Estudio de la influencia del proceso de conformado en las propiedades de cables superconductores de Ti/Mg(B1-xCx)2 / Study of the influence of the forming process on the properties of superconducting Ti/Mg(B1-xCx)2

Melone, Mauro (2023) Estudio de la influencia del proceso de conformado en las propiedades de cables superconductores de Ti/Mg(B1-xCx)2 / Study of the influence of the forming process on the properties of superconducting Ti/Mg(B1-xCx)2. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
66Mb

Resumen en español

En esta tesis se estudió la influencia del proceso de conformado en la microestructura y propiedades superconductoras de cables compuestos de Ti/Mg(B_1–xC_x )_2 realizados por el método Powder In Tube. En primera instancia, se estudió la influencia del dopaje con carbono, la temperatura y el tiempo de sinterizado en la síntesis de pastillas de Mg(B_1–xC_x )_2. En segunda instancia, se estudió la influencia del proceso de conformado en la textura cristalográfica. Por ultimo, se estudió la influencia del conformado en la microestructura de la vaina de Ti. Para estudiar la influencia del nano-SiC y el uso del B dopado con carbono en la síntesis controlando su temperatura y tiempo, se realizaron síntesis a distintas temperaturas y períodos de tiempo, con distintos niveles de dopaje, para luego analizar su estructura y microestructura por difracción de rayos X y microscopía electrónica de transmisión; y sus temperaturas críticas y densidades de corriente crítica por magnetometría SQUID. Complementariamente, se estudiaron las reacciones que suceden durante la síntesis, para distintos niveles de dopaje mediante análisis térmico diferencial y termogravimetría simultáneos (DTA-TG) y se analizaron los difractogramas por refinamiento Rietveld. Se pudo encontrar una ruta de síntesis con dopaje en un paso que permite obtener un polvo precursor con buenas propiedades superconductoras para la formación de cables por el método Powder In Tube. Para estudiar la influencia del proceso de conformado en la textura cristalográfica se usaron cables Ti/Mg(B_1–xC_x )_2 realizados por el método Powder In Tube en dos configuraciones monofilamentarias distintas: una hexagonal y una circular. Se estudió la textura de ambos materiales generando figuras de polo incompletas por difracción de rayos X, para luego generar la función distribución de orientaciones. Además, se determinó la densidad de corriente crítica para distintas direcciones de la muestra con el uso del magnetómetro SQUID. Finalmente, se analizó la correlación entre ambas propiedades mediante la determinación de los factores de Kearns a partir de la función distribución de orientaciones y de la anisotropía en la densidad de corriente crítica. Se pudo determinar que, para ambas configuraciones de cables, la textura cristalográfica de la vaina de Ti no influye en la textura cristalográfica del núcleo de Mg(B_1–xC_x )_2. Así mismo, se pudo correlacionar la anisotropía en la densidad de corriente crítica con la anisotropía en el núcleo de Mg(B_1–xC_x )_2 mediante los factores de Kearns. Para estudiar la influencia del conformado en la microestructura de la vaina de cables Ti/Mg(B_1–xC_x )_2 realizados por el método Powder In Tube, se estudió la microestructura sobre la superficie tangencial de una muestra cortada y pulida, mediante mapas de Electron Backscater Difraction. Complementariamente, se obtuvo una lamela de la misma superficie mediante FIB-SEM para estudiarla por microscopía electrónica de transmisión. Se encontró, por ambas técnicas, la presencia de una fase delta, minoritaria y metaestable. Esta fase delta podría aumentar la dureza de la vaina, generando un aumento en la densidad del núcleo de Mg(B_1–xC_x )_2, que puede ser clave para mejoras en sus propiedades superconductoras. En síntesis, se lograron establecer condiciones que optimizan el proceso de preparación del MgB_2, tanto en bulk como en alambres powder in tube (PIT), tendientes a mejorar sus propiedades superconductoras. La comprensión de las condiciones del proceso son fundamentales para mejorar el proceso de conformado de cables PIT de Ti/MgB_2 para cualquiera de sus aplicaciones en cables o bobinas.

Resumen en inglés

’Study of the influence of the conformation process on the properties of superconducting Ti/Mg(B_1−xC_x)_2 wires’ In this thesis, we study the influence of the forming process on the microstructure and superconducting properties of Ti/Mg(B_1–xC_x )_2 composite wires made by the Powder In Tube method. Firstly, we study the influence of carbon doping, temperature, and sintering time on the synthesis of Mg(B_1–xC_x )_2 pellets. Secondly, we study the influence of the forming process on the crystallographic texture. Finally, we study the influence of manufacturing on the microstructure of the Ti sheath. To study the influence of nano-SiC and the use of carbon-doped B in the synthesis by controlling its temperature and time, syntheses were carried out at different temperatures and periods, with different doping levels, to then analyse its structure and microstructure by X-ray diffraction and transmission electron microscopy. Also, we determine its critical temperatures and critical current densities by SQUID magnetometry. The reactions occurring during the synthesis were studied for different doping levels by simultaneous differential thermal analysis and thermogravimetry (DTA-TG) and the diffractograms were analysed by Rietveld refinement. We found a one-step doped synthesis route to obtain a precursor powder with good superconducting properties for the formation of wires by the Powder In Tube method. To study the influence of the forming process on the crystallographic texture, we used Ti/Mg(B_1–xC_x )_2 wires made by the Powder In Tube method in two different monofilament configurations: a hexagonal and a circular one. The texture of both materials was studied by generating incomplete pole figures by X-ray diffraction, to generate the orientation distribution function. In addition, the critical current density was determined for different directions of the sample using the SQUID magnetometer. Finally, the correlation between both properties was analysed by determining the Kearns factors from the orientation distribution function and the anisotropy in the critical current density. We determined that, for both wire configurations, the crystallographic texture of the Ti sheath does not influence the crystallographic texture of the Mg(B_1–xC_x )_2 core. Likewise, it was possible to correlate the anisotropy in the critical current density with the anisotropy in the Mg(B_1–xC_x )_2 core employing Kearns factors. To study the influence of the forming on the microstructure of the Ti/Mg(B_1–xC_x )_2 sheath of wires made by the Powder In Tube method, we studied the microstructure on the tangential surface of a cut and polished sample by Electron Backscatter Diffraction mapping. Complementarily, a lamella of the same surface was obtained by FIB-SEM to study it by transmission electron microscopy. Both techniques showed the presence of a delta phase, a minor metastable phase. This delta phase could increase the hardness of the sheath, generating an increase in the density of the Mg(B_1–xC_x )_2 core, which could be key to eventually improving its superconducting properties. In summary, we were able to establish conditions that optimise the preparation process of MgB_2, both in bulk and PIT wires, tending to improve their superconducting properties. Understanding the process conditions are critical to improving the process of forming Ti/MgB_2 PIT wires for any of its cable or coil applications.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Superconductors; Superconductores; Microstructure; Microestructura; Crystallography; Cristalografía; [Magnesium diboride; Diboruro de magnesio Powder in tube]
Referencias:[1] Tinkham, M. Introduction to superconductivity. Courier Corporation, 2004. xi, 3 [2] Buzea, C., Yamashita, T. Review of the superconducting properties of MgB2. Superconductor Science and Technology, 14 (11), R115, 2001. URL http://stacks.iop.org/0953-2048/14/i=11/a=201%5Cnhttp://iopscience.iop.org/article/10.1088/09532048/14/11/201/pdf. xi, xv, 6, 7, 9, 10, 48, 57 [3] Haines, P., Reading, M., Wilburn, F. Chapter 5 - differential thermal analysis and differential scanning calorimetry. En: M. E. Brown (ed.) Principles and Practice, tomo 1 de Handbook of Thermal Analysis and Calorimetry, p´ags. 279–361. Elsevier Science B.V., 1998. URL https://www.sciencedirect.com/science/article/pii/S1573437498800083. xii, 33 [4] London, F., London, H. The electromagnetic equations of the supraconductor. Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, 149 (866), 71–88, mar 1935. URL https://royalsocietypublishing.org/doi/10.1098/rspa.1935.0048. 2 [5] Ginzburg, V., Landau, L., Leontovich, M., Fok, V. J. exp. theor. phys. JETP, 20, 1064, 1950. 2 [6] Blatter, G., Feigel’man, M. V., Geshkenbein, V. B., Larkin, A. I., Vinokur, V. M. Vortices in high-temperature superconductors. Reviews of Modern Physics, 66 (4), 1125–1388, 1994. URL https://link.aps.org/doi/10.1103/RevModPhys.66. 1125. 4 [7] Maiorov, B., Baily, S. A., Zhou, H., Ugurlu, O., Kennison, J. A., Dowden, P. C., et al. Synergetic combination of different types of defect to optimize pinning landscape using bazro 3-doped yba 2 cu 3 o 7. Nature Materials, 2009. URL www.nature.com/naturematerials. 5, 11, 52 [8] Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature, 410 (6824), 63–64, 2001. 5 [9] De Lima, O. F., Cardoso, C. A., Ribeiro, R. A., Avila, M. A., Coelho, A. A. Angular dependence of the bulk nucleation field Hc2 of aligned MgB2 crystallites. Physical Review B - Condensed Matter and Materials Physics, 64 (14), 1445171–1445174, 2001. 7, 11, 57 [10] Flukiger, R., Suo, H. L., Musolino, N., Beneduce, C., Toulemonde, P., Lezza, P. Superconducting properties of MgB2 tapes and wires. Physica C: Superconductivity, 385 (1), 286–305, 2003. URL http://www.sciencedirect.com/science/article/pii/S0921453402023079. 10, 14, 58 [11] Serquis, A., Serrano, G., Moreno, S. M., Civale, L., Maiorov, B., Balakirev, F., et al. Correlated enhancement of hc2 and jc in carbon nanotube doped mgb2. Superconductor Science and Technology, 20 (4), L12, feb 2007. URL https:// dx.doi.org/10.1088/0953-2048/20/4/L02. 11 [12] Avdeev, M., Jorgensen, J. D., Ribeiro, R. A., Bud’ko, S. L., Canfield, P. C. Crystal chemistry of carbon-substituted MgB2. Physica C: Superconductivity and its Applications, 387 (3-4), 301–306, may 2003. 11, 37, 53 [13] DeFouw, J. D., Quintana, J. P., Dunand, D. C. In situ X-ray synchrotron diffraction study of MgB2 synthesis from elemental powders. Acta Materialia, 56 (8), 1680–1688, 2008. 40, 41, 45 [14] Lee, S., Masui, T., Yamamoto, A., Uchiyama, H., Tajima, S. Crystal growth of Cdoped MgB2 superconductors: Accidental doping and inhomogeneity. En: Physica C: Superconductivity and its Applications, tomo 412-414, p´ags. 31–35. 2004. 11, 37, 53, 65 [15] Serrano, G., Serquis, A., Dou, S. X., Soltanian, S., Civale, L., Maiorov, B., et al. SiC and carbon nanotube distinctive effects on the superconducting properties of bulk MgB2. Journal of Applied Physics, 103 (2), 1–5, 2008. 11 [16] Mickelson, W., Cumings, J., Han, W. Q., Zettl, A. Effects of carbon doping on superconductivity in magnesium diboride. Physical Review B - Condensed Matter and Materials Physics, 65 (5), 1–3, jan 2002. 12 [17] Dou, S. X., Shcherbakova, O., Yeoh, W. K., Kim, J. H., Soltanian, S., Wang, X. L., et al. Mechanism of enhancement in electromagnetic properties of mgb 2 by nano sic doping. Physical Review B, 2007. 12 [18] Wang, X. L., Soltanian, S., James, M., Qin, M. J., Horvat, J., Yao, Q. W., et al. Significant enhancement of critical current density and flux pinning in MgB2 with nano-SiC, Si, and C doping. Physica C: Superconductivity, 408-410, 63–67, 2004. URL http://www.sciencedirect.com/science/article/pii/S0921453404001765. 12, 58 [19] Serquis, A., Liao, X. Z., Zhu, Y. T., Coulter, J. Y., Huang, J. Y., Willis, J. O., et al. Influence of microstructures and crystalline defects on the superconductivity of MgB 2. Journal of Applied Physics, 92 (1), 351–356, 2002. 12 [20] Grigoroscuta, M. A., Sandu, V., Kuncser, A., Pasuk, I., Aldica, G., Suzuki, T. S., et al. Superconducting MgB2 textured bulk obtained by ex situ spark plasma sintering from green compacts processed by slip casting under a 12T magnetic field. Superconductor Science and Technology, 32 (12), 2019. 14, 58 [21] Serrano, G., Serquis, A., Civale, L., Maiorov, B., Malachevsky, M. T., Ayala, C. High anisotropic critical current densities in MgB2 tapes. Journal of Physics: Conference Series, 97 (1), 6–11, 2008. 14, 57, 58 [22] Ballarino, A., Flukiger, R. Status of MgB2 wire and cable applications in Europe. Journal of Physics: Conference Series, 871 (1), 2017. [23] Eisterer, M., Haßler, W., Kovac, P. Critical currents in weakly textured MgB2: Nonlinear transport in anisotropic heterogeneous media. Physical Review B - Condensed Matter and Materials Physics, 80 (17), 3–6, 2009. [24] Kovac, P., Melisek, T., Huˇsek, I. Icanisotropy ofin situmade MgB2tapes. Superconductor Science and Technology, 18 (7), L45–L48, jun 2005. URL https: //doi.org/10.1088/0953-2048/18/7/l02. 14, 58 [25] Bunge, H.-J. Texture analysis in materials science: mathematical methods. Elsevier, 2013. 15 [26] Rodrigues, O. Des lois geometriques qui regissent les d´eplacements dun systeme solide dans lespace, et de la variation des coordonnees provenant de ces deplacements consideres independamment des causes qui peuvent les produire. Journal de mathematiques pures et appliquees, 5, 380–440, 1840. 16 [27] Kittel, C., McEuen, P. Introduction to solid state physics. John Wiley & Sons, 2018. 23 [28] Graˇzulis, S., Chateigner, D., Downs, R. T., Yokochi, A., Quiros, M., Lutterotti, L., et al. Crystallography open databasean open-access collection of crystal structures. Journal of applied crystallography, 42 (4), 726–729, 2009. 23, 81 [29] Gates-Rector, S., Blanton, T. The powder diffraction file: a quality materials characterization database. Powder Diffraction, 34 (4), 352–360, 2019. 23 [30] McCusker, L. B., Von Dreele, R. B., Cox, D. E., Louer, D., Scardi, P. Rietveld refinement guidelines. Journal of Applied Crystallography, 32 (1), 36–50, Feb 1999. URL https://doi.org/10.1107/S0021889898009856. 23, 24 [31] Rodríguez-Carvajal, J. Fullprof. CEA/Saclay, France, 1045, 132–146, 2001. 24, 39, 41 [32] Moya Riffo, A., Wilberger, D., Malamud, F., Vicente Alvarez, M. Procedimiento para la medición de figuras de polos en el difractómetro empyrean usando el método de shulz. Inf. tec., CNEA, 2014. 24, 62 [33] Malamud, F., Vicente Alvarez, M., Moya Riffo, A., Wilberger, D. Caracterización del efecto del desenfoque para la medición de textura cristalográfica en el difractómetro panalytical empyrean del cab. Inf. tec., CNEA, 2014. 24, 62 [34] Guinebretiere, R. X-ray diffraction by polycrystalline materials. John Wiley & Sons, 2013. 24 [35] Cowden, R. R. Transactions of the American Microscopical Society, 102 (1), 59–59, 1983. URL http://www.jstor.org/stable/3225926. 28 [36] Gemmi, M., Mugnaioli, E., Gorelik, T. E., Kolb, U., Palatinus, L., Boullay, P., et al. 3d electron diffraction: the nanocrystallography revolution. ACS Central Science, 5 (8), 1315–1329, 2019. 29 [37] Willoams, D., Barry-Catter, C. Transmission electron micro-scope em, 2009. 29 [38] Bean, C. P. Magnetization of high-field superconductors. Reviews of modern physics, 36 (1), 31, 1964. 31, 39, 62 [39] Mikheenko, P., Martinez, E., Bevan, A., Abell, J., MacManus-Driscoll, J. Grain boundaries and pinning in bulk mgb2. Superconductor Science and Technology, 20 (9), S264, 2007. 41 [40] Serquis, A., Zhu, Y. T., Peterson, E. J., Coulter, J. Y., Peterson, D. E., Mueller, F. M. Effect of lattice strain and defects on the superconductivity of MgB2. Applied Physics Letters, 79 (26), 4399–4401, 2001. 41 [41] Huber, C., Jahromy, S. S., Birkelbach, F., Weber, J., Jordan, C., Schreiner, M., et al. The multistep decomposition of boric acid. Energy Science & Engineering, 8 (5), 1650–1666, 2020. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/ese3.622. 44 [42] Li, H.-W., Miwa, K., Ohba, N., Fujita, T., Sato, T., Yan, Y., et al. Formation of an intermediate compound with a b12h12 cluster: experimental and theoretical studies on magnesium borohydride mg(bh4)2. Nanotechnology, 20 (20), 204013, apr 2009. URL https://dx.doi.org/10.1088/0957-4484/20/20/204013. 45 [43] Sun, B., Li, S., Imai, H., Umeda, J., Kondoh, K. Synthesis kinetics of mg2si and solid-state formation of mg–mg2si composite. Powder Technology, 217, 157–162, 2012. URL https://www.sciencedirect.com/science/article/pii/S0032591011005651. 45 [44] Yaghoubi, M., Torabi, O. Effect of the magnesium content on the mechanochemical behavior in ternary system mg–b2o3–c. International Journal of Refractory Metals and Hard Materials, 43, 132–140, 2014. URL https://www.sciencedirect.com/ science/article/pii/S0263436813002473. 46 [45] Kim, S., Stone, D. S., Cho, J.-I., Jeong, C.-Y., Kang, C.-S., Bae, J.-C. Phase stability determination of the mg–b binary system using the calphad method and ab initio calculations. Journal of Alloys and Compounds, 470 (1), 85–89, 2009. URL https://www.sciencedirect.com/science/article/pii/S092583880800368X. 46 [46] Kramer, E. J. Scaling laws for flux pinning in hard superconductors. Journal of applied physics, 44 (3), 1360–1370, 1973. 49 [47] Kearns, J. J. Thermal expansion and preferred orientation in zircaloy (lwbr development program), 11 1965. 57, 64 [48] Krutzler, C., Zehetmayer, M., Eisterer, M., Weber, H. W., Zhigadlo, N. D., Karpinski, J., et al. Anisotropic reversible mixed-state properties of superconducting carbon-doped Mg (B1-x Cx)2 single crystals. Physical Review B - Condensed Matter and Materials Physics, 74 (14), 1–10, 2006. 58 [49] Pitel, J., Kovac, P., Tropeano, M., Grasso, G. Study of the potential of three different MgB2 tapes for application in cylindrical coils operating at 20 K. Superconductor Science and Technology, 28 (5), 1–14, 2015. 58 [50] Hielscher, R., Schaeben, H. A novel pole figure inversion method: specification of the mtex algorithm. Journal of Applied Crystallography, 41 (6), 1024–1037, 2008. 62 [51] Kocks, U. F., Tom´e, C. N.,Wenk, H.-R. Texture and anisotropy: preferred orientations in polycrystals and their effect on materials properties. Cambridge university press, 1998. 63, 65 [52] Malamud, F., Riffo, A. M., Alvarez, M. A., Vizcaino, P., Li, M. J., Liu, X., et al. Characterization of crystallographic texture of Zirconium alloy components by neutron diffraction. Journal of Nuclear Materials, 510, 524–538, 2018. 64 [53] Kumar, R. A., Vinod, K., Varghese, N., Syamaprasad, U. Reactivity of sheath materials with mg/b in mgb2 conductor fabrication. Superconductor Science and Technology, 20 (3), 222, 2007. 69 [54] Kumakura, H., Matsumoto, A., Fujii, H., Kitaguchi, H., Togano, K. Microstructure and superconducting properties of powder-in-tube processed MgB2 tapes. Physica C: Superconductivity and its Applications, 382 (1), 93–97, 2002. URL mail-24-06-19. 69, 84, 85 [55] Kocks, U. F., Tom´e, C. N.,Wenk, H.-R. Texture and anisotropy: preferred orientations in polycrystals and their effect on materials properties. Cambridge university press, 2000. 76 [56] Ren, J., Liu, X., Lei, Q., Wang, Q., Zhang, X., Zhang, X., et al. Deformation behavior of pure titanium with a rare HCP/FCC Boundary: An atomistic study. Materials Research, 23 (1), 1–8, 2020. 79, 82, 83 [57] Hong, D. H., Lee, T. W., Lim, S. H., Kim, W. Y., Hwang, S. K. Stress-induced hexagonal close-packed to face-centered cubic phase transformation in commercialpurity titanium under cryogenic plane-strain compression. Scripta Materialia, 69 (5), 405–408, 2013. URL http://dx.doi.org/10.1016/j.scriptamat.2013.05.038. 81, 82, 84 [58] Bai, F., Zhu, Q., Shen, J., Lu, Z., Zhang, L., Ali, N., et al. Study on phase transformation orientation relationship of hcp-fcc during rolling of high purity titanium. Crystals, 11 (10), 2021. 84 [59] Wu, H. C., Kumar, A., Wang, J., Bi, X. F., Tomé, C. N., Zhang, Z., et al. Rollinginduced face centered cubic titanium in hexagonal close packed titanium at room temperature. Scientific Reports, 6 (April), 1–8, 2016. 81, 82, 83, 84 [60] Li, Z., Cheng, X., Li, J., Wang, H. Formation of face-centered cubic titanium in laser surface re-melted commercially pure titanium plate. Journal of Materials Science and Technology, 34 (5), 767–773, 2018. URL http://dx.doi.org/10.1016/j.jmst.2017.09.004. 83 [61] Bai, F., Yin, L., Zhao, W., Zhou, H., Song, M., Liu, Y., et al. Deformational behavior of face-centered cubic (FCC) phase in high-pure titanium. Materials Science and Engineering A, 800 (August 2020), 140287, 2021. URL https:// doi.org/10.1016/j.msea.2020.140287. 79, 82, 83, 84 [62] Jing, R., Liu, C. Y., Ma, M. Z., Liu, R. P. Microstructural evolution and formatio mechanism of FCC titanium during heat treatment processing. Journal of Alloys and Compounds, 552, 202–207, 2013. 81, 82 [63] Atterjee, P., Upta, S. P. An X-ray diffraction study of strain localization and anisotropic dislocation contrast in nanocrystalline titanium. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 81 (1), 49–60, 2001. [64] Chakraborty, J., Kumar, K., Ranjan, R., Chowdhury, S. G., Singh, S. R. Thickness-dependent fcc-hcp phase transformation in polycrystalline titanium thin films. Acta Materialia, 59 (7), 2615–2623, 2011. URL http://dx.doi.org/10.1016/j.actamat.2010.12.046. 81, 82, 83
Materias:Física > Física del estado sólido
Física > Ciencias de materiales
Divisiones:Aplicaciones de la energía nuclear > Tecnología de materiales y dispositivos > Caracterización de materiales
Código ID:1217
Depositado Por:Tamara Cárcamo
Depositado En:18 Oct 2023 10:37
Última Modificación:18 Oct 2023 10:37

Personal del repositorio solamente: página de control del documento