IEEE International Conference on Robotic Computing (IRC), págs. 188–195. 2017. 20 [36] M. Cabreira, T. a., Brisolara, L., Ferreira Jr, P. Survey on coverage path planning with unmanned aerial vehicles. Drones, 3, 4, 01 2019. 20, 42, 52, 56, 98 [37] Yan, Z., He, J., Li, J. An improved multi-auv patrol path planning method. En: 2017 IEEE International Conference on Mechatronics and Automation (ICMA), págs. 1930–1936. 2017. [38] Ghosh, M., Thomas, S., Morales, M., Rodriguez, S., Amato, N. M. Motion planning using hierarchical aggregation of workspace obstacles. En: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), págs. 5716–5721. 2016. 20 [39] Wongpiromsarn, T., Topcu, U., Ozay, N., Xu, H., Murray, R. M. Tulip: A software toolbox for receding horizon temporal logic planning. En: Proceedings of the 14th International Conference on Hybrid Systems: Computation and Control, HSCC’11, págs. 313–314. New York, NY, USA: ACM, 2011. 20 [40] Dathathri, S., Murray, R. M. Decomposing gr(1) games with singleton liveness guarantees for efficient synthesis. En: IEEE Conference on Decision and Control (CDC), págs. 911–917. 2017. 20 [41] Ciolek, D., Duran, M., Zanollo, F., Pazos, N., Braier, J., Braberman, V., et al. On-the-fly informed search of non-blocking directed controllers. Automatica, 147, 110731, 2023. 20 [42] Nedunuri, S., Prabhu, S., Moll, M., Chaudhuri, S., Kavraki, L. E. Smt-based synthesis of integrated task and motion plans from plan outlines. En: 2014 IEEE International Conference on Robotics and Automation (ICRA), págs. 655–662. 2014. 20, 43 [43] Kundu, T., Saha, I. Energy-aware temporal logic motion planning for mobile robots. En: 2019 International Conference on Robotics and Automation (ICRA), págs. 8599–8605. 2019. 20, 43 [44] Wolff, E. M., Topcu, U., Murray, R. M. Automaton-guided controller synthesis for nonlinear systems with temporal logic. En: International Conference on Intelligent Robots and Systems, págs. 4332–4339. 2013. 20, 43 [45] DeCastro, J. A., Raman, V., Kress-Gazit, H. Dynamics-driven adaptive abstraction for high-level mission and motion planning. En: IEEE Intl. Conf. on Robotics and Automation, págs. 369–376. 2015. 21 [46] Fainekos, G. E., Kress-Gazit, H., Pappas, G. J. Temporal logic motion planning for mobile robots. En: ICRA, págs. 2020–2025. 2005. 21, 43, 51 [47] Kaelbling, L. P., Lozano-Pérez, T. Hierarchical task and motion planning in the now. En: 2011 IEEE International Conference on Robotics and Automation, págs. 1470–1477. 2011. 21 [48] Ulus, D., Belta, C. Reactive control meets runtime verification: A case study of navigation. En: RV’19, tomo 11757 de LNCS, págs. 368–374. Springer, 2019. 21 [49] Lin, Z., Baras, J. S. Planning and runtime monitoring of robotic manipulator using metric interval temporal logic. En: IEEE SysCon’19, págs. 1–8. IEEE, 2019. 21 [50] Doherty, P., Kvarnstr¨om, J., Heintz, F. A temporal logic-based planning and execution monitoring framework for unmanned aircraft systems. Aut. Ag. and Multi-Ag. Sys., 19 (3), 332–377, 2009. 21 [51] Tiger, M., Heintz, F. Stream reasoning using temporal logic and predictive probabilistic state models. En: TIME’16, págs. 196–205. IEEE Computer Society, 2016. 21 [52] Cámara, J., Moreno, G. A., Garlan, D. Reasoning about human participation in self-adaptive systems. En: Proceedings of the 10th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS ’15, págs. 146–156. Piscataway, NJ, USA: IEEE Press, 2015. 22 [53] Dorn, C., Taylor, R. N. Coupling software architecture and human architecture for collaboration-aware system adaptation. En: Proceedings of the 2013 International Conference on Software Engineering, ICSE ’13, págs. 53–62. Piscataway, NJ, USA: IEEE Press, 2013. 22 [54] Autili, M., Inverardi, P., Mignosi, F., Spalazzese, R., Tivoli, M. Automated synthesis of application-layer connectors from automata-based specifications. En: Language and Automata Theory and Applications, págs. 3–24. Cham: Springer International Publishing, 2015. 22 [55] Issarny, V., Bennaceur, A., Bromberg, Y.-D. Middleware-Layer Connector Synthesis: Beyond State of the Art in Middleware Interoperability, págs. 217–255. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. [56] Pelliccione, P., Tivoli, M., Bucchiarone, A., Polini, A. An architectural approach to the correct and automatic assembly of evolving component-based systems. J. Syst. Softw., 81 (12), 2237–2251, dic. 2008. 22 [57] Tajalli, H., Garcia, J., Edwards, G., Medvidovic, N. Plasma: A plan-based layered architecture for software model-driven adaptation. En: Proceedings of the IEEE/ACM International Conference on Automated Software Engineering, ASE ’10, págs. 467–476. New York, NY, USA: ACM, 2010. 22, 74, 97 [58] Arshad, N., Heimbigner, D.,Wolf, A. L. Deployment and dynamic reconfiguration planning for distributed software systems. Software Quality Journal, 15 (3), 265– 281, 2007. [59] Khakpour, N., Arbab, F., Rutten, E. Synthesizing structural and behavioral control for reconfigurations in component-based systems. Formal Aspects of Computing, dic. 2015. 22 [60] Calinescu, R., Weyns, D., Gerasimou, S., Iftikhar, M. U., Habli, I., Kelly, T. Engineering trustworthy self-adaptive software with dynamic assurance cases. IEEE Transactions on Software Engineering, 44 (11), 1039–1069, 2018. 22, 74 [61] Hosek, P., Cadar, C. Safe software updates via multi-version execution. En: Proceedings of the 2013 International Conference on Software Engineering, ICSE’13, págs. 612–621. Piscataway, NJ, USA: IEEE Press, 2013. 22 [62] Chen, H., Yu, J., Hang, C., Zang, B., Yew, P.-C. Dynamic software updating using a relaxed consistency model. Software Engineering, IEEE Transactions on, 37 (5), 679–694, Sept 2011. 22 [63] Gupta, D., Jalote, P., Barua, G. A formal framework for on-line software version change. IEEE Trans. Software Eng., 22 (2), 120–131, 1996. [64] Kramer, J., Magee, J. The evolving philosophers problem: Dynamic change management. IEEE Trans. Softw. Eng., 16 (11), 1293–1306, nov. 1990. [65] Banno, F., Marletta, D., Pappalardo, G., Tramontana, E. Handling consistent dynamic updates on distributed systems. En: Computers and Communications (ISCC), 2010 IEEE Symposium on, págs. 471–476. 2010. 22, 74 [66] Nooruldeen, A., Schmidt, K. W. State attraction under language specification for the reconfiguration of discrete event systems. IEEE Trans. on Automatic Control, 60 (6), 1630–1634, June 2015. 22 [67] Hayden, C. M., Magill, S., Hicks, M., Foster, N., Foster, J. S. Specifying and verifying the correctness of dynamic software updates. En: Proceedings of the 4th International Conference on Verified Software: Theories, Tools, Experiments, VSTTE’12, págs. 278–293. Berlin, Heidelberg: Springer-Verlag, 2012. 22 [68] Ramirez, A. J., Cheng, B. H., McKinley, P. K., Beckmann, B. E. Automatically generating adaptive logic to balance non-functional tradeoffs during reconfiguration. En: Proc. of the 7th Int. Conf. on Autonomic Computing, ICAC ’10, págs. 225–234. New York, NY, USA: ACM, 2010. [69] Zhang, J., Cheng, B. H. Model-based development of dynamically adaptive software. En: Proc. of the 28th Int. Conf. on Software engineering, págs. 371–380. ACM, 2006. 22 [70] Baresi, L., Ghezzi, C. The disappearing boundary between development-time and run-time. En: Proceedings of the FSE/SDP Workshop on Future of Software Engineering Research, FoSER ’10, págs. 17–22. New York, NY, USA: ACM, 2010. 22 [71] Panzica La Manna, V., Greenyer, J., Ghezzi, C., Brenner, C. Formalizing correctness criteria of dynamic updates derived from specification changes. En: Proc. of the 8th Int. Symp. on Software Engineering for Adaptive and Self-Managing Systems, págs. 63–72. IEEE Press, 2013. [72] Thuijsman, S., Reniers, M. Transformational supervisor synthesis for evolving systems. IFAC-PapersOnLine, 53 (4), 309–316, 2020. 15th IFAC Workshop on Discrete Event Systems WODES 2020 - Rio de Janeiro, Brazil, 11-13 November 2020. 22 [73] Menghi, C., Tsigkanos, C., Pelliccione, P., Ghezzi, C., Berger, T. Specification patterns for robotic missions. IEEE Transactions on Software Engineering, págs. 1–1, 2019. 22, 43, 52, 55, 56, 67, 74, 83, 96 [74] Braberman, V., D’Ippolito, N., Kramer, J., Sykes, D., Uchitel, S. Morph: A reference architecture for configuration and behaviour self-adaptation. En: Proceedings of the 1st International Workshop on Control Theory for Software Engineering, CTSE 2015, págs. 9–16. New York, NY, USA: ACM, 2015. 22, 86, 97 [75] Gheibi, O., Weyns, D., Quin, F. Applying machine learning in self-adaptive systems: A systematic literature review. ACM Trans. Auton. Adapt. Syst., 15 (3), ago. 2021. 22 [76] Rudolph, S., Tomforde, S., Hahner, J. Mutual influence-aware runtime learning of self-adaptation behavior. ACM Trans. Auton. Adapt. Syst., 14 (1), sep. 2019. 22 [77] Chakrabarty, A., Morris, R., Bouyssounouse, X., Hunt, R. Autonomous indoor object tracking with the parrot ar.drone. En: 2016 International Conference on Unmanned Aircraft Systems (ICUAS), págs. 25–30. 2016. 23 [78] Choi, H., Geeves, M., Alsalam, B., Gonzalez, F. Open source computer-vision based guidance system for uavs on-board decision making. En: 2016 IEEE Aerospace Conference, págs. 1–5. 2016. 28, 52, 54 [79] Birnbaum, Z., Dolgikh, A., Skormin, V., O’Brien, E., Muller, D. Unmanned aerial vehicle security using recursive parameter estimation. En: International Conference on Unmanned Aircraft Systems, ICUAS 2014, tomo 84, págs. 692–702. 2014. [80] Milhouse, M. O. Framework for autonomous delivery drones. En: Proceedings of the 4th Annual ACM Conference on Research in Information Technology, págs. 1–4. 2015. 24, 28 [81] Rokhmana, C. A., Andaru, R. Utilizing uav-based mapping in post disaster volcano eruption. En: InAES, págs. 202–205. 2016. 23 [82] Islam, M. N. A., Chowdhury, M. T., Agrawal, A., Murphy, M., Mehta, R., Kudriavtseva, D., et al. Configuring mission-specific behavior in a product line of collaborating small unmanned aerial systems. J. Syst. Softw., 197, 111543, 2023. URL https://doi.org/10.1016/j.jss.2022.111543. 25 [83] Balkan, A., Vardi, M., Tabuada, P. Mode-target games: Reactive synthesis for control applications. IEEE Transactions on Automatic Control, 63 (1), 196–202, 2018. 26, 45 [84] Departamento de computación - universidad de buenos aires, herramienta mtsa, feb. 2023. URL http://mtsa.dc.uba.ar/. 28, 63, 76 [85] Squadron, R. Rosetta drone mavlink wrapper, feb. 2023. URL https://github. com/diux-dev/rosettadrone. 29 [86] Zudaire, S. Herramienta mavproxy modificada con módulos adicionales para incluir una arquitectura de control híbrido, feb. 2023. URL https://bitbucket. org/szudaire/modules. 29, 88 [87] McMahon, T., Thomas, S., Amato, N. M. Sampling-based motion planning with reachable volumes for high-degree-of-freedom manipulators. The International Journal of Robotics Research, 37 (7), 779–817, 2018. 30 [88] Song, X., Hu, S. 2d path planning with dubins-path-based a* algorithm for a fixed-wing uav. En: 2017 3rd IEEE International Conference on Control Science and Systems Engineering (ICCSSE), págs. 69–73. 2017. 31 [89] Carpin, S., Pagello, E. On parallel rrts for multi-robot systems. Proc. 8th Conf. Italian Association for Artificial Intelligence, págs. 834–841, 01 2002. 31 [90] Ardupilot. Simulador sitl, feb. 2023. URL https://ardupilot.org/dev/docs/ sitl-simulator-software-in-the-loop.html. 31 [91] Srinivas, S., Kermani, R., Kim, K., Kobayashi, Y., Fainekos, G. A graphical language for ltl motion and mission planning. En: 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), págs. 704–709. 2013. 39 [92] Kress-Gazit, H., Fainekos, G. E., Pappas, G. J. Where’s waldo? sensor-based temporal logic motion planning. En: Proceedings 2007 IEEE International Conference on Robotics and Automation, págs. 3116–3121. 2007. 43 [93] Vasile, C. I., Belta, C. Reactive sampling-based temporal logic path planning. En: 2014 IEEE International Conference on Robotics and Automation (ICRA), págs. 4310–4315. 2014. 43, 51 [94] Wei, M., Isler, V. Coverage path planning under the energy constraint. En: 2018 IEEE International Conference on Robotics and Automation. May 21st-25th, Brisbane, Australia, 368-373., 2018. 43, 98 [95] Zudaire, S., Uchitel, S. Repositorio para el formalismo de planificación basada en iteradores: especificaciones y resultados, feb. 2023. URL https://bitbucket. org/szudaire/iterator-based-planning. 52, 55 [96] Coombes, M., Chen, W.-H., Liu, C. Boustrophedon coverage path planning for uav aerial surveys in wind. En: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), págs. 1563–1571. 2017. 67 [97] Park, S., Deyst, J., How, J. A New Nonlinear Guidance Logic for Trajectory Tracking. 2012. 67 [98] Seifzadeh, H., Abolhassani, H., Moshkenani, M. S. A survey of dynamic software updating. Journal of Software: Evolution and Process, 25 (5), 535–568, 2013. 74 [99] Toth, P., Vigo, D., Toth, P., Vigo, D. Vehicle Routing: Problems, Methods, and Applications, Second Edition. USA: Society for Industrial and Applied Mathematics, 2014. 77 [100] Cordeau, J.-F., Laporte, G., Ropke, S. Recent Models and Algorithms for Oneto- One Pickup and Delivery Problems, p´ags. 327–357. Boston, MA: Springer US, 2008. 77 [101] Zudaire, S., Nahabedian, L., Uchitel, S. Requerimientos de misi´on y videos de misiones adaptativas, feb. 2023. URL http://mtsa.dc.uba.ar/uav/uav-morph.html. 88, 93 [102] Hua, L., Shao, G. The progress of operational forest fire monitoring with infrared remote sensing. Journal of Forestry Research, 28, 1–15, 12 2016. 91 [103] Kucuk, O., Topaloglu, O., Altunel, A., Cetin, M. Visibility analysis of fire lookout towers in the boyabat state forest enterprise in turkey. Environmental Monitoring and Assessment, 189, 06 2017. 91 [104] D’Ippolito, N., Braberman, V. A., Kramer, J., Magee, J., Sykes, D., Uchitel, S. Hope for the best, prepare for the worst: multi-tier control for adaptive systems. En: Int. Conference on Software Engineering, ICSE ’14, págs. 688–699. 2014. 97 [105] Hayat, S., Yanmaz, E., Brown, T. X., Bettstetter, C. Multi-objective UAV path planning for search and rescue. En: 2017 IEEE International Conference on Robotics and Automation (ICRA), págs. 5569–5574. 2017. 98 [106] Sun, Y., Plowcha, A., Nail, M., Elbaum, S., Terry, B., Detweiler, C. Unmanned aerial auger for underground sensor installation. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2018. 98 [107] Coombes, M., Chen, W.-H., Liu, C. Boustrophedon coverage path planning for UAV aerial surveys in wind. En: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), págs. 1563–1571. 2017. 98 [108] Pecker-Marcosig, E., Zudaire, S., Garrett, M., Uchitel, S., Castro, R. Unified DEVS-Based Platform for Modeling and Simulation of Hybrid Control Systems. En: 2020 Winter Simulation Conference (WSC), págs. 1051–1062. 2020. 98, 100 [109] Pecker-Marcosig, E., Zudaire, S., Castro, R., Uchitel, S. Correct and efficient uav missions based on temporal planning and in-flight hybrid simulations. Robotics and Autonomous Systems, 164, 104404, 2023. 99 [110] Liendro, T., Zudaire, S. A. Hybrid control from scratch: A design methodology for assured robotic missions. En: Simposio Argentino de Inteligencia Artificial - JAIIO 49, págs. 1–14. 2020. 100 [111] Tapia, B., Delmastro, J., Zudaire, S. A. An end-to-end robot system for warehouse applications using controller synthesis. En: Simposio Argentino de Inteligencia Artificial - JAIIO 50, págs. 103–116. 2021. 100
Materias:Ingeniería mecánica > Robótica
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Sistemas complejos y altas energías > Física estadística interdisciplinaria
Código ID:1215
Depositado Por:Tamara Cárcamo
Depositado En:07 Sep 2023 12:47
Última Modificación:07 Sep 2023 12:47

Personal del repositorio solamente: página de control del documento