Retroacción dinámica en resonadores optomecánicos basados en espejos de Bragg / Dynamical backaction in DBR-based optomechanical resonators

Sesin, Pablo E. (2023) Retroacción dinámica en resonadores optomecánicos basados en espejos de Bragg / Dynamical backaction in DBR-based optomechanical resonators. Tesis Doctoral en Física, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
11Mb

Resumen en español

Los resonadores optomecánicos semiconductores se han convertido en una plataforma de interés para el estudio y desarrollo de sistemas de tecnologías cuánticas. Estos sistemas permiten investigar la interacción entre la luz y los grados de libertad mecánicos, la retroacción que estos ejercen y diversos fenómenos resultantes de este acoplamiento. Los avances en las técnicas de fabricación e ingeniería han posibilitado el desarrollo de distintos tipos de arquitecturas, que van más allá de simples transductores, amplificadores, emisores y detectores. Algunas áreas clave de investigación y aplicaciones para los resonadores optomecánicos semiconductores incluyen: (i) Procesamiento de información cuántica: Estos resonadores sirven como interfaces luz-materia para el intercambio de información entre diversos dispositivos de estado sólido. Esto es particularmente valioso en el desarrollo de sistemas de comunicación cuántica y arquitecturas de computación cuántica. (ii) Optomecánica cuántica: El estudio de los resonadores optomecánicos permite la observación y manipulación de estados coherentes en escalas macroscópicas mediante la interacción de la luz con osciladores mecánicos. Esto ayuda a comprender mejor la naturaleza cuántica de objetos macroscópicos y explorar el límite entre la mecánica clásica y cuántica. (iii) Fenómenos no lineales: Los resonadores optomecánicos semiconductores pueden exhibir una serie de fenómenos no lineales, como biestabilidad optomecánica y autooscilación, que pueden ser útiles para desarrollar dispositivos novedosos y explorar nueva física en el régimen cuántico. (iv) Aplicaciones de sensores: Estos resonadores pueden emplearse como sensores de alta precisión para medir fuerza, masa o aceleración, con posibles aplicaciones en campos como la biotecnología, la vigilancia ambiental y la ingeniería aeroespacial. (v) Peines de frecuencia óptica: Los resonadores optomecánicos semiconductores pueden generar peines de frecuencia óptica, que son fundamentales para aplicaciones como la espectroscop ía, la metrología y la comunicación óptica. Las estructuras dieléctricas periódicas, que surgieron a finales de la década de 1980, dieron lugar al desarrollo de los reflectores distribuidos de Bragg (DBR) y microcavidades semiconductoras. Estos dispositivos pueden fabricarse utilizando pozos cuánticos semiconductores, lo que resulta en una modificación significativa de la emisión de estados electrónicos confinados. En tales sistemas, los polaritones excitónicos de cavidad desempeñan un papel crucial en la interacción entre la luz y los grados de libertad mecánicos, permitiendo el estudio de fenómenos cuánticos y optomecánicos en escalas macroscópicas. Las microcavidades ópticas basadas en la familia de semiconductores de GaAs y AlAs, diseñadas para confinar la luz en el rango de cientos de THz, son a la vez sistemas que confinan de manera óptima vibraciones en el rango de GHz, en la misma longitud de onda que la luz y con una distribución localizada similar. Como consecuencia, estos sistemas presentan un rol de candidato pujante para combinar la física de los polaritones de cavidad, la condensación de Bose-Einstein y la emisión de fotones únicos, con fenómenos novedosos de optomecánica como emisión estimulada de sonido, enfriamiento láser, sincronización de grados de libertad mecánicos, rigidez inducida por luz, entre otros. Además, cabe mencionar que estos sistemas han mostrado una gran capacidad para operar con frecuencias mecánicas récord, alcanzando cientos de GHz que se establecen por diseño. Este aspecto es de interés ante los considerables esfuerzos por aumentar las frecuencias mecánicas de trabajo en sistemas optomecánicos de estado solido. Más aún, una gran variedad de estos sistemas involucran vibraciones coherentes originadas superficialmente (SAW) y en forma volumétrica (BAW), excitados de manera simultánea tanto ópticamente como de manera eléctrica mediante dispositivos piezoeléctricos convenientemente diseñados. En este trabajo, se investiga la naturaleza de la interacción entre la luz y las vibraciones confinadas en busca de observar efectos de retroalimentación dinámica en estos resonadores. Para ello, se evalúan efectos de presión de radiación, donde la luz fuerza mecánicamente al sistema al reflejarse en cada interfaz. Por otro lado, se evalúan los fenómenos térmicos en los cuales el intercambio optomecánico involucra efectos de expansión térmica durante procesos de absorción de fotones. Se discuten las consecuencias de la electrostricción, donde la presencia de vibraciones modifica las propiedades dieléctricas del sistema, modificando así el escenario para la luz. Más aun, se investigan procesos optoelectrónicos donde la absorción de fotones perturba niveles electrónicos del semiconductor que también influyen en la excitación y detección de vibraciones. Se demuestra que todos ellos son esenciales en la búsqueda de no linealidades y de efectos de retroalimentación cuando diferentes ingredientes son puestos en juego experimentalmente. Una vez cuantificados los diversos mecanismos, se centra en la mediación de polaritones de cavidad en el acoplamiento optomecánico, marcando la ruta para operar con energías ópticas en sintonía con las resonancias electrónicas de los semiconductores. Estos mediadores amplifican el acoplamiento optomecánico debido al carácter resonante del mecanismo de potencial de deformación. En segundo lugar, brindan protección a procesos de decoherencia e incluso evidencian efectos de protección en la vida media de los fotones al trabajar a bajas temperaturas, amplificando la interacción varios ´ordenes de magnitud respecto a una condición de excitación no resonante. Por último, se presenta un prototipo de ingeniería de potenciales ópticos. Estos potenciales son generados mediante excitación óptica en estructuras planares. Con ello se amplifica la interacción fotón-fonón a niveles sin precedentes en estos sistemas, operando a temperatura ambiente. Se demuestra experimentalmente la presencia de efectos de retroalimentación dinámica, evidenciando efectos de enfriamiento óptico de fonones de 180 GHz hasta 170 K por debajo de temperatura ambiente, trazando nuevos métodos para el desarrollo de sistemas optomecánicos que operen frecuencias mecánicas en el rango de centenas de GHz, con perspectivas para el desarrollo de redes y sistemas de tecnologías cuánticas.

Resumen en inglés

Semiconductor optomechanical resonators indeed offer exciting opportunities for the exploration and development of quantum technologies. These devices bring together the realms of photonics and mechanics by coupling light with mechanical motion. The complex interplay between these two domains gives rise to intriguing physical phenomena and new functionalities that can be harnessed for various applications. Advancements in material science, nanofabrication techniques, and device engineering have enabled the creation of diverse optomechanical resonator architectures, which have expanded their use beyond conventional roles such as transducers, amplifiers, emitters, and detectors. These novel designs can be tailored to achieve specific functionalities, allowing for a wide range of applications in both classical and quantum information processing. Research in semiconductor optomechanical resonators spans several key areas: Quantum state control is one of these critical areas, where the aim is to control and manipulate the quantum states of both light and mechanical motion. The primary focus is on generating and preserving quantum entanglement, squeezing, and coherence. These capabilities play an essential role in quantum information processing tasks such as quantum communication, quantum computing, and quantum sensing. Nonlinear dynamics also play a significant role in this field. The coupling between light and mechanical motion in optomechanical resonators can lead to rich nonlinear dynamics. These can be harnessed for various applications, including signal processing, frequency conversion, and even chaos-based cryptography. Another important area of study is cooling and thermodynamics, with the development of techniques for achieving ultralow temperatures for mechanical resonators through studying cooling mechanisms in optomechanical systems. This aspect is particularly crucial for reaching the quantum ground state and observing quantum effects at macroscopic scales. The field is also interested in hybrid systems, where optomechanical resonators are integrated with other quantum systems like superconducting circuits or atomic ensembles. This allows for the realization of hybrid quantum devices that can leverage the advantages of each individual system. This integration can potentially lead to enhanced performance and novel functionalities for quantum information processing. Lastly, optomechanical resonators also have promising applications in sensing and metrology. Their high sensitivity to external forces and fields makes them ideal for sensing applications. By leveraging quantum effects, it is possible to achieve unprecedented levels of sensitivity and precision in the measurement of forces, accelerations, and fields. The ongoing exploration of semiconductor optomechanical resonators is not only revealing new insights into the fundamental physics of light-matter interactions but also paving the way for innovative quantum technologies with far-reaching implications in information processing, communication, sensing, and beyond. The late 1980s saw the rise of an exciting idea in the field of photonics: the control of electromagnetic fields in solid-state systems using periodic spatial modulations of their optical properties. This proposal was inspired by the analogy between the behavior of photons in periodic structures and electrons in periodic potentials, such as those found in crystal lattices. In both cases, the periodic modulation results in the formation of bandgaps, where certain energy states are forbidden for either electrons or photons. Thus, distributed Bragg reflectors consist of alternating layers of materials with different refractive indices, arranged in a periodic pattern. When light encounters a DBR, constructive interference occurs between the reflected light waves at each interface, leading to high reflectivity. This high reflectivity can be designed to occur over a specific range of wavelengths, known as the photonic bandgap. The invention of Distributed Bragg reflectors (DBRs) and semiconductor microcavities has had a profound impact on the field of photonics and optoelectronics, enabling the realization of a wide range of novel devices with superior performance and functionalities. Semiconductor microcavities based on DBRs are formed by sandwiching an active layer or cavity between two DBR mirrors. The DBRs confine light within the cavity, which results in strong light-matter interactions and the enhancement of various optical processes. These microcavities have found numerous applications in optoelectronics, including lasers, LEDs, modulators, and sensors. Semiconductor quantum wells can indeed be embedded within microcavities, leading to unique properties and interesting physical phenomena. Quantum wells are thin layers of semiconductor material sandwiched between two layers of a different semiconductor material with a larger bandgap. These structures confine electrons and holes in the direction perpendicular to the layers, leading to discrete energy states and modified emission properties. The strong coupling regime emerges as a particularly captivating facet of microcavity physics. It facilitates the probing and excitation of phonon states via the excitonic element of polaritons. This fascinating characteristic permits lightdriven manipulation of phonon states at energies close to electronic resonances without impacting the microcavity’s quality factor negatively. Consequently, the strong coupling regime harbors vast potential for diverse fields such as optoelectronics, quantum information processing, and the foundational study of light-matter interactions. Optical microcavities based on the GaAs (gallium arsenide) and AlAs (aluminum arsenide) family of semiconductors indeed offer unique opportunities for hybrid optomechanical resonators. These systems have the ability to confine light in the range of hundreds of terahertz (THz) and mechanical vibrations in the gigahertz (GHz) range, both at similar wavelengths and with localized distributions. This combination of properties has led to a wide range of fascinating optomechanical phenomena and applications. Several key features and phenomena make focusing on hybrid optomechanical resonators potentially intriguing. The strong coupling between photons and excitons in these microcavities gives rise to hybrid light-matter quasiparticles known as cavity polaritons. Under certain conditions, these polaritons can condense into a single macroscopic quantum state akin to a Bose-Einstein condensate, leading to captivating quantum effects. Moreover, these systems can be engineered to emit single photons, a property crucial for applications in quantum communication and information processing. Optomechanical interactions within these systems can be exploited to cool mechanical resonators to ultra-low temperatures, potentially enabling the observation of quantum effects at macroscopic scales. Additionally, the optomechanical coupling within these resonators can potentially synchronize the motion of multiple mechanical degrees of freedom, opening up potential new opportunities in sensing and signal processing. These hybrid optomechanical resonators have demonstrated the ability to operate at record mechanical frequencies, reaching hundreds of GHz by design. This capability is of particular interest given the ongoing efforts to increase the mechanical frequencies in solid-state optomechanical systems. Furthermore, these devices can take advantage of coherent surface-originated and volumetrically generated vibrations, which can be excited both optically, and electrically using piezoelectric elements. In this thesis, the focus is on investigating the nature of the interaction between light and confined vibrations in optomechanical resonators, particularly in the context of dynamical backaction effects. Several mechanisms and phenomena are examined to understand how they contribute to the observed behavior of the system. Indeed, these mechanisms are crucial in understanding the complex behavior of optomechanical resonators and how light interacts with the confined vibrations in these systems. The force exerted by light on the mechanical system when it is reflected at each interface is known as radiation pressure. It can lead to mechanical displacements and oscillations, which in turn can influence the optical properties of the resonator. Additionally, thermal phenomena play a significant role due to the optomechanical exchange involving thermal expansion effects. When photons are absorbed by the system, local heating occurs, which can cause changes in both the dimensions and the mechanical properties of the resonator. Further, the presence of mechanical vibrations can modify the dielectric properties of the system by electrostriction, altering the optical behavior. This effect occurs when the mechanical strain influences the polarization of the material, leading to changes in its refractive index and other optical properties. Also, The absorption of photons can perturb the electronic levels of the semiconductor, which can influence the excitation and detection of mechanical vibrations. This interaction between the optical and electronic properties of the system adds another layer of complexity to the overall optomechanical behavior. The mediation of cavity polaritons in optomechanical coupling offers a promising approach to operating with optical energies tuned to the electronic resonances of semiconductors. Cavity polaritons, being hybrid light-matter quasiparticles formed by the strong coupling of photons and excitons, provide two main advantages in optomechanical systems demonstrated: (i) enhancement and amplification of photoelastic optomechanical coupling: When the optical energy is resonant with the cavity polaritons, the photoelastic optomechanical coupling can be enhanced and amplified by several orders of magnitude compared to non-resonant excitation conditions. This enhanced coupling can lead to stronger interactions between light and mechanical vibrations, enabling new phenomena and improved device performance; (ii) protection against decoherence processes: cavity polaritons can help prevent decoherence processes associated with absorption, which is particularly relevant when operating at low temperatures. By mediating the interaction between light and the semiconductor, cavity polaritons can protect the lifetime of photons, resulting in higher quality factors and better overall performance of the optomechanical resonator. To conclude, this research presents an engineering prototype of optical potentials in planar structures generated by laser excitation, which significantly enhances the photon-phonon interaction in these systems, even at room temperature. By leveraging the strong optomechanical coupling, the presence of dynamical backaction effects is experimentally demonstrated, which results in cooling effects of 180 GHz phonons down to about 170 K below room temperature. This groundbreaking work opens up new avenues for the development of optomechanical systems operating at mechanical frequencies in the range of hundreds of GHz. Such systems have significant potential in the advancement of networks and quantum technologies. The ability to control and manipulate high-frequency mechanical vibrations using light can lead to innovative devices and applications in quantum information processing, sensing, and communication.

Tipo de objeto:Tesis (Tesis Doctoral en Física)
Palabras Clave:Polaritons; Polaritones; [Optomechanics; Optomecánica; Optoelectronics; Optoelectrónica; Cavity; Cavidad]
Referencias:[1] Gamow, G. Thirty years that shook physics. Mineola, NY: Dover Publications, 1985. 2 [2] Bennett, C. H., Brassard, G., Cr´epeau, C., Jozsa, R., Peres, A., Wootters, W. K. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky- Rosen channels. Phys. Rev. Lett., 70, 1895–1899, Mar 1993. URL https://link. aps.org/doi/10.1103/PhysRevLett.70.1895. 2 [3] Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A. Experimental quantum teleportation. Nature, 390 (6660), 575–579, Dec 1997. URL https://doi.org/10.1038/37539. [4] Friedman, J. R., Patel, V., Chen, W., Tolpygo, S. K., Lukens, J. E. Quantum superposition of distinct macroscopic states. Nature, 406 (6791), 43–46, Jul 2000. URL https://doi.org/10.1038/35017505. 2 [5] Cheuk, L. W., Nichols, M. A., Lawrence, K. R., Okan, M., Zhang, H., Khatami, E., et al. Observation of spatial charge and spin correlations in the 2d Fermi- Hubbard model. Science, 353 (6305), 1260–1264, sep. 2016. URL https://doi. org/10.1126/science.aag3349. 3 [6] Bernien, H., Schwartz, S., Keesling, A., Levine, H., Omran, A., Pichler, H., et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature, 551 (7682), 579–584, nov. 2017. URL https://doi.org/10.1038/ nature24622. [7] Hensgens, T., Fujita, T., Janssen, L., Li, X., Diepen, C. J. V., Reichl, C., et al. Quantum simulation of a Fermi–Hubbard model using a semiconductor quantum dot array. Nature, 548 (7665), 70–73, ago. 2017. URL https://doi.org/10. 1038/nature23022. 3 [8] Britton, J. W., Sawyer, B. C., Keith, A. C., Wang, C.-C. J., Freericks, J. K., Uys, H., et al. Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins. Nature, 484 (7395), 489–492, abr. 2012. URL https://doi.org/10.1038/nature10981. 3 [9] Inagaki, T., Haribara, Y., Igarashi, K., Sonobe, T., Tamate, S., Honjo, T., et al. A coherent Ising machine for 2000-node optimization problems. Science, 354 (6312), 603–606, nov. 2016. URL https://doi.org/10.1126/science. aah4243. [10] Labuhn, H., Barredo, D., Ravets, S., de L´es´eleuc, S., Macr`ı, T., Lahaye, T., et al. Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models. Nature, 534 (7609), 667–670, jun. 2016. URL https: //doi.org/10.1038/nature18274. 3 [11] Bloch, I., Dalibard, J., Nascimb`ene, S. Quantum simulations with ultracold quantum gases. Nature Physics, 8 (4), 267–276, abr. 2012. URL https://doi. org/10.1038/nphys2259. 3 [12] Blatt, R., Roos, C. F. Quantum simulations with trapped ions. Nature Physics, 8 (4), 277–284, abr. 2012. URL https://doi.org/10.1038/nphys2252. 3 [13] Houck, A. A., T¨ureci, H. E., Koch, J. On-chip quantum simulation with superconducting circuits. Nature Physics, 8 (4), 292–299, abr. 2012. URL https://doi.org/10.1038/nphys2251. 3 [14] Cirac, J. I., Zoller, P. Goals and opportunities in quantum simulation. Nature Physics, 8 (4), 264–266, abr. 2012. URL https://doi.org/10.1038/nphys2275. 3 [15] Kastoryano, M. J., Reiter, F., Sørensen, A. S. Dissipative preparation of entanglement in optical cavities. Physical Review Letters, 106 (9), feb. 2011. URL https://doi.org/10.1103/physrevlett.106.090502. 3 [16] Wollman, E. E., Verma, V. B., Lita, A. E., Farr, W. H., Shaw, M. D., Mirin, R. P., et al. Kilopixel array of superconducting nanowire single-photon detectors. Optics Express, 27 (24), 35279, nov. 2019. URL https://doi.org/10.1364/oe. 27.035279. 3 [17] Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC. Nature Physics, 13 (9), 852–858, ago. 2017. URL https: //doi.org/10.1038/nphys4208. 3 [18] Hopfield, J. J. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev., 112, 1555–1567, Dec 1958. URL https:// link.aps.org/doi/10.1103/PhysRev.112.1555. 5, 22 [19] Weisbuch, C., Nishioka, M., Ishikawa, A., Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett., 69, 3314–3317, Dec 1992. URL https://link.aps.org/doi/ 10.1103/PhysRevLett.69.3314. 5, 22, 102 [20] Imamog¯lu, A., Ram, R. J., Pau, S., Yamamoto, Y. Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers. Phys. Rev. A, 53, 4250–4253, Jun 1996. URL https://link.aps.org/doi/10.1103/PhysRevA. 53.4250. 5 [21] Tassone, F., Yamamoto, Y. Exciton-exciton scattering dynamics in a semiconductor microcavity and stimulated scattering into polaritons. Phys. Rev. B, 59, 10830–10842, Apr 1999. URL https://link.aps.org/doi/10.1103/PhysRevB. 59.10830. [22] Kasprzak, J., Richard, M., Kundermann, S., Baas, A., Jeambrun, P., Keeling, J. M. J., et al. Bose–Einstein condensation of exciton polaritons. Nature, 443 (7110), 409–414, sep. 2006. URL https://doi.org/10.1038/nature05131. [23] Schneider, C., Rahimi-Iman, A., Kim, N. Y., Fischer, J., Savenko, I. G., Amthor, M., et al. An electrically pumped polariton laser. Nature, 497 (7449), 348–352, mayo 2013. URL https://doi.org/10.1038/nature12036. 5 [24] Kavokin, A., Liew, T. C. H., Schneider, C., Lagoudakis, P. G., Klembt, S., Hoefling, S. Polariton condensates for classical and quantum computing. Nature Reviews Physics, 4 (7), 435–451, abr. 2022. URL https://doi.org/10.1038/ s42254-022-00447-1. 5 [25] Dang, L. S., Heger, D., Andr´e, R., Boeuf, F., Romestain, R. Stimulation of polariton photoluminescence in semiconductor microcavity. Phys. Rev. Lett., 81, 3920– 3923, Nov 1998. URL https://link.aps.org/doi/10.1103/PhysRevLett.81. 3920. 5 [26] Deng, H., Solomon, G. S., Hey, R., Ploog, K. H., Yamamoto, Y. Spatial coherence of a polariton condensate. Phys. Rev. Lett., 99, 126403, Sep 2007. URL https: //link.aps.org/doi/10.1103/PhysRevLett.99.126403. 5 [27] Wertz, E., Ferrier, L., Solnyshkov, D. D., Johne, R., Sanvitto, D., Lemaˆıtre, A., et al. Spontaneous formation and optical manipulation of extended polariton condensates. Nat. Phys., 6 (11), 860–864, nov. 2010. 5, 97 [28] Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L., West, K. Bose-Einstein condensation of microcavity polaritons in a trap. Science, 316 (5827), 1007–1010, mayo 2007. 5 [29] Lai, C. W., Kim, N. Y., Utsunomiya, S., Roumpos, G., Deng, H., Fraser, M. D., et al. Coherent zero-state and pi-state in an exciton-polariton condensate array. Nature, 450 (7169), 529–532, nov. 2007. 5 [30] Zasedatelev, A. V., Baranikov, A. V., Urbonas, D., Scafirimuto, F., Scherf, U., St¨oferle, T., et al. A room-temperature organic polariton transistor. Nature Photonics, 13 (6), 378–383, mar. 2019. URL https://doi.org/10.1038/ s41566-019-0392-8. 5 [31] Carusotto, I., Ciuti, C. Quantum fluids of light. Rev. Mod. Phys., 85 (1), 299– 366, feb. 2013. 5 [32] Amo, A., Lefr`ere, J., Pigeon, S., Adrados, C., Ciuti, C., Carusotto, I., et al. Superfluidity of polaritons in semiconductor microcavities. Nature Physics, 5 (11), 805–810, sep. 2009. URL https://doi.org/10.1038/nphys1364. 5 [33] Fontaine, Q., Bienaim´e, T., Pigeon, S., Giacobino, E., Bramati, A., Glorieux, Q. Observation of the Bogoliubov dispersion in a fluid of light. Physical Review Letters, 121 (18), oct. 2018. URL https://doi.org/10.1103/physrevlett. 121.183604. 5 [34] Nardin, G., Grosso, G., L´eger, Y., Pitka, B., Morier-Genoud, F., Deveaud- Pl´edran, B. Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid. Nature Physics, 7 (8), 635–641, abr. 2011. URL https: //doi.org/10.1038/nphys1959. 5 [35] Sanvitto, D., Pigeon, S., Amo, A., Ballarini, D., Giorgi, M. D., Carusotto, I., et al. All-optical control of the quantum flow of a polariton condensate. Nature Photonics, 5 (10), 610–614, sep. 2011. URL https://doi.org/10.1038/ nphoton.2011.211. 5 [36] Sich, M., Krizhanovskii, D. N., Skolnick, M. S., Gorbach, A. V., Hartley, R., Skryabin, D. V., et al. Observation of bright polariton solitons in a semiconductor microcavity. Nature Photonics, 6 (1), 50–55, nov. 2011. URL https://doi.org/ 10.1038/nphoton.2011.267. 5 [37] Amo, A., Pigeon, S., Sanvitto, D., Sala, V. G., Hivet, R., Carusotto, I., et al. Polariton superfluids reveal quantum hydrodynamic solitons. Science, 332 (6034), 1167–1170, jun. 2011. URL https://doi.org/10.1126/science.1202307. 5 [38] Chafatinos, D. L., Kuznetsov, A. S., Anguiano, S., Bruchhausen, A. E., Reynoso, A. A., Biermann, K., et al. Polariton-driven phonon laser. Nature Communications, 11 (1), sep. 2020. URL https://doi.org/10.1038/ s41467-020-18358-z. 5, 6, 7, 52, 89, 94, 112 [39] Kuznetsov, A. S., Machado, D. H., Biermann, K., Santos, P. V. Electrically driven microcavity exciton-polariton optomechanics at 20 GHz. Physical Review X, 11 (2), abr. 2021. URL https://doi.org/10.1103/physrevx.11.021020. 48, 83, 123, 124 [40] Kuznetsov, A. S., Biermann, K., Reynoso, A., Fainstein, A., Santos, P. V. Microcavity phonoritons – a coherent optical-to-microwave interface, 2022. URL https://arxiv.org/abs/2210.14331. 5, 6 [41] Bloch, J., Planel, R., Thierry-Mieg, V., G´erard, J., Barrier, D., Marzin, J., et al. Strong-coupling regime in pillar semiconductor microcavities. Superlattices and Microstructures, 22 (3), 371–374, oct. 1997. URL https://doi.org/10.1006/ spmi.1996.0317. 5 [42] Cerda-M´endez, E. A., Krizhanovskii, D. N., Wouters, M., Bradley, R., Biermann, K., Guda, K., et al. Polariton condensation in dynamic acoustic lattices. Phys. Rev. Lett., 105, 116402, Sep 2010. URL https://link.aps.org/doi/10.1103/ PhysRevLett.105.116402. 5 [43] Kaitouni, R. I., El Da¨ıf, O., Baas, A., Richard, M., Paraiso, T., Lugan, P., et al. Engineering the spatial confinement of exciton polaritons in semiconductors. Phys. Rev. B, 74, 155311, Oct 2006. URL https://link.aps.org/doi/10. 1103/PhysRevB.74.155311. 5 [44] Sesin, P., Anguiano, S., Bruchhausen, A. E., Lemaˆıtre, A., Fainstein, A. Cavity optomechanics with a laser-engineered optical trap. Phys. Rev. B, 103, L081301, Feb 2021. URL https://link.aps.org/doi/10.1103/PhysRevB.103.L081301. 5, 6, 7 [45] Chafatinos, D. L., Kuznetsov, A. S., Sesin, P., Papuccio, I., Reynoso, A. A., Bruchhausen, A. E., et al. Metamaterials of fluids of light and sound, 2021. URL https://arxiv.org/abs/2112.00458. 5 [46] Jacqmin, T., Carusotto, I., Sagnes, I., Abbarchi, M., Solnyshkov, D. D., Malpuech, G., et al. Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons. Phys. Rev. Lett., 112, 116402, Mar 2014. URL https://link.aps.org/doi/10.1103/PhysRevLett.112.116402. 5, 6 [47] Mili´cevi´c, M., Ozawa, T., Andreakou, P., Carusotto, I., Jacqmin, T., Galopin, E., et al. Edge states in polariton honeycomb lattices. 2D Materials, 2 (3), 034012, ago. 2015. URL https://doi.org/10.1088/2053-1583/2/3/034012. [48] Amo, A., Bloch, J. Exciton-polaritons in lattices: A non-linear photonic simulator. Comptes Rendus Physique, 17 (8), 934–945, oct. 2016. URL https: //doi.org/10.1016/j.crhy.2016.08.007. 5 [49] Amo, A., Pigeon, S., Adrados, C., Houdr´e, R., Giacobino, E., Ciuti, C., et al. Light engineering of the polariton landscape in semiconductor microcavities. Phys. Rev. B, 82, 081301, Aug 2010. URL https://link.aps.org/doi/10. 1103/PhysRevB.82.081301. 6 [50] Schneider, C., Winkler, K., Fraser, M. D., Kamp, M., Yamamoto, Y., Ostrovskaya, E. A., et al. Exciton-polariton trapping and potential landscape engineering. Reports on Progress in Physics, 80 (1), 016503, nov. 2016. URL https://doi.org/10.1088/0034-4885/80/1/016503. 97 [51] Flatten, L., Trichet, A., Smith, J. Spectral engineering of coupled open-access microcavities. Laser &amp Photonics Reviews, 10 (2), 257–263, dic. 2015. URL https://doi.org/10.1002/lpor.201500138. [52] Anguiano, S., Reynoso, A. A., Bruchhausen, A. E., Lemaˆıtre, A., Bloch, J., Fainstein, A. Three-dimensional trapping of light with light in semiconductor planar microcavities. Phys. Rev. B, 99, 195308, May 2019. URL https://link. aps.org/doi/10.1103/PhysRevB.99.195308. 6, 95, 96, 97, 98, 106, 126 [53] Berloff, N. G., Silva, M., Kalinin, K., Askitopoulos, A., T¨opfer, J. D., Cilibrizzi, P., et al. Realizing the classical XY hamiltonian in polariton simulators. Nature Materials, 16 (11), 1120–1126, sep. 2017. URL https://doi.org/10.1038/ nmat4971. 6 [54] Goblot, V., Rauer, B., Vicentini, F., Le Boit´e, A., Galopin, E., Lemaˆıtre, A., et al. Nonlinear polariton fluids in a flatband reveal discrete gap solitons. Phys. Rev. Lett., 123, 113901, Sep 2019. URL https://link.aps.org/doi/10.1103/ PhysRevLett.123.113901. 6 [55] Whittaker, C. E., Cancellieri, E., Walker, P. M., Gulevich, D. R., Schomerus, H., Vaitiekus, D., et al. Exciton polaritons in a two-dimensional Lieb lattice with spin-orbit coupling. Phys. Rev. Lett., 120, 097401, Mar 2018. URL https: //link.aps.org/doi/10.1103/PhysRevLett.120.097401. 6 [56] Hartmann, M. J., Brand˜ao, F. G. S. L., Plenio, M. B. Strongly interacting polaritons in coupled arrays of cavities. Nature Physics, 2 (12), 849–855, nov. 2006. URL https://doi.org/10.1038/nphys462. 6 [57] Carusotto, I., Gerace, D., Tureci, H. E., De Liberato, S., Ciuti, C., Imamoˇglu, A. Fermionized photons in an array of driven dissipative nonlinear cavities. Phys. Rev. Lett., 103, 033601, Jul 2009. URL https://link.aps.org/doi/10.1103/ PhysRevLett.103.033601. [58] Hartmann, M. J. Polariton crystallization in driven arrays of lossy nonlinear resonators. Phys. Rev. Lett., 104, 113601, Mar 2010. URL https://link.aps. org/doi/10.1103/PhysRevLett.104.113601. 6 [59] Togan, E., Lim, H.-T., Faelt, S., Wegscheider, W., Imamoglu, A. Enhanced interactions between dipolar polaritons. Phys. Rev. Lett., 121, 227402, Nov 2018. URL https://link.aps.org/doi/10.1103/PhysRevLett.121.227402. 6 [60] Delteil, A., Fink, T., Schade, A., H¨ofling, S., Schneider, C., ˙Imamo˘glu, A. Towards polariton blockade of confined exciton–polaritons. Nature Materials, 18 (3), 219–222, feb. 2019. URL https://doi.org/10.1038/ s41563-019-0282-y. [61] Mu˜noz-Matutano, G., Wood, A., Johnsson, M., Vidal, X., Baragiola, B. Q., Reinhard, A., et al. Emergence of quantum correlations from interacting fibrecavity polaritons. Nature Materials, 18 (3), 213–218, feb. 2019. URL https: //doi.org/10.1038/s41563-019-0281-z. 6 [62] Ballarini, D., Gianfrate, A., Panico, R., Opala, A., Ghosh, S., Dominici, L., et al. Polaritonic neuromorphic computing outperforms linear classifiers. Nano Letters, 20 (5), 3506–3512, abr. 2020. URL https://doi.org/10.1021/acs.nanolett. 0c00435. 6 [63] Forbes, A. Structured light from lasers. Laser &amp Photonics Reviews, 13 (11), 1900140, oct. 2019. URL https://doi.org/10.1002/lpor.201900140. 6 [64] Ozawa, T., Price, H. M., Amo, A., Goldman, N., Hafezi, M., Lu, L., et al. Topological photonics. Rev. Mod. Phys., 91, 015006, Mar 2019. URL https: //link.aps.org/doi/10.1103/RevModPhys.91.015006. [65] Klembt, S., Harder, T. H., Egorov, O. A., Winkler, K., Ge, R., Bandres, M. A., et al. Exciton-polariton topological insulator. Nature, 562 (7728), 552–556, oct. 2018. URL https://doi.org/10.1038/s41586-018-0601-5. 6 [66] Askitopoulos, A., Liew, T. C. H., Ohadi, H., Hatzopoulos, Z., Savvidis, P. G., Lagoudakis, P. G. Robust platform for engineering pure-quantum-state transitions in polariton condensates. Phys. Rev. B Condens. Matter Mater. Phys., 92 (3), jul. 2015. 6 [67] Li, N., Ren, J., Wang, L., Zhang, G., H¨anggi, P., Li, B. Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys., 84, 1045–1066, Jul 2012. URL https://link.aps.org/doi/10.1103/RevModPhys. 84.1045. 7 [68] Zhang, T., Cheng, Y., zhong Guo, J., yi Xu, J., jun Liu, X. Acoustic logic gates and Boolean operation based on self-collimating acoustic beams. Applied Physics Letters, 106 (11), 113503, mar. 2015. URL https://doi.org/10.1063/ 1.4915338. 7 [69] O’Connell, A. D., Hofheinz, M., Ansmann, M., Bialczak, R. C., Lenander, M., Lucero, E., et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature, 464 (7289), 697–703, mar. 2010. URL https: //doi.org/10.1038/nature08967. 7, 97 [70] Peterson, G. A., Lecocq, F., Cicak, K., Simmonds, R. W., Aumentado, J., Teufel, J. D. Demonstration of efficient nonreciprocity in a microwave optomechanical circuit. Phys. Rev. X, 7, 031001, Jul 2017. URL https://link.aps.org/doi/ 10.1103/PhysRevX.7.031001. 7 [71] Wang, R.-X., Cai, K., Yin, Z.-Q., Long, G.-L. Quantum memory and nondemolition measurement of single phonon state with nitrogen-vacancy centers ensemble. Optics Express, 25 (24), 30149, nov. 2017. URL https://doi.org/ 10.1364/oe.25.030149. 7 [72] Heshami, K., Santori, C., Khanaliloo, B., Healey, C., Acosta, V. M., Barclay, P. E., et al. Raman quantum memory based on an ensemble of nitrogen-vacancy centers coupled to a microcavity. Phys. Rev. A, 89, 040301, Apr 2014. URL https://link.aps.org/doi/10.1103/PhysRevA.89.040301. 7 [73] Meng, Y., Wu, X., Zhang, R.-Y., Li, X., Hu, P., Ge, L., et al. Designing topological interface states in phononic crystals based on the full phase diagrams. New Journal of Physics, 20 (7), 073032, jul. 2018. URL https: //doi.org/10.1088/1367-2630/aad136. 7 [74] Pirie, H., Sadhuka, S., Wang, J., Andrei, R., Hoffman, J. E. Topological phononic logic. Phys. Rev. Lett., 128, 015501, Jan 2022. URL https://link.aps.org/ doi/10.1103/PhysRevLett.128.015501. 7 [75] Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J., Painter, O. Optomechanical crystals. Nature, 462 (7269), 78–82, nov. 2009. 7 [76] Chan, J., Alegre, T. P. M., Safavi-Naeini, A. H., Hill, J. T., Krause, A., Gr¨oblacher, S., et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 478 (7367), 89–92, oct. 2011. 8, 97 [77] Fang, K., Matheny, M. H., Luan, X., Painter, O. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nat. Photonics, 10 (7), 489–496, jul. 2016. 8 [78] Navarro-Urrios, D., Capuj, N. E., Gomis-Bresco, J., Alzina, F., Pitanti, A., Griol, A., et al. A self-stabilized coherent phonon source driven by optical forces. Sci. Rep., 5 (1), 15733, oct. 2015. 8 [79] Safavi-Naeini, A. H., Mayer Alegre, T. P., Chan, J., Eichenfield, M., Winger, M., Lin, Q., et al. Electromagnetically induced transparency and slow light with optomechanics. Nature, 472 (7341), 69–73, abr. 2011. 8 [80] Peano, V., Brendel, C., Schmidt, M., Marquardt, F. Topological phases of sound and light. Phys. Rev. X., 5 (3), jul. 2015. 8 [81] Aspelmeyer, M., Kippenberg, T. J., Marquardt, F. Cavity optomechanics. Reviews of Modern Physics, 86 (4), 1391–1452, dic. 2014. URL https://doi.org/ 10.1103/revmodphys.86.1391. 12, 14, 20, 27, 76, 77, 86, 97, 105, 106, 108, 110 [82] Bruchhausen, A., Hilario, L. M. L., Aligia, A. A., Lobos, A. M., Fainstein, A., Jusserand, B., et al. Microcavity exciton-polariton mediated Raman scattering: Experiments and theory. Physical Review B, 78 (12), sep. 2008. URL https: //doi.org/10.1103/physrevb.78.125326. 21, 23 [83] Zhu, Y., Gauthier, D. J., Morin, S. E., Wu, Q., Carmichael, H. J., Mossberg, T. W. Vacuum rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations. Phys. Rev. Lett., 64, 2499–2502, May 1990. URL https://link.aps.org/doi/10.1103/PhysRevLett.64.2499. 22 [84] Savona, V., Andreani, L., Schwendimann, P., Quattropani, A. Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes. Solid State Communications, 93 (9), 733–739, mar. 1995. URL https://doi.org/10.1016/0038-1098(94)00865-5. 22 [85] Rozas, G., Bruchhausen, A. E., Fainstein, A., Jusserand, B., Lemaˆıtre, A. Polariton path to fully resonant dispersive coupling in optomechanical resonators. Physical Review B, 90 (20), nov. 2014. URL https://doi.org/10.1103/physrevb. 90.201302. 23, 40, 42, 93, 101, 111 [86] Fainstein, A., Lanzillotti-Kimura, N. D., Jusserand, B., Perrin, B. Strong optical-mechanical coupling in a vertical GaAs/AlAs microcavity for subterahertz phonons and near-infrared light. Physical Review Letters, 110 (3), ene. 2013. URL https://doi.org/10.1103/physrevlett.110.037403. 27, 45, 55, 58, 64, 76 [87] Kobecki, M., Scherbakov, A. V., Kukhtaruk, S. M., Yaremkevich, D. D., Henksmeier, T., Trapp, A., et al. Giant photoelasticity of polaritons for detection of coherent phonons in a superlattice with quantum sensitivity. Physical Review Letters, 128 (15), abr. 2022. URL https://doi.org/10.1103/physrevlett. 128.157401. 28, 81 [88] Zambon, N. C., Denis, Z., Oliveira, R. D., Ravets, S., Ciuti, C., Favero, I., et al. Enhanced cavity optomechanics with quantum-well exciton polaritons. Physical Review Letters, 129 (9), ago. 2022. URL https://doi.org/10.1103/ physrevlett.129.093603. 86, 89 [89] Harding, P. J., Euser, T. G., Nowicki-Bringuier, Y.-R., G´erard, J.-M., Vos, W. L. Dynamical ultrafast all-optical switching of planar GaAsAlAs photonic microcavities. Applied Physics Letters, 91 (11), 111103, sep. 2007. URL https://doi.org/10.1063/1.2779106. [90] Sesin, P., Soubelet, P., Villafa˜ne, V., Bruchhausen, A. E., Jusserand, B., Lemaˆıtre, A., et al. Dynamical optical tuning of the coherent phonon detection sensitivity in DBR-based GaAs optomechanical resonators. Phys. Rev. B, 92, 075307, Aug 2015. URL https://link.aps.org/doi/10.1103/PhysRevB. 92.075307. [91] Anguiano, S., Bruchhausen, A. E., Favero, I., Sagnes, I., Lemaˆıtre, A., Lanzillotti- Kimura, N. D., et al. Optical cavity mode dynamics and coherent phonon generation in high-Q micropillar resonators. Phys. Rev. A, 98, 013816, Jul 2018. URL https://link.aps.org/doi/10.1103/PhysRevA.98.013816. 28 [92] Anguiano, S. Optomec´anica y optoelectr´onica en microrresonadores basados en espejos de Bragg. Instituto Balseiro, 2019. 29 [93] Villafa˜ne, V. D. Cavity optomechanics with hybrid semiconductor resonators. Instituto Balseiro, 2019. 29 [94] Jackson, J. D. Classical Electrodynamics. Third edition - New York, NY, 2009. 29 [95] Chen, Y., Tredicucci, A., Bassani, F. Bulk exciton polaritons in GaAs microcavities. Physical Review B, 52 (3), 1800–1805, jul. 1995. URL https: //doi.org/10.1103/physrevb.52.1800. 33, 74, 88 [96] Machado, D. H., Crespo-Poveda, A., Kuznetsov, A. S., Biermann, K., Scalvi, L. V., Santos, P. V. Generation and propagation of superhigh-frequency bulk acoustic waves in GaAs. Phys. Rev. Appl., 12, 044013, Oct 2019. URL https: //link.aps.org/doi/10.1103/PhysRevApplied.12.044013. 38, 47, 83 [97] Jusserand, B., Poddubny, A. N., Poshakinskiy, A. V., Fainstein, A., Lemaitre, A. Polariton resonances for ultrastrong coupling cavity optomechanics in GaAs/AlAs multiple quantum wells. Phys. Rev. Lett., 115, 267402, Dec 2015. URL https://link.aps.org/doi/10.1103/PhysRevLett.115.267402. 38, 69, 81, 90, 92, 101, 107, 109, 111 [98] Jusserand, B., Cardona, M. Raman spectroscopy of vibrations in superlattices, p´ags. 49–152. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. URL https: //doi.org/10.1007/BFb0051988. 40, 45, 46 [99] Fainstein, A., Jusserand, B., Thierry-Mieg, V. Raman scattering enhancement by optical confinement in a semiconductor planar microcavity. Physical Review Letters, 75 (20), 3764–3767, nov. 1995. URL https://doi.org/10.1103/ physrevlett.75.3764. 42, 45, 48, 82, 100 [100] Lamberti, F. R., Yao, Q., Lanco, L., Nguyen, D. T., Esmann, M., Fainstein, A., et al. Optomechanical properties of GaAs/AlAs micropillar resonators operating in the 18 ghz range. Opt. Express, 25 (20), 24437–24447, Oct 2017. URL https: //opg.optica.org/oe/abstract.cfm?URI=oe-25-20-24437. 52, 60, 66, 67, 86 [101] Villafa˜ne, V., Sesin, P., Soubelet, P., Anguiano, S., Bruchhausen, A. E., Rozas, G., et al. Optoelectronic forces with quantum wells for cavity optomechanics in GaAs/AlAs semiconductor microcavities. Physical Review B, 97 (19), mayo 2018. URL https://doi.org/10.1103/physrevb.97.195306. 52, 75, 76, 86, 89, 109 [102] Anguiano, S., Sesin, P., Bruchhausen, A. E., Lamberti, F. R., Favero, I., Esmann, M., et al. Scaling rules in optomechanical semiconductor micropillars. Phys. Rev. A, 98, 063810, Dec 2018. URL https://link.aps.org/doi/10.1103/ PhysRevA.98.063810. 52, 106, 111, 112 [103] Baker, C., Hease, W., Nguyen, D.-T., Andronico, A., Ducci, S., Leo, G., et al. Photoelastic coupling in gallium arsenide optomechanical disk resonators. Optics Express, 22 (12), 14072, jun. 2014. URL https://doi.org/10.1364/oe.22. 014072. 55, 56, 58, 62, 64, 65, 66, 73, 81, 108 [104] Balram, K. C., Davan¸co, M., Lim, J. Y., Song, J. D., Srinivasan, K. Moving boundary and photoelastic coupling in GaAs optomechanical resonators. Optica, 1 (6), 414–420, Dec 2014. URL http://www.osapublishing.org/optica/ abstract.cfm?URI=optica-1-6-414. 56, 66 [105] Florez, O., Jarschel, P. F., Espinel, Y. A. V., Cordeiro, C. M. B., Alegre, T. P. M., Wiederhecker, G. S., et al. Brillouin scattering self-cancellation. Nature Communications, 7, 11759, jun 2016. URL https://doi.org/10.1038/ncomms11759. 55, 56, 66 [106] Johnson, S. G., Ibanescu, M., Skorobogatiy, M. A., Weisberg, O., Joannopoulos, J. D., Fink, Y. Perturbation theory for Maxwell’s equations with shifting material boundaries. Phys. Rev. E, 65, 066611, Jun 2002. URL https://link.aps.org/ doi/10.1103/PhysRevE.65.066611. 58, 63, 64 [107] Burak, D., Binder, R. Cold-cavity vectorial eigenmodes of VCSELs. IEEE Journal of Quantum Electronics, 33 (7), 1205–1215, Jul 1997. 58, 60 [108] Pinard, M., Hadjar, Y., Heidmann, A. Effective mass in quantum effects of radiation pressure. The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 7 (1), 107–116, 1999. URL http://dx.doi.org/10.1007/ s100530050354. 60 [109] Ding, L., Baker, C., Senellart, P., Lemaitre, A., Ducci, S., Leo, G., et al. High frequency GaAs nano-optomechanical disk resonator. Phys. Rev. Lett., 105, 263903, Dec 2010. URL https://link.aps.org/doi/10.1103/PhysRevLett. 105.263903. 64 [110] Metzger, C., Favero, I., Ortlieb, A., Karrai, K. Optical self cooling of a deformable Fabry-Perot cavity in the classical limit. Physical Review B, 78 (3), jul 2008. URL https://doi.org/10.1103/physrevb.78.035309. 70 [111] Ruello, P., Gusev, V. E. Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action. Ultrasonics, 56, 21–35, feb 2015. URL https://doi.org/10.1016/j.ultras.2014.06.004. 72, 73 [112] Eryi˘git, R., Herman, I. P. Lattice properties of strained GaAs, Si, and Ge using a modified bond-charge model. Physical Review B, 53 (12), 7775–7784, mar 1996. URL https://doi.org/10.1103/physrevb.53.7775. 72 [113] Tredicucci, A., Chen, Y., Pellegrini, V., B¨orger, M., Sorba, L., Beltram, F., et al. Controlled exciton-photon interaction in semiconductor bulk microcavities. Physical Review Letters, 75 (21), 3906–3909, nov. 1995. URL https://doi.org/ 10.1103/physrevlett.75.3906. 74, 88 [114] Forn-D´ıaz, P., Lamata, L., Rico, E., Kono, J., Solano, E. Ultrastrong coupling regimes of light-matter interaction. Rev. Mod. Phys., 91, 025005, Jun 2019. URL https://link.aps.org/doi/10.1103/RevModPhys.91.025005. 78 [115] Kockum, A. F., Miranowicz, A., Liberato, S. D., Savasta, S., Nori, F. Ultrastrong coupling between light and matter. Nature Reviews Physics, 1 (1), 19–40, ene. 2019. URL https://doi.org/10.1038/s42254-018-0006-2. [116] Hughes, S., Settineri, A., Savasta, S., Nori, F. Resonant Raman scattering of single molecules under simultaneous strong cavity coupling and ultrastrong optomechanical coupling in plasmonic resonators: Phonon-dressed polaritons. Physical Review B, 104 (4), jul. 2021. URL https://doi.org/10.1103/physrevb.104. 045431. 78 [117] Rakich, P. T., Davids, P.,Wang, Z. Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces. Optics Express, 18 (14), 14439, jun. 2010. URL https://doi.org/10.1364/oe.18.014439. 81 [118] Rakich, P. T., Reinke, C., Camacho, R., Davids, P., Wang, Z. Giant enhancement of stimulated Brillouin scattering in the subwavelength limit. Physical Review X, 2 (1), ene. 2012. URL https://doi.org/10.1103/physrevx.2.011008. [119] Allain, P. E., Guha, B., Baker, C., Parrain, D., Lemaˆıtre, A., Leo, G., et al. Electro-optomechanical modulation instability in a semiconductor resonator. Physical Review Letters, 126 (24), jun. 2021. URL https://doi.org/10.1103/ physrevlett.126.243901. 81 [120] Anguiano, S., Bruchhausen, A., Jusserand, B., Favero, I., Lamberti, F., Lanco, L., et al. Micropillar resonators for optomechanics in the extremely high 19–95- GHz frequency range. Physical Review Letters, 118 (26), jun. 2017. URL https: //doi.org/10.1103/physrevlett.118.263901. 86 [121] Sermage, B., Long, S., Abram, I., Marzin, J. Y., Bloch, J., Planel, R., et al. Time-resolved spontaneous emission of excitons in a microcavity: Behavior of the individual exciton-photon mixed states. Physical Review B, 53 (24), 16516– 16523, jun. 1996. URL https://doi.org/10.1103/physrevb.53.16516. 91 [122] Gammon, D., Rudin, S., Reinecke, T. L., Katzer, D. S., Kyono, C. S. Physical Review B, 51 (23), 16785–16789, jun. 1995. URL https://doi.org/10.1103/ physrevb.51.16785. 92 [123] Houdr´e, R., Stanley, R. P., Ilegems, M. Vacuum-field Rabi splitting in the presence of inhomogeneous broadening: Resolution of a homogeneous linewidth in an inhomogeneously broadened system. Physical Review A, 53 (4), 2711–2715, abr. 1996. URL https://doi.org/10.1103/physreva.53.2711. 92, 93, 94 [124] Diniz, I., Portolan, S., Ferreira, R., G´erard, J. M., Bertet, P., Auff`eves, A. Strongly coupling a cavity to inhomogeneous ensembles of emitters: Potential for long-lived solid-state quantum memories. Physical Review A, 84 (6), dic. 2011. URL https://doi.org/10.1103/physreva.84.063810. 94 [125] Putz, S., Krimer, D. O., Ams¨uss, R., Valookaran, A., N¨obauer, T., Schmiedmayer, J., et al. Protecting a spin ensemble against decoherence in the strongcoupling regime of cavity QED. Nature Physics, 10 (10), 720–724, ago. 2014. URL https://doi.org/10.1038/nphys3050. 94 [126] Tosi, G., Christmann, G., Berloff, N., Tsotsis, P., Gao, T., Hatzopoulos, Z., et al. Sculpting oscillators with light within a nonlinear quantum fluid. Nature Physics, 8 (3), 190–194, 2012. 97 [127] Abbarchi, M., Amo, A., Sala, V., Solnyshkov, D., Flayac, H., Ferrier, L., et al. Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons. Nature Physics, 9 (5), 275–279, 2013. [128] Dreismann, A., Cristofolini, P., Balili, R., Christmann, G., Pinsker, F., Berloff, N. G., et al. Coupled counterrotating polariton condensates in optically defined annular potentials. Proceedings of the National Academy of Sciences, 111 (24), 8770–8775, 2014. URL https://www.pnas.org/content/111/24/8770. [129] Pieczarka, M., Boozarjmehr, M., Estrecho, E., Yoon, Y., Steger, M., West, K., et al. Effect of optically induced potential on the energy of trapped exciton polaritons below the condensation threshold. Phys. Rev. B, 100, 085301, Aug 2019. URL https://link.aps.org/doi/10.1103/PhysRevB.100.085301. 97 [130] Alyatkin, S., T¨opfer, J. D., Askitopoulos, A., Sigurdsson, H., Lagoudakis, P. G. Optical control of couplings in polariton condensate lattices. Phys. Rev. Lett., 124, 207402, May 2020. URL https://link.aps.org/doi/10.1103/ PhysRevLett.124.207402. 97, 112 [131] Letokhov, V., Minogin, V., Pavlik, B. Cooling and capture of atoms and molecules by a resonant light field. JETP, 1977. 97 [132] Wineland, D. J., Itano, W. M. Laser cooling of atoms. Phys. Rev. A, 20, 1521–1540, Oct 1979. URL https://link.aps.org/doi/10.1103/PhysRevA. 20.1521. [133] Monroe, C., Meekhof, D. M., King, B. E., Jefferts, S. R., Itano, W. M., Wineland, D. J., et al. Resolved-sideband Raman cooling of a bound atom to the 3d zeropoint energy. Phys. Rev. Lett., 75, 4011–4014, Nov 1995. URL https://link. aps.org/doi/10.1103/PhysRevLett.75.4011. 105, 108 [134] Chang, R., Hoendervanger, A. L., Bouton, Q., Fang, Y., Klafka, T., Audo, K., et al. Three-dimensional laser cooling at the Doppler limit. Phys. Rev. A, 90, 063407, Dec 2014. URL https://link.aps.org/doi/10.1103/PhysRevA.90. 063407. 97 [135] Pettit, R. M., Ge, W., Kumar, P., Luntz-Martin, D. R., Schultz, J. T., Neukirch, L. P., et al. An optical tweezer phonon laser. Nature Photonics, 13 (6), 402–405, abr. 2019. URL https://doi.org/10.1038/s41566-019-0395-5. 97 [136] Windey, D., Gonzalez-Ballestero, C., Maurer, P., Novotny, L., Romero-Isart, O., Reimann, R. Cavity-based 3d cooling of a levitated nanoparticle via coherent scattering. Phys. Rev. Lett., 122, 123601, Mar 2019. URL https://link.aps. org/doi/10.1103/PhysRevLett.122.123601. [137] Deli´c, U., Reisenbauer, M., Dare, K., Grass, D., Vuleti´c, V., Kiesel, N., et al. Cooling of a levitated nanoparticle to the motional quantum ground state. Science, 367 (6480), 892–895, feb. 2020. URL https://doi.org/10.1126/ science.aba3993. 97 [138] Arcizet, O., Cohadon, P.-F., Briant, T., Pinard, M., Heidmann, A. Radiationpressure cooling and optomechanical instability of a micromirror. Nature, 444 (7115), 71–74, nov. 2006. URL https://doi.org/10.1038/nature05244. 97, 106 [139] Kippenberg, T. J., Vahala, K. J. Cavity optomechanics: Back-action at the mesoscale. Science, 321 (5893), 1172–1176, ago. 2008. URL https://doi.org/ 10.1126/science.1156032. 97, 106 [140] Teufel, J. D., Donner, T., Li, D., Harlow, J. W., Allman, M. S., Cicak, K., et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature, 475 (7356), 359–363, jul. 2011. URL https://doi.org/10.1038/ nature10261. 97 [141] Verhagen, E., Del´eglise, S., Weis, S., Schliesser, A., Kippenberg, T. J. Quantumcoherent coupling of a mechanical oscillator to an optical cavity mode. Nature, 482 (7383), 63–67, feb. 2012. URL https://doi.org/10.1038/nature10787. [142] Qiu, L., Shomroni, I., Seidler, P., Kippenberg, T. J. Laser cooling of a nanomechanical oscillator to its zero-point energy. Phys. Rev. Lett., 124, 173601, Apr 2020. URL https://link.aps.org/doi/10.1103/PhysRevLett.124.173601. 97, 105, 108 [143] Kippenberg, T. J., Rokhsari, H., Carmon, T., Scherer, A., Vahala, K. J. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett., 95, 033901, Jul 2005. URL https://link.aps.org/doi/10. 1103/PhysRevLett.95.033901. 97 [144] Grudinin, I. S., Lee, H., Painter, O., Vahala, K. J. Phonon laser action in a tunable two-level system. Phys. Rev. Lett., 104, 083901, Feb 2010. URL https://link.aps.org/doi/10.1103/PhysRevLett.104.083901. 97, 106 [145] Talghader, J., Smith, J. S. Thermal dependence of the refractive index of GaAs and AlAs measured using semiconductor multilayer optical cavities. Applied Physics Letters, 66 (3), 335–337, ene. 1995. URL https://doi.org/10.1063/ 1.114204. 98 [146] Trigo, M., Fainstein, A., Jusserand, B., Thierry-Mieg, V. Finite-size effects on acoustic phonons in GaAs/AlAs superlattices. Phys. Rev. B, 66, 125311, Sep 2002. URL https://link.aps.org/doi/10.1103/PhysRevB.66.125311. 100 [147] Trigo, M., Eckhause, T. A., Reason, M., Goldman, R. S., Merlin, R. Observation of surface-avoiding waves: A new class of extended states in periodic media. Phys. Rev. Lett., 97, 124301, Sep 2006. URL https://link.aps.org/doi/10. 1103/PhysRevLett.97.124301. 102 [148] Otterstrom, N. T., Behunin, R. O., Kittlaus, E. A., Rakich, P. T. Optomechanical cooling in a continuous system. Phys. Rev. X, 8, 041034, Nov 2018. URL https: //link.aps.org/doi/10.1103/PhysRevX.8.041034. 106 [149] Kneipp, K., Wang, Y., Kneipp, H., Itzkan, I., Dasari, R. R., Feld, M. S. Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering. Phys. Rev. Lett., 76, 2444–2447, Apr 1996. URL https: //link.aps.org/doi/10.1103/PhysRevLett.76.2444. 107 [150] Maher, R. C., Etchegoin, P. G., Ru, E. C. L., Cohen, L. F. A conclusive demonstration of vibrational pumping under surface enhanced Raman scattering conditions. The Journal of Physical Chemistry B, 110 (24), 11757–11760, mayo 2006. URL https://doi.org/10.1021/jp060306d. [151] Shkarin, A. B., Kashkanova, A. D., Brown, C. D., Garcia, S., Ott, K., Reichel, J., et al. Quantum optomechanics in a liquid. Phys. Rev. Lett., 122, 153601, Apr 2019. URL https://link.aps.org/doi/10.1103/PhysRevLett.122.153601. 107 [152] Kharel, P., Harris, G. I., Kittlaus, E. A., Renninger, W. H., Otterstrom, N. T., Harris, J. G. E., et al. High-frequency cavity optomechanics using bulk acoustic phonons. Science Advances, 5 (4), abr. 2019. URL https://doi.org/10.1126/ sciadv.aav0582. 108, 110
Materias:Física > Optomecánica en cavidades
Divisiones:Gcia. de área de Investigación y aplicaciones no nucleares > Gcia. de Física > Materia condensada > Laboratorio de fotónica y optoelectrónica
Código ID:1219
Depositado Por:Marisa G. Velazco Aldao
Depositado En:19 Oct 2023 11:21
Última Modificación:19 Oct 2023 11:21

Personal del repositorio solamente: página de control del documento