Crecimiento, caracterizacin y aplicaciones de las lminas delgadas basadas en superconductores desordenados / Growth characterization and applications of thin films based on disordered superconductors

Hofer, Juan A. (2023) Crecimiento, caracterizacin y aplicaciones de las lminas delgadas basadas en superconductores desordenados / Growth characterization and applications of thin films based on disordered superconductors. Tesis Doctoral en Fsica, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Espaol
111Mb

Resumen en espaol

Este trabajo es un estudio experimental enfocado en la fabricacin y caracterizacin de lminas delgadas de materiales superconductores desordenados en vista de aplicaciones en sensores criognicos de radiacin y junturas Josephson. Los materiales involucrados estn basados principalmente en dos metales de transicin: el tungsteno o wolframio (W) y el molibdeno (Mo), tanto en fases puras como formando compuestos nitrurados. El W es un material de creciente inters tecnolgico, no solamente por sus propiedades superconductoras, sino tambin por se desempeo en reas de reciente investigacin como la espintrnica. Presenta dos fases alotrpicas, siendo solamente de inters tecnolgico la conocida como β-W. En cuanto a sus propiedades superconductoras, no est comprendido de manera correcta en la literatura el papel que juegan las distintas fases de este material y las estructuras desordenadas en el desarrollo de la superconductividad. Esta tesis cumple con tres objetivos en cuanto a las lminas delgadas basadas en W: primero, desarrollar la capacidad de crecer muestras ricas en la fase de inters tecnolgico, β-W. Segundo, comprender el origen de la superconductividad en este material y elucidar el rol que juegan las estructuras desordenadas por sobre las fases cristalinas. Tercero, utilizar el material para fabricar micro-alambres por tcnicas de litografa, que permitan caracterizarlo en vista de su utilizacin en aplicaciones. Por otra parte, los compuestos superconductores basados en nitruros de Mo, han sido caracterizados previamente en la literatura en cuanto a su composicin y propiedades superconductoras. El principal objetivo de esta tesis para con este material es estudiar su comportamiento ante la presencia de interfases e impurezas, en vista de utilizarlo en aplicaciones. Utilizando el conocimiento adquirido, se confinaron estructuras micro-fabricadas geomtricamente, y se evalu el desempeo de la fase superconductora γ-Mo_2N para ser utilizada en la fabricacin de detectores criognicos de radiacin. Adems, en vista de la calidad de las interfases y de las muestras depositadas, se disearon y fabricaron junturas verticales sobre heteroestructuras superconductor/aislante caracterizadas previamente desde un punto de vista bsico. Los resultados proveen un mtodo sencillo y eficiente para depositar lminas delgadas ricas en la fase β-W nanocristalina y un mtodo de depsito de lminas delgadas de la fase γ-Mo_2N con sus propiedades superconductoras optimizadas en lminas delgadas de pocos nanmetros de espesor. Por otra parte, la caracterizacin aplicada muestra que estos materiales son candidatos ejemplares para su utilizacin en el desarrollo de detectores de radiacin, pero no as para el desarrollo de junturas con las heteroestructuras utilizadas.

Resumen en ingls

This thesis refers to the fabrication and characterization of disordered superconducting thin films for their application in electronic devices such as superconducting nanowire single-photon detectors and Josephson junctions. The work is mainly focused in two materials: tungsten (W) and molybdenum (W), both as metallic and nitrides compounds. W is a material of growing technological interest, not only for its superconducting properties, but also for its performance in areas of recent research such as spintronics. It presents two allotropic phases, with only the one known as β-W being of technological interest. Regarding its superconducting properties, the role played by the different phases of this material and the disordered structures in the development of superconductivity is not correctly understood in the literature. This thesis meets three objectives regarding W-based thin films: first, develop the ability to grow samples rich in the phase of technological interest, β-W. Second, understand the origin of superconductivity in this material and elucidate the role played by disordered structures over crystalline phases. Third, use the material to manufacture micro-wires using lithography techniques, which allow it to be characterized in view of its use in applications. On the other hand, superconducting compounds based on Mo nitrides are characterized in terms of their composition and superconducting properties. The main objective of this thesis for this material is to study its behavior in the presence of interfaces and impurities, in view of using it in applications. Using the knowledge acquired, micro-fabricated structures were geometrically confined as much as possible, and the performance of the γ-Mo_2N superconducting phase was evaluated to be used in the fabrication of cryogenic radiation detectors. Furthermore, in view of the quality of the interfaces and the deposited samples, vertical junctions were designed and manufactured on superconducting/insulating heterostructures previously characterized from a basic point of view. The results provide a simple and efficient method to deposit thin films rich in the nanocrystalline β-W phase and a method of deposition for γ-Mo_2N phase in very thin films, which optimizes its superconducting properties even for a few nanometers thick. The applied characterization shows that these materials are exemplary candidates for their use in the development of radiation detectors, but not for the development of vertical junctions with the heterostructures here developed.

Tipo de objeto:Tesis (Tesis Doctoral en Fsica)
Palabras Clave:Superconductivity; Superconductividad; Thin films; Capas delgadas; Nitrides; Nitruros; Junctions; Uniones; [Disordered; Desordenados; Detectors; Detectores]
Referencias:[1] Barone, A., Paterno, G., et al. Physics and applications of the Josephson effect. 1982. URL http://hdl.handle.net/11588/177176. ix, 24, 25, 26, 179 [2] Bergmann, G. Amorphous metals and their superconductivity. Physics Reports, 27 (4), 159–185, 1976. URL https://doi.org/10.1016/0370-1573(76) 90040-5. 2 [3] Tsuei, C. Amorphous superconductors. En: Superconductor Materials Science: Metallurgy, Fabrication, and Applications, pgs. 735–756. Springer, 1981. [4] Cantor, B., et al. Rapidly quenched metals III. Book (Metals Society). United Kingdom: Metals Society, 1978. [5] Johnson, W. Superconductivity and electronic properties of amorphous transition metal alloys. Journal of Applied Physics, 50 (B3), 1557–1563, 1979. URL https: //doi.org/10.1063/1.327256. [6] Bosworth, D., Sahonta, S.-L., Hadfield, R. H., Barber, Z. H. Amorphous molybdenum silicon superconducting thin films. AIP Advances, 5 (8), 2015. URL https://doi.org/10.1063/1.4928285. 93, 188 [7] Wang, Y., Lin, R. Y. Amorphous molybdenum nitride thin films prepared by reactive sputter deposition. Materials Science and Engineering: B, 112 (1), 42– 49, 2004. URL https://doi.org/10.1016/j.mseb.2004.05.010. 2, 3 [8] Buckel, W., Hilsch, R. Einflu der Kondensation bei tiefen Temperaturen auf den elektrischen Widerstand und die Supraleitung fr verschiedene Metalle. Zeitschrift fr Physik, 138, 109–120, 1954. URL https://doi.org/10.1007/ bf01337903. 2 [9] Dobrovolskiy, O., Vodolazov, D. Y., Porrati, F., Sachser, R., Bevz, V., Mikhailov, M. Y., et al. Ultra-fast vortex motion in a direct-write Nb-C superconductor. Nature communications, 11 (1), 3291, 2020. URL https://doi.org/10.1038/ s41467-020-16987-y. 2, 34, 35, 88, 128, 129, 130, 137, 138, 139, 141, 142, 151, 155 [10] Sobolewski, R., Zhang, J., Slysz, W., Pearlman, A., Verevkin, A., Lipatov, A., et al. Ultrafast superconducting single-photon optical detectors and their applications. En: Advanced Optical Devices, Technologies, and Medical Applications, tomo 5123, pgs. 1–11. SPIE, 2003. URL https://doi.org/10.1109/tasc. 2003.814178. 2, 27 [11] Chattaraj, A., Balal, M., Yadav, A. K., Barman, S. R., Sinha, A. K., Jha, S. N., et al. Unravelling oxygen driven α to β phase transformation in tungsten. Scientific Reports, 10 (1), 14718, 2020. URL https://doi.org/10.1038/ s41598-020-71650-2. 3, 36, 68, 69, 89, 93 [12] Dyakov, I., Shvets, A. Investigation of superconducting properties of molybdenum. SOVIET PHYS JETP, 22 (4), 759–760, 1966. URL https://www.osti. gov/biblio/4585963. 3, 37 [13] Onnes, H. K. Further experiments with liquid helium. C. on the change of electric resistance of pure metals at very low temperatures etc. IV. the resistance of pure mercury at helium temperatures. En: KNAW, Proceedings, tomo 13, pgs. 1910– 1911. 1911. URL https://doi.org/10.1007/978-94-009-2079-8_15. 5, 7 [14] Meissner, W., Ochsenfeld, R. Ein neuer effekt bei eintritt der supraleitfahigkeit. Naturwissenschaften, 21 (44), 787–788, 1933. 5 [15] de Osaka, U. https://www.eurekalert.org/multimedia/826559, 22 de Marzo de 2023. 6 [16] Ginzburg, V., Landau, L. Zh. eksper. teor. Fiz, 20 (1064), 1960, 1950. 5 [17] Bardeen, J., Cooper, L. N., Schrieffer, J. R. Theory of superconductivity. Physical review, 108 (5), 1175, 1957. URL https://doi.org/10.1103/physrev.108. 1175. 5, 10 [18] Bednorz, J. G., Mller, K. A. Possible high tc superconductivity in the Ba-La- Cu-O system. Zeitschrift fr Physik B Condensed Matter, 64 (2), 189–193, 1986. URL https://cir.nii.ac.jp/crid/1574231874028940288. 5 [19] Dasenbrock-Gammon, N., Snider, E., McBride, R., Pasan, H., Durkee, D., Khalvashi-Sutter, N., et al. Evidence of near-ambient superconductivity in a N-doped lutetium hydride. Nature, 615 (7951), 244–250, 2023. URL https: //doi.org/10.1038/s41586-023-05742-0. 5 [20] Tinkham, M. Introduction to superconductivity. Courier Corporation, 2004. 5, 8, 9, 14, 15, 17, 24, 75, 77, 79, 81, 107, 133 [21] Ginzburg, V. L., Landau, L. D. ￿ ￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿. ￿￿￿￿￿￿ ￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿￿ ￿ ￿￿￿￿￿￿￿￿￿￿￿￿￿ ￿￿￿￿￿￿, 20, 1064, 1950. 8 [22] Cooper, L. N. Bound electron pairs in a degenerate fermi gas. Physical Review, 104 (4), 1189, 1956. URL https://doi.org/10.1103/physrev.104.1189. 10 [23] Hirsch, J. E. La superconductividad bien entendida empieza con H: La superconductividad mal entendida tambin. Reverte, 2019. 10 [24] Monton, C. M. Electrodinmica de superredes superconductor-Ferromagnticas de Nb-Co. Tesis Doctoral, Instituto Balseiro, Universidad Nacional de Cuyo, 2008. 15, 65 [25] Lee, P. J. Engineering superconductivity. John Wiley & Sons, 2001. 17, 24 [26] Takezawa, N., Koyama, T., Tachiki, M. Angular dependence of the upper critical field in layered superconductors. Physica C: Superconductivity, 207 (3-4), 231– 238, 1993. URL https://doi.org/10.1016/0921-4534(93)90304-9. 17, 26, 77 [27] Hess, H., Robinson, R., Dynes, R., Valles Jr, J., Waszczak, J. Scanning-tunnelingmicroscope observation of the Abrikosov flux lattice and the density of states near and inside a fluxoid. Physical review letters, 62 (2), 214, 1989. URL https: //doi.org/10.1103/physrevlett.62.214. 18 [28] Romanovskii, V., Watanabe, K. Nonlinear approximation for limiting currentcarrying capacity of Ag-sheathed Bi2Sr2CaCu2O8 conductors. Superconductor Science and Technology, 18, 407–416, 04 2005. URL https://doi.org/10.1088/ 0953-2048/18/4/006. 20 [29] Likharev, K. Superconducting weak links. Reviews of Modern Physics, 51 (1), 101, 1979. URL https://doi.org/10.1103/revmodphys.51.101. 22, 133 [30] Gonzlez-Ruano, C., Caso, D., Johnsen, L. G., Tiusan, C., Hehn, M., Banerjee, N., et al. Superconductivity assisted change of the perpendicular magnetic anisotropy in V/MgO/Fe junctions. Scientific Reports, 11 (1), 19041, 2021. URL https://doi.org/10.1038/s41598-021-98079-5. 24 [31] Guimpel, J. Efectos de tamao en superconductores inhomogeneos. Tesis Doctoral, Instituto Balseiro, Universidad Nacional de Cuyo, 1987. [32] Sarmiento Castillo, J. M., et al. Efecto de proximidad en estructuras superconductor/ferromagneto en funcin de las propiedades de la interfaz, 2013. URL https://repositorio.uniandes.edu.co/server/api/core/ bitstreams/770ffebc-57a7-483b-acdc-a4892325e448/content. 24 [33] Josephson, B. D. Possible new effects in superconductive tunnelling. Physics letters, 1 (7), 251–253, 1962. URL https://doi.org/10.1016/0031-9163(62) 91369-0. 24, 167 [34] Anderson, P. W., Rowell, J. M. Probable observation of the josephson superconducting tunneling effect. Physical Review Letters, 10 (6), 230, 1963. URL https://doi.org/10.1103/physrevlett.10.230. 24, 167 [35] Haberkorn, N., Kim, J., Surez, S., Lee, J.-H., Moon, S. Influence of random point defects introduced by proton irradiation on the flux creep rates and magnetic field dependence of the critical current density Jc of co-evaporated GdBa2Cu3O7- δ coated conductors. Superconductor Science and Technology, 28 (12), 125007, 2015. URL https://doi.org/10.1088/0953-2048/28/12/125007. 26 [36] Natarajan, C. M., Tanner, M. G., Hadfield, R. H. Superconducting nanowire single-photon detectors: physics and applications. Superconductor science and technology, 25 (6), 063001, 2012. URL https://doi.org/10.1088/0953-2048/ 25/6/063001. 26, 27, 28, 98, 128, 129, 146, 162 [37] Kerman, A. J., Dauler, E. A., Keicher, W. E., Yang, J. K., Berggren, K. K., Gol’Tsman, G., et al. Kinetic-inductance-limited reset time of superconducting nanowire photon counters. Applied physics letters, 88 (11), 2006. URL https: //doi.org/10.1063/1.2183810. 28, 29, 128 [38] Hadfield, R., Miller, A. J., Nam, S. W., Kautz, R. L., Schwall, R. E. Lowfrequency phase locking in high-inductance superconducting nanowires. Applied Physics Letters, 87 (20), 2005. URL https://doi.org/10.1063/1.2130525. 28 [39] Yang, J. K., Kerman, A. J., Dauler, E. A., Anant, V., Rosfjord, K. M., Berggren, K. K. Modeling the electrical and thermal response of superconducting nanowire single-photon detectors. IEEE transactions on applied superconductivity, 17 (2), 581–585, 2007. URL https://doi.org/10.1109/tasc.2007.898660. 29 [40] Gol’Tsman, G., Okunev, O., Chulkova, G., Lipatov, A., Semenov, A., Smirnov, K., et al. Picosecond superconducting single-photon optical detector. Applied physics letters, 79 (6), 705–707, 2001. URL https://doi.org/10.1063/1.1388868. 29 [41] Dorenbos, S., Reiger, E., Perinetti, U., Zwiller, V., Zijlstra, T., Klapwijk, T. Low noise superconducting single photon detectors on silicon. Applied Physics Letters, 93 (13), 2008. URL https://doi.org/10.1063/1.2990646. 30 [42] Dauler, E. A., Robinson, B. S., Kerman, A. J., Yang, J. K., Rosfjord, K. M., Anant, V., et al. Multi-element superconducting nanowire single-photon detector. IEEE Transactions on Applied Superconductivity, 17 (2), 279–284, 2007. URL https://doi.org/10.1109/tasc.2007.897372. 30 [43] Miki, S., Takeda, M., Fujiwara, M., Sasaki, M., Otomo, A., Wang, Z. Superconducting NbTiN nanowire single photon detectors with low kinetic inductance. Applied physics express, 2 (7), 075002, 2009. URL https://doi.org/10.1143/ apex.2.075002. 30 [44] Annunziata, A. J., Quaranta, O., Santavicca, D. F., Casaburi, A., Frunzio, L., Ejrnaes, M., et al. Reset dynamics and latching in niobium superconducting nanowire single-photon detectors. Journal of Applied Physics, 108 (8), 2010. URL https://doi.org/10.1063/1.3498809. 30 [45] Charaev, I., Bandurin, D., Bollinger, A., Phinney, I., Drozdov, I., Colangelo, M., et al. Single-photon detection using high-temperature superconductors. Nature Nanotechnology, 18 (4), 343–349, 2023. URL https://doi.org/10.1038/ s41565-023-01325-2. 30 [46] Gol’Tsman, G., Minaeva, O., Korneev, A., Tarkhov, M., Rubtsova, I., Divochiy, A., et al. Middle-infrared to visible-light ultrafast superconducting single-photon detectors. IEEE Transactions on Applied Superconductivity, 17 (2), 246–251, 2007. URL https://doi.org/10.1109/tasc.2007.898252. 30 [47] Marsili, F., Najafi, F., Dauler, E., Bellei, F., Hu, X., Csete, M., et al. Singlephoton detectors based on ultranarrow superconducting nanowires. Nano letters, 11 (5), 2048–2053, 2011. URL https://doi.org/10.1021/nl2005143. 30 [48] Verma, V. B., Korzh, B., Bussieres, F., Horansky, R. D., Lita, A. E., Marsili, F., et al. High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K. Applied Physics Letters, 105 (12), 2014. URL https://doi. org/10.1063/1.4896045. 30, 37 [49] Baek, B., Lita, A. E., Verma, V., Nam, S. W. Superconducting a-WxSi1-x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm. Applied Physics Letters, 98 (25), 2011. URL https: //doi.org/10.1063/1.3600793. 30 [50] Dorenbos, S., Forn-Daz, P., Fuse, T., Verbruggen, A., Zijlstra, T., Klapwijk, T., et al. Low gap superconducting single photon detectors for infrared sensitivity. Applied Physics Letters, 98 (25), 2011. URL https://doi.org/10.1063/1. 3599712. 30 [51] Engel, A., Aeschbacher, A., Inderbitzin, K., Schilling, A., Il’in, K., Hofherr, M., et al. Tantalum nitride superconducting single-photon detectors with low cut-off energy. Applied Physics Letters, 100 (6), 062601, 2012. URL https://doi.org/ 10.1063/1.3684243. 30 [52] Korneeva, Y. P., Mikhailov, M. Y., Pershin, Y. P., Manova, N., Divochiy, A., Vakhtomin, Y. B., et al. Superconducting single-photon detector made of MoSi film. Superconductor Science and Technology, 27 (9), 095012, 2014. URL https: //doi.org/10.1088/0953-2048/27/9/095012. 30, 96 [53] Larkin, A., Ovchinnikov, Y. Nonlinear conductivity of superconductors in the mixed state. Sov. Phys. JETP, 41 (5), 960–965, 1975. URL http://www.jetp. ras.ru/cgi-bin/dn/e_041_05_0960.pdf. 31, 32, 130, 132, 137, 139, 156 [54] Lin, S.-Z., Ayala-Valenzuela, O., McDonald, R. D., Bulaevskii, L. N., Holesinger, T. G., Ronning, F., et al. Characterization of the thin-film NbN superconductor for single-photon detection by transport measurements. Physical Review B, 87 (18), 184507, 2013. URL https://doi.org/10.1103/physrevb.87.184507. 31, 34, 88, 137, 138, 139, 144, 150, 155 [55] Doettinger, S., Huebener, R., Khle, A. Electronic instability during vortex motion in cuprate superconductors regime of low and high magnetic fields. Physica C: Superconductivity, 251 (3-4), 285–289, 1995. URL https://doi.org/10. 1016/0921-4534(95)00411-4. 32, 33, 131, 140, 141, 151 [56] Bezuglyj, A., Shklovskij, V. Effect of self-heating on flux flow instability in a superconductor near tc. Physica C: Superconductivity, 202 (3-4), 234–242, 1992. URL https://doi.org/10.1016/0921-4534(92)90165-9. 33, 34, 131, 140, 151, 152, 156 [57] Embon, L., Anahory, Y., Jelić, Ž. L., Lachman, E. O., Myasoedov, Y., Huber, M. E., et al. Imaging of super-fast dynamics and flow instabilities of superconducting vortices. Nature communications, 8 (1), 85, 2017. URL https: //doi.org/10.1038/s41467-017-00089-3. 35, 130, 158 [58] Bezuglyj, A. I., Shklovskij, V. A., Vovk, R. V., Bevz, V. M., Huth, M., Dobrovolskiy, O. V. Local flux-flow instability in superconducting films near tc. Physical Review B, 99 (17), 174518, 2019. URL https://doi.org/10.1103/physrevb. 99.174518. 35, 129, 130, 142, 150, 151, 153, 157, 158, 190 [59] Haberkorn, N. Thickness dependence of the flux-flow velocity and the vortex instability in nanocrystalline γ-Mo2N thin films. Thin Solid Films, 759, 139475, 2022. URL https://doi.org/10.1016/j.tsf.2022.139475. 35, 130, 155, 156 [60] Semenov, A., Engel, A., Hbers, H.-W., Il’in, K., Siegel, M. Spectral cut-off in the efficiency of the resistive state formation caused by absorption of a singlephoton in current-carrying superconducting nano-strips. The European Physical Journal B-Condensed Matter and Complex Systems, 47, 495–501, 2005. URL https://doi.org/10.1140/epjb/e2005-00351-8. 35, 98, 129 [61] Costa, M., Costa, A., Hu, J., Wu, R., Muniz, R. β-tungsten: a promising metal for spintronics. Journal of Physics: Condensed Matter, 30 (30), 305802, 2018. URL https://doi.org/10.1088/1361-648x/aacc08. 36, 67, 68 [62] Basavaiah, S., Pollack, S. Superconductivity in β-tungsten films. Journal of Applied Physics, 39 (12), 5548–5556, 1968. URL https://doi.org/10.1063/1. 1656012. 36, 68, 94 [63] Morcom, W., Worrell, W., Sell, H. G., Kaplan, H. The preparation and characterization of beta-tungsten, a metastable tungsten phase. Metallurgical and Materials Transactions B, 5, 155–161, 1974. URL https://doi.org/10.1007/ bf02642939. 36 [64] Magnli, A. Structure of β-tungsten oxide. Nature, 165 (4192), 356–357, 1950. URL https://doi.org/10.1038/165356b0. 36 [65] Jhajhria, D., Behera, N., Pandya, D. K., Chaudhary, S. Dependence of spin pumping in W/CoFeB heterostructures on the structural phase of tungsten. Physical Review B, 99 (1), 014430, 2019. URL https://doi.org/10.1103/physrevb. 99.014430. 36, 69, 85 [66] Radić, N., Tonejc, A., Ivkov, J., Dubček, P., Bernstorff, S., Medunić, Z. Sputterdeposited amorphous-like tungsten. Surface and Coatings Technology, 180, 66– 70, 2004. URL https://doi.org/10.1016/j.surfcoat.2003.10.038. 36, 69 [67] Wen, M., Meng, Q., Yu, W., Zheng, W., Mao, S., Hua, M. Growth, stress and hardness of reactively sputtered tungsten nitride thin films. Surface and Coatings Technology, 205 (7), 1953–1961, 2010. URL https://doi.org/10. 1016/j.surfcoat.2010.08.082. 36, 69, 72, 89 [68] Sun, Y., Wang, J., Zhao, W., Tian, M., Singh, M., Chan, M. H. Voltage-current properties of superconducting amorphous tungsten nanostrips. Scientific reports, 3 (1), 2307, 2013. URL https://doi.org/10.1038/srep02307. 36, 68, 69, 73, 82, 131, 137 [69] Dai, J., Onomitsu, K., Kometani, R., Krockenberger, Y., Yamaguchi, H., Ishihara, S., et al. Superconductivity in tungsten-carbide nanowires deposited from the mixtures of W(CO)6 and C14H10. Japanese Journal of Applied Physics, 52 (7R), 075001, 2013. URL https://doi.org/10.7567/jjap.52.075001. [70] Aloysius, R., Husale, S., Kumar, A., Ahmad, F., Gangwar, A., Papanai, G. S., et al. Superconducting properties of tungsten nanowires fabricated using focussed ion beam technique. Nanotechnology, 30 (40), 405001, 2019. URL https://doi. org/10.1088/1361-6528/ab2d6d. 36, 69, 82, 87, 131 [71] Ohya, S., Chiaro, B., Megrant, A., Neill, C., Barends, R., Chen, Y., et al. Room temperature deposition of sputtered TiN films for superconducting coplanar waveguide resonators. Superconductor Science and Technology, 27 (1), 015009, 2013. URL https://doi.org/10.1088/0953-2048/27/1/015009. 37, 96 [72] Chaudhuri, S., Nevala, M., Maasilta, I. Niobium nitride-based normal metalinsulator- superconductor tunnel junction microthermometer. Applied Physics Letters, 102 (13), 2013. URL https://doi.org/10.1063/1.4800440. [73] Baskaran, R., Arasu, A. T., Amaladass, E., Vaidhyanathan, L., Baisnab, D. Increased upper critical field for nanocrystalline MoN thin films deposited on AlN buffered substrates at ambient temperature. Journal of Physics D: Applied Physics, 49 (20), 205304, 2016. URL https://doi.org/10.1088/0022-3727/49/ 20/205304. 37, 80, 92, 95, 96, 119, 156 [74] Matthias, B., Hulm, J. A search for new superconducting compounds. Physical Review, 87 (5), 799, 1952. URL https://doi.org/10.1103/physrev.87.799. 37 [75] Inumaru, K., Baba, K., Yamanaka, S. Synthesis and characterization of superconducting β-Mo2N crystalline phase on a Si substrate: an application of pulsed laser deposition to nitride chemistry. Chemistry of materials, 17 (24), 5935–5940, 2005. URL https://doi.org/10.1021/cm050708i. 37 [76] Zhang, H., Hui, Z., Tang, X., Wei, R., Yang, J., Dai, J., et al. Self-assembled c-axis oriented δ-MoN thin films on Si substrates by chemical solution deposition: Growth, transport and superconducting properties. Journal of Alloys and Compounds, 704, 453–458, 2017. URL https://doi.org/10.1016/j.jallcom. 2017.02.084. 37 [77] Haberkorn, N., Bengi, S., Surez, S., Prez, P. D., Sirena, M., Guimpel, J. Effect of the nitrogen-argon gas mixtures on the superconductivity properties of reactively sputtered molybdenum nitride thin films. Materials Letters, 215, 15–18, 2018. URL https://doi.org/10.1016/j.matlet.2017.12.045. 37, 73, 95, 96, 115, 117, 148, 171 [78] Haberkorn, N., Bengi, S., Surez, S., Prez, P. D., Hofer, J. A., Sirena, M. Effect of thermal annealing and irradiation damage on the superconducting critical temperature of nanocrystalline γ-Mo2N thin films. Materials Letters, 236, 252– 255, 2019. URL https://doi.org/10.1016/j.matlet.2018.10.094. 37, 96, 114, 119 [79] Haberkorn, N., Bengi, S., Troiani, H., Surez, S., Prez, P. D., Granell, P., et al. Thickness dependence of the superconducting properties of γ-Mo2N thin films on Si (001) grown by DC sputtering at room temperature. Materials Chemistry and Physics, 204, 48–57, 2018. URL https://doi.org/10.1016/j.matchemphys. 2017.10.015. 37, 80, 96, 111, 117, 119 [80] Navarro Fernndez, H. L. Fabricacin y caracterizacin estructural y electrnica de interfaces basadas en xidos multifuncionales. Tesis Doctoral, Universidad Nacional de Cuyo, 2019. 43, 96, 168 [81] Zang, J., Ma, Y., Zhao, Y., Guo, R., Liu, Y., Liu, D., et al. Effect of postannealing treatment on the thermoelectric properties of Ag2Se flexible thin film prepared by magnetron sputtering method. Results in Physics, pg. 106222, 2023. URL https://doi.org/10.1016/j.rinp.2023.106222. 43 [82] Ohring, M. Materials Science of Thin Films: Depositon and Structure. Elsevier, 2001. 43 [83] Kelly, P. J., Arnell, R. D. Magnetron sputtering: a review of recent developments and applications. Vacuum, 56 (3), 159–172, 2000. URL https://doi.org/10. 1016/s0042-207x(99)00189-x. 44 [84] Lesker, K. J. Practical process tips. Lesker tech, 7, 2010. 45, 46 [85] Mattox, D. M. Atomistic film growth and some growth-related film properties. Handbook of Physical Vapor Deposition (PVD) Processing, 2, 472–568, 1998. 47 [86] Bushroa, A. R., Rahbari, R., Masjuki, H. H., Muhamad, M. R. Approximation of crystallite size and microstrain via XRD line broadening analysis in TiSiN thin films. Vacuum, 86 (8), 1107–1112, 2012. URL https://doi.org/10.1016/j. vacuum.2011.10.011. 51 [87] Daillant, J., Gibaud, A. X-ray and neutron reflectivity: principles and applications, tomo 770. Springer, 2008. 53 [88] Yasaka, M., et al. X-ray thin-film measurement techniques. The Rigaku Journal, 26 (2), 1–9, 2010. 53 [89] Braun, C. Parratt32 or the reflectometry tool. HMI, Berlin, 1999, 1997. 53, 55, 71, 83, 114 [90] Santamara Abad, R. Estudio de viabilidad para la construccin y explotacin de un acelerador de partculas en espaa, 2014. URL http://hdl.handle.net/ 11531/1377. 57 [91] Haberkorn, N., Zhang, Y., Kim, J., McCleskey, T. M., Burrell, A. K., Depaula, R., et al. Upper critical magnetic field and vortex-free state in very thin epitaxial δ-MoN films grown by polymer-assisted deposition. Superconductor Science and Technology, 26 (10), 105023, 2013. URL https://doi.org/10.1088/ 0953-2048/26/10/105023. 64, 134 [92] Agudelo-Morimitsu, L., De La Roche, J., Ruden, A., Escobar, D., Restrepo-Parra, E. Effect of substrate temperature on the mechanical and tribological properties of W/WC produced by DC magnetron sputtering. Ceramics International, 40 (5), 7037–7042, 2014. URL https://doi.org/10.1016/j.ceramint.2013. 12.033. 67 [93] Currie, A., Howard, K. Application of a molecular precursor to the preparation of tungsten and beta-tungsten nitride coatings and powders. Journal of materials science, 27, 2739–2742, 1992. URL https://doi.org/10.1007/bf00540699. 67 [94] Choi, D., Wang, B., Chung, S., Liu, X., Darbal, A., Wise, A., et al. Phase, grain structure, stress, and resistivity of sputter-deposited tungsten films. Journal of Vacuum Science & Technology A, 29 (5), 2011. URL https://doi.org/10. 1116/1.3622619. 67 [95] Lee, J.-S., Cho, J., You, C.-Y. Growth and characterization of α and β-phase tungsten films on various substrates. Journal of Vacuum Science & Technology A, 34 (2), 2016. URL https://doi.org/10.1116/1.4936261. 67 [96] Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C., Jungwirth, T. Spin hall effects. Reviews of modern physics, 87 (4), 1213, 2015. URL https://doi.org/ 10.1103/revmodphys.87.1213. 68 [97] Hao, Q., Chen, W., Xiao, G. Beta (β) tungsten thin films: Structure, electron transport, and giant spin Hall effect. Applied Physics Letters, 106 (18), 2015. URL https://doi.org/10.1063/1.4919867. 68, 69 [98] Gmez, J. E., Haberkorn, N. Impact of nitrogen impurities on the tungsten properties for application in spintronic. Applied Physics A, 129 (6), 409, 2023. URL https://doi.org/10.1007/s00339-023-06695-x. 68 [99] Sengupta, S., Li, C., Baumier, C., Kasumov, A., Guron, S., Bouchiat, H., et al. Superconducting nanowires by electron-beam-induced deposition. Applied Physics Letters, 106 (4), 2015. URL https://doi.org/10.1063/1.4906269. 68, 73 [100] Kim, Y. J., Kang, S.-G., Oh, Y., Kim, G. W., Cha, I. H., Han, H. N., et al. Microstructural evolution and electrical resistivity of nanocrystalline W thin films grown by sputtering. Materials Characterization, 145, 473–478, 2018. URL https://doi.org/10.1016/j.matchar.2018.09.016. 69, 73 [101] Salamon, K., Milat, O., Radić, N., Dubček, P., Jerčinović, M., Bernstorff, S. Structure and morphology of magnetron sputtered W films studied by x-ray methods. Journal of Physics D: Applied Physics, 46 (9), 095304, 2013. URL https://doi.org/10.1088/0022-3727/46/9/095304. 69 [102] Kilbane, F., Habig, P. Superconducting transition temperatures of reactively sputtered films of tantalum nitride and tungsten nitride. Journal of Vacuum Science and Technology, 12 (1), 107–109, 1975. URL https://doi.org/10. 1116/1.568734. 69, 82, 87, 92 [103] Hones, P., Martin, N., Regula, M., Lvy, F. Structural and mechanical properties of chromium nitride, molybdenum nitride, and tungsten nitride thin films. Journal of Physics D: Applied Physics, 36 (8), 1023, 2003. URL https://doi.org/10.1088/0022-3727/36/8/313. 69 [104] Kaidatzis, A., Psycharis, V., Mergia, K., Niarchos, D. Annealing effects on the structural and electrical properties of sputtered tungsten thin films. Thin Solid Films, 619, 61–67, 2016. URL https://doi.org/10.1016/j.tsf.2016.10.027. 69 [105] Maki, K. Effect of pauli paramagnetism on magnetic properties of high-field superconductors. Physical Review, 148 (1), 362, 1966. URL https://doi.org/ 10.1103/physrev.148.362. 75 [106] Clogston, A. M. Upper limit for the critical field in hard superconductors. Physical Review Letters, 9 (6), 266, 1962. URL https://doi.org/10.1103/ physrevlett.9.266. 81 [107] Ors, P., Sigloch, F., Sangiao, S., De Teresa, J. M. Superconducting WC nanopillars fabricated by Ga+ focused ion beam induced deposition. Journal of Solid State Chemistry, 315, 123476, 2022. URL https://doi.org/10.1016/j.jssc. 2022.123476. 82, 131 [108] Hofer, J. A., Haberkorn, N. Superconductivity in nanocrystalline tungsten thin films growth by sputtering in a nitrogen-argon mixture. Thin Solid Films, 685, 117–122, 2019. URL https://doi.org/10.1016/j.tsf.2019.06.014. 82 [109] Shen, Y., Mai, Y., McBride, W., McKenzie, D., Zhang, Q. Oxygen-induced amorphous structure of tungsten thin films. Applied physics letters, 75 (15), 2211–2213, 1999. URL https://doi.org/10.1063/1.124967. 82 [110] Suetin, D., Shein, I., Ivanovskii, A. Electronic structure of cubic tungsten subnitride W2N in comparison to hexagonal and cubic tungsten mononitrides WN. Journal of Structural Chemistry, 51, 199–203, 2010. URL https: //doi.org/10.1007/s10947-010-0031-1. 82 [111] Noyan, I., Shaw, T., Goldsmith, C. Inhomogeneous strain states in sputter deposited tungsten thin films. Journal of applied physics, 82 (9), 4300–4302, 1997. 85 [112] Rossnagel, S. M., Noyan, I. C., Cabral Jr, C. Phase transformation of thin sputter-deposited tungsten films at room temperature. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 20 (5), 2047–2051, 2002. URL https: //doi.org/10.1116/1.1506905. 85 [113] Helfand, E., Werthamer, N. Temperature and purity dependence of the superconducting critical field, Hc2. Physical Review, 147 (1), 288, 1966. URL https://doi.org/10.1103/physrevlett.13.686. 87, 107 [114] Hofer, J., Bengio, S., Surez, S., Haberkorn, N. Elucidating the role of disorder introduced by nitrogen in the superconducting properties of tungsten thin films. Materials Advances, 4 (1), 150–156, 2023. URL https://doi.org/10.1039/ d2ma00935h. 89 [115] Van Der Veen, J., Himpsel, F., Eastman, D. Chemisorption-induced 4f-coreelectron binding-energy shifts for surface atoms of W (111), W (100), and Ta (111). Physical Review B, 25 (12), 7388, 1982. URL https://doi.org/10. 1103/physrevb.25.7388. 89 [116] Takano, I., Isobe, S., Sasaki, T., Baba, Y. Nitrogenation of various transition metals by N+ 2 -ion implantation. Applied Surface Science, 37 (1), 25–32, 1989. URL https://doi.org/10.1016/0169-4332(89)90970-7. 89 [117] Alegre, D., Acsente, T., Martin-Rojo, A., Oyarzabal, E., Tabars, F., Dinescu, G., et al. Characterisation of tungsten nitride layers and their erosion under plasma exposure in nano-psi. Rom. Rep. Phys, 67, 532, 2015. URL https: //www.academia.edu/download/87966330/A23.pdf. 89, 93, 119 [118] Zhang, X., Engel, A., Wang, Q., Schilling, A., Semenov, A., Sidorova, M., et al. Characteristics of superconducting tungsten silicide WxSi1 − x for single photon detection. Physical Review B, 94 (17), 174509, 2016. URL https://doi.org/ 10.1103/physrevb.94.174509. 93, 188 [119] Singh, H., Gupta, M., Gupta, P., Penacchio, R. F., Morelhao, S. L., Kumar, H. Role of nitrogen partial pressure, deposition rate and annealing on stability of β-W phase. Applied Physics A, 129 (5), 312, 2023. URL https://doi.org/10. 1007/s00339-023-06552-x. 94 [120] Walter, A. B., Bockstiegel, C., Mazin, B. A., Daal, M. Laminated NbTi-onkapton microstrip cables for flexible sub-kelvin RF electronics. IEEE Transactions on Applied Superconductivity, 28 (1), 1–5, 2017. URL https://doi.org/ 10.1109/tasc.2017.2773836. 95, 128 [121] Gupta, V., Yelamanchili, B., Zou, S., Isaacs-Smith, T., Sellers, J. A., Tuckerman, D. B., et al. Thin-film Nb/polyimide superconducting stripline flexible cables. IEEE Transactions on Applied Superconductivity, 29 (5), 1–5, 2019. URL https: //doi.org/10.1109/tasc.2019.2904203. 95, 128 [122] Banerjee, A., Baker, L. J., Doye, A., Nord, M., Heath, R. M., Erotokritou, K., et al. Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires. Superconductor Science and Technology, 30 (8), 084010, 2017. URL https://doi.org/10.1088/1361-6668/aa76d8. 95, 96 [123] Mochizuki, T., Tsujimaru, T., Kashiwagi, M., Nishi, Y. Film properties of MoSi2 and their application to self-aligned MoSi2 gate mosfet. IEEE Transactions on Electron Devices, 27 (8), 1431–1435, 1980. URL https://doi.org/10.1109/ t-ed.1980.20052. [124] Chou, T., Nieh, T. Phase transformation and mechanical properties of thin MoSi2 films produced by sputter deposition. Thin Solid Films, 214 (1), 48–57, 1992. URL https://doi.org/10.1016/0040-6090(92)90454-j. [125] Verma, V. B., Korzh, B., Bussieres, F., Horansky, R. D., Dyer, S. D., Lita, A. E., et al. High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films. Optics express, 23 (26), 33792–33801, 2015. URL https://doi.org/10.1364/oe.23.033792. 128, 129, 165 [126] Charaev, I., Morimoto, Y., Dane, A., Agarwal, A., Colangelo, M., Berggren, K. K. Large-area microwire MoSi single-photon detectors at 1550 nm wavelength. Applied Physics Letters, 116 (24), 2020. URL https://doi.org/10.1063/5. 0005439. 95 [127] Hallett, L., Charaev, I., Agarwal, A., Dane, A., Colangelo, M., Zhu, D., et al. Superconducting MoN thin films prepared by DC reactive magnetron sputtering for nanowire single-photon detectors. Superconductor Science and Technology, 34 (3), 035012, 2021. URL https://doi.org/10.1088/1361-6668/abda5f. 95, 96 [128] Jauberteau, I., Bessaudou, A., Mayet, R., Cornette, J., Jauberteau, J. L., Carles, P., et al. Molybdenum nitride films: crystal structures, synthesis, mechanical, electrical and some other properties. Coatings, 5 (4), 656–687, 2015. URL https: //doi.org/10.3390/coatings5040656. 95 [129] Postolnyi, B. O., Beresnev, V., Abadias, G., Bondar, O., Rebouta, L., Araujo, J., et al. Multilayer design of CrN/MoN protective coatings for enhanced hardness and toughness. Journal of Alloys and Compounds, 725, 1188–1198, 2017. URL https://doi.org/10.1016/j.jallcom.2017.07.010. 96 [130] Qian, J., Li, S., Pu, J., Cai, Z., Wang, H., Cai, Q., et al. Effect of heat treatment on structure and properties of molybdenum nitride and molybdenum carbonitride films prepared by magnetron sputtering. Surface and Coatings Technology, 374, 725–735, 2019. URL https://doi.org/10.1016/j.surfcoat.2019.06.062. 96 [131] Tolpygo, S. K., Bolkhovsky, V., Oates, D. E., Rastogi, R., Zarr, S., Day, A. L., et al. Superconductor electronics fabrication process with MoNx kinetic inductors and self-shunted Josephson junctions. IEEE Transactions on Applied Superconductivity, 28 (4), 1–12, 2018. URL https://doi.org/10.1109/tasc.2018. 2809442. 96 [132] Inzani, K., Nematollahi, M., Vullum-Bruer, F., Grande, T., Reenaas, T. W., Selbach, S. M. Electronic properties of reduced molybdenum oxides. Physical chemistry chemical physics, 19 (13), 9232–9245, 2017. URL https://doi.org/ 10.1039/c7cp00644f. 97 [133] Patil, R., Uplane, M., Patil, P. Structural and optical properties of electrodeposited molybdenum oxide thin films. Applied Surface Science, 252 (23), 8050–8056, 2006. URL https://doi.org/10.1016/j.apsusc.2005.10.016. 110, 111 [134] Xiang, Z., Zhang, Q., Zhang, Z., Xu, X., Wang, Q. Preparation and photoelectric properties of semiconductor MoO2 micro/nanospheres with wide bandgap. Ce ramics International, 41 (1), 977–981, 2015. URL https://doi.org/10.1016/ j.ceramint.2014.09.017. 97 [135] De Castro, I. A., Datta, R. S., Ou, J. Z., Castellanos-Gomez, A., Sriram, S., Daeneke, T., et al. Molybdenum oxides–from fundamentals to functionality. Advanced Materials, 29 (40), 1701619, 2017. URL https://doi.org/10.1002/ adma.201701619. 97 [136] Sian, T. S., Reddy, G. Optical, structural and photoelectron spectroscopic studies on amorphous and crystalline molybdenum oxide thin films. Solar energy materials and solar cells, 82 (3), 375–386, 2004. URL https://doi.org/10. 1016/j.solmat.2003.12.007. 110, 111 [137] Smith, G., Golestan, D., Gentle, A. The insulator to correlated metal phase transition in molybdenum oxides. Applied Physics Letters, 103 (5), 2013. URL https://doi.org/10.1063/1.4817588. 97 [138] Dobrovolskiy, O., Bevz, V., Begun, E., Sachser, R., Vovk, R., Huth, M. Fast dynamics of guided magnetic flux quanta. Physical Review Applied, 11 (5), 054064, 2019. URL https://doi.org/10.1103/physrevapplied.11.054064. 97, 158 [139] Caputo, M., Cirillo, C., Voltan, S., Cucolo, A., Aarts, J., Attanasio, C. Influence of the magnetic configuration on the vortex-lattice instability in Nb/permalloy bilayers. Physical Review B, 96 (17), 174519, 2017. URL https://doi.org/10. 1103/physrevb.96.174519. 97 [140] Bluhm, H., Bert, J. A., Koshnick, N. C., Huber, M. E., Moler, K. A. Spinlike susceptibility of metallic and insulating thin films at low temperature. Physical Review Letters, 103 (2), 026805, 2009. URL https://doi.org/10.1103/ physrevlett.103.026805. 97 [141] Sendelbach, S., Hover, D., Kittel, A., Mck, M., Martinis, J. M., McDermott, R. Magnetism in SQUIDs at millikelvin temperatures. Physical review letters, 100 (22), 227006, 2008. URL https://doi.org/10.1103/physrevlett.100. 227006. 97 [142] Rogachev, A., Wei, T.-C., Pekker, D., Bollinger, A., Goldbart, P. M., Bezryadin, A. Magnetic-field enhancement of superconductivity in ultranarrow wires. Physical review letters, 97 (13), 137001, 2006. URL https://doi.org/10.1103/ physrevlett.97.137001. 97 [143] Il’in, K., Hofherr, M., Rall, D., Siegel, M., Semenov, A., Engel, A., et al. Ultrathin TaN films for superconducting nanowire single-photon detectors. Journal of Low Temperature Physics, 167, 809–814, 2012. URL https://doi.org/10. 1007/s10909-011-0424-3. 98 [144] Hofherr, M., Rall, D., Ilin, K., Siegel, M., Semenov, A., Hbers, H.-W., et al. Intrinsic detection efficiency of superconducting nanowire single-photon detectors with different thicknesses. Journal of Applied Physics, 108 (1), 2010. URL https://doi.org/10.1063/1.3437043. 98 [145] Tsuneoka, T., Makise, K., Maeda, S., Shinozaki, B., Ichikawa, F. Localization and pair breaking parameter in superconducting molybdenum nitride thin films. Journal of Physics: Condensed Matter, 29 (1), 015701, 2016. URL https:// doi.org/10.1088/0953-8984/29/1/015701. 98, 111, 149, 150 [146] Engel, A., Renema, J., Il’in, K., Semenov, A. Detection mechanism of superconducting nanowire single-photon detectors. Superconductor Science and Technology, 28 (11), 114003, 2015. URL https://doi.org/10.1088/0953-2048/28/ 11/114003. 98, 128 [147] You, L. Superconducting nanowire single-photon detectors for quantum information. Nanophotonics, 9 (9), 2673–2692, 2020. URL https://doi.org/10.1515/ nanoph-2020-0186. 98, 128, 164 [148] Nakamura, O., Fullerton, E. E., Guimpel, J., Schuller, I. K. High tc thin films with roughness smaller than one unit cell. Applied physics letters, 60 (1), 120–122, 1992. URL https://doi.org/10.1063/1.107343. 101 [149] Seshan, K. Handbook of thin film deposition. William Andrew, 2012. 101 [150] Park, J., Kang, Y.-C. Surface characterization of Mo oxynitride films obtained by RF sputtering at various N2 ratios. Metals and Materials International, 19, 55–60, 2013. URL https://doi.org/10.1007/s12540-013-1010-9. 105 [151] Kim, G.-T., Park, T.-K., Chung, H., Kim, Y.-T., Kwon, M.-H., Choi, J.-G. Growth and characterization of chloronitroaniline crystals for optical parametric oscillators: I. XPS study of Mo-based compounds. Applied surface science, 152 (1- 2), 35–43, 1999. URL https://doi.org/10.1016/s0169-4332(99)00293-7. 105, 110, 113 [152] Baltrusaitis, J., Mendoza-Sanchez, B., Fernandez, V., Veenstra, R., Dukstiene, N., Roberts, A., et al. Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model. Applied Surface Science, 326, 151–161, 2015. URL https://doi.org/10.1016/j.apsusc.2014.11.077. [153] Scanlon, D. O., Watson, G. W., Payne, D., Atkinson, G., Egdell, R., Law, D. Theoretical and experimental study of the electronic structures of MoO3 and MoO2. The Journal of Physical Chemistry C, 114 (10), 4636–4645, 2010. URL https://doi.org/10.1021/jp9093172. 105 [154] Beloborodov, I., Lopatin, A., Vinokur, V., Efetov, K. B. Granular electronic systems. Reviews of Modern Physics, 79 (2), 469, 2007. URL https://doi. org/10.1103/revmodphys.79.469. 107 [155] Faucett, A. C., Flournoy, J. N., Mehta, J. S., Mativetsky, J. M. Evolution, structure, and electrical performance of voltage-reduced graphene oxide. FlatChem, 1, 42–51, 2017. URL https://doi.org/10.1016/j.flatc.2016.10.003. 107 [156] Chuang, C., Puddy, R., Lin, H.-D., Lo, S.-T., Chen, T.-M., Smith, C., et al. Experimental evidence for Efros–Shklovskii variable range hopping in hydrogenated graphene. Solid State Communications, 152 (10), 905–908, 2012. URL https://doi.org/10.1016/j.ssc.2012.02.002. 109 [157] Luo, H., Zou, G., Wang, H., Lee, J. H., Lin, Y., Peng, H., et al. Controlling crystal structure and oxidation state in molybdenum nitrides through epitaxial stabilization. The Journal of Physical Chemistry C, 115 (36), 17880–17883, 2011. URL https://doi.org/10.1021/jp2048376. 111 [158] Schmidt, E., Ilin, K., Siegel, M. AlN-buffered superconducting NbN nanowire single-photon detector on GaAs. IEEE Transactions on Applied Superconductivity, 27 (4), 1–5, 2016. URL https://doi.org/10.1109/tasc.2016.2637358. 112 [159] Ma, Y., Guan, G., Hao, X., Cao, J., Abudula, A. Molybdenum carbide as alternative catalyst for hydrogen production–a review. Renewable and Sustainable Energy Reviews, 75, 1101–1129, 2017. URL https://doi.org/10.1016/j. rser.2016.11.092. 112 [160] Ge, Y., Song, H., Bao, K., Ma, S., Li, L., Tao, Q., et al. A novel hard superconductor obtained in di-molybdenum carbide (Mo2C) with Mo-C octahedral structure. Journal of Alloys and Compounds, 881, 160631, 2021. URL https://doi.org/10.1016/j.jallcom.2021.160631. [161] Miao, M., Pan, J., He, T., Yan, Y., Xia, B. Y., Wang, X. Molybdenum carbidebased electrocatalysts for hydrogen evolution reaction. Chemistry–A European Journal, 23 (46), 10947–10961, 2017. URL https://doi.org/10.1002/chem. 201701064. 112 [162] Wei, Z. Z., Grange, P., Delmon, B. XPS and XRD studies of fresh and sulfided Mo2N. Applied surface science, 135 (1-4), 107–114, 1998. URL https://doi. org/10.1016/s0169-4332(98)00267-0. 113 [163] Hofer, J. A., Bengi, S., Rozas, G., Prez, P. D., Sirena, M., Surez, S., et al. Compositional effects on the electrical properties of extremely disordered molybdenum oxynitrides thin films. Materials Chemistry and Physics, 242, 122075, 2020. URL https://doi.org/10.1016/j.matchemphys.2019.122075. 113 [164] Kim, H., Ghimire, A., Jamali, S., Djidjou, T. K., Gerton, J. M., Rogachev, A. Effect of magnetic Gd impurities on the superconducting state of amorphous Mo-Ge thin films with different thickness and morphology. Physical Review B, 86 (2), 024518, 2012. URL https://doi.org/10.1103/physrevb.86.024518. 117, 123, 125 [165] Leuenberger, F., Parge, A., Felsch, W., Fauth, K., Hessler, M. GdN thin films: Bulk and local electronic and magnetic properties. Physical Review B, 72 (1), 014427, 2005. URL https://doi.org/10.1103/physrevb.72.014427. 117, 118 [166] Kogan, V., Prozorov, R. Critical fields of superconductors with magnetic impurities. Physical Review B, 106 (5), 054505, 2022. URL https://doi.org/10. 1103/physrevb.106.054505. 118 [167] Hofer, J. A., Ginzburg, M., Bengi, S., Haberkorn, N. Nanocrystalline superconducting γ-Mo2N ultra-thin films for single photon detectors. Materials Science and Engineering: B, 275, 115499, 2022. URL https://doi.org/10.1016/j. mseb.2021.115499. 119, 155, 165 [168] Abrikosov, A., Gor’kov, L. Spin-orbit interaction and the knight shift in superconductors. Sov. Phys. JETP, 15, 752, 1962. URL http://83.149.229.155/ cgi-bin/dn/e_015_04_0752.pdf. 122 [169] Rogacki, K., Batlogg, B., Karpinski, J., Zhigadlo, N., Schuck, G., Kazakov, S., et al. Strong magnetic pair breaking in Mn-substituted MgB2 single crystals. Physical Review B, 73 (17), 174520, 2006. URL https://doi.org/10.1103/ physrevb.73.174520. 122 [170] Pop, I. M., Geerlings, K., Catelani, G., Schoelkopf, R. J., Glazman, L. I., Devoret, M. H. Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles. Nature, 508 (7496), 369–372, 2014. URL https: //doi.org/10.1038/nature13017. 128 [171] Basset, J., Watfa, D., Aiello, G., Fchant, M., Morvan, A., Estve, J., et al. High kinetic inductance microwave resonators made by He-beam assisted deposition of tungsten nanowires. Applied Physics Letters, 114 (10), 2019. URL https: //doi.org/10.1063/1.5080925. [172] Korneeva, Y. P., Manova, N., Florya, I., Mikhailov, M. Y., Dobrovolskiy, O., Korneev, A., et al. Different single-photon response of wide and narrow superconducting MoxSi1−x strips. Physical Review Applied, 13 (2), 024011, 2020. URL https://doi.org/10.1103/physrevapplied.13.024011. 128 [173] Caputo, M., Cirillo, C., Attanasio, C. NbRe as candidate material for fast single photon detection. Applied Physics Letters, 111 (19), 192601, 2017. URL https: //doi.org/10.1063/1.4997675. 128 [174] Korneeva, Y. P., Vodolazov, D. Y., Semenov, A., Florya, I., Simonov, N., Baeva, E., et al. Optical single-photon detection in micrometer-scale NbN bridges. Physical Review Applied, 9 (6), 064037, 2018. URL https://doi.org/10.1103/ physrevapplied.9.064037. 128 [175] Semenov, A., Gnther, B., Bttger, U., Hbers, H.-W., Bartolf, H., Engel, A., et al. Optical and transport properties of ultrathin NbN films and nanostructures. Physical Review B, 80 (5), 054510, 2009. URL https://doi.org/10.1103/ physrevb.80.054510. 128 [176] Zhang, L., You, L., Peng, W., Wang, Z. Quasiparticle scattering time in NbN superconducting thin films. Physica C: Superconductivity and its Applications, 579, 1353773, 2020. URL https://doi.org/10.1016/j.physc.2020.1353773. 129, 153, 155, 165 [177] Zhang, X., Lita, A. E., Sidorova, M., Verma, V. B., Wang, Q., Nam, S. W., et al. Superconducting fluctuations and characteristic time scales in amorphous WSi. Physical Review B, 97 (17), 174502, 2018. URL https://doi.org/10.1103/ physrevb.97.174502. 129, 165 [178] Henrich, D., Reichensperger, P., Hofherr, M., Meckbach, J., Il’in, K., Siegel, M., et al. Geometry-induced reduction of the critical current in superconducting nanowires. Physical Review B, 86 (14), 144504, 2012. URL https://doi.org/ 10.1103/physrevb.86.144504. 134 [179] Bulaevskii, L., Graf, M., Batista, C., Kogan, V. Vortex-induced dissipation in narrow current-biased thin-film superconducting strips. Physical Review B, 83 (14), 144526, 2011. URL https://doi.org/10.1103/physrevb.83.144526. 135 [180] Van der Beek, C., Konczykowski, M., Abal’oshev, A., Abal’osheva, I., Gierlowski, P., Lewandowski, S., et al. Strong pinning in high-temperature superconducting films. Physical Review B, 66 (2), 024523, 2002. URL https://doi.org/10. 1103/physrevb.66.024523. 137, 138, 150, 151, 153 [181] Miura, M., Maiorov, B., Kato, T., Shimode, T., Wada, K., Adachi, S., et al. Strongly enhanced flux pinning in one-step deposition of BaFe2(As0.66P0.33)2 superconductor films with uniformly dispersed BaZrO3 nanoparticles. Nature communications, 4 (1), 1–7, 2013. URL https://doi.org/10.1038/ ncomms3499. 138 [182] Sidorova, M. V., Kozorezov, A., Semenov, A., Korneeva, Y. P., Mikhailov, M. Y., Devizenko, A. Y., et al. Nonbolometric bottleneck in electron-phonon relaxation in ultrathin WSi films. Physical Review B, 97 (18), 184512, 2018. URL https: //doi.org/10.1103/physrevb.97.184512. 141 [183] Babić, D., Bentner, J., Srgers, C., Strunk, C. Flux-flow instabilities in amorphous Nb0,7Ge0,3 microbridges. Physical Review B, 69 (9), 092510, 2004. URL https://doi.org/10.1103/physrevb.69.092510. 141 [184] Peroz, C., Villard, C. Flux flow properties of niobium thin films in clean and dirty superconducting limits. Physical Review B, 72 (1), 014515, 2005. URL https://doi.org/10.1103/physrevb.72.014515. 141, 151, 152 [185] Vasyutin, M. A., Kuz’michev, N. D., Shilkin, D. A. Critical phase-transition current in niobium nitride thin films. Physics of the Solid State, 60, 2287–2290, 2018. URL https://doi.org/10.1134/s1063783418110343. 141, 151 [186] Li, W., Fenton, J., Wang, Y., McComb, D., Warburton, P. Tunability of the superconductivity of tungsten films grown by focused-ion-beam direct writing. Journal of Applied Physics, 104 (9), 093913, 2008. URL https://doi.org/10. 1063/1.3013444. 142 [187] Lefloch, F., Hoffmann, C., Demolliens, O. Nonlinear flux flow in TiN superconducting thin film. Physica C: Superconductivity, 319 (3-4), 258–266, 1999. URL https://doi.org/10.1016/s0921-4534(99)00297-x. 142, 165, 190 [188] Budinsk, B., Aichner, B., Vodolazov, D. Y., Mikhailov, M. Y., Porrati, F., Huth, M., et al. Rising speed limits for fluxons via edge-quality improvement in wide MoSi thin films. Physical Review Applied, 17 (3), 034072, 2022. URL https: //doi.org/10.1103/physrevapplied.17.034072. 142, 145, 146, 158, 162, 166 [189] Plourde, B., Van Harlingen, D., Vodolazov, D. Y., Besseling, R., Hesselberth, M., Kes, P. Influence of edge barriers on vortex dynamics in thin weak-pinning superconducting strips. Physical Review B, 64 (1), 014503, 2001. URL https: //doi.org/10.1103/physrevb.64.014503. 144, 145 [190] Attanasio, C., Cirillo, C. Quasiparticle relaxation mechanisms in superconductor/ ferromagnet bilayers. Journal of Physics: Condensed Matter, 24 (8), 083201, 2012. URL https://doi.org/10.1088/0953-8984/24/8/083201. 147 [191] Wu, C.-M., Naseem, S., Chou, M.-H., Wang, J.-H., Jian, Y.-Q. Recent advances in tungsten-oxide-based materials and their applications. Frontiers in Materials, 6, 49, 2019. URL https://doi.org/10.3389/fmats.2019.00049. 147 [192] Kunchur, M. N. Unstable flux flow due to heated electrons in superconducting films. Physical review letters, 89 (13), 137005, 2002. URL https://doi.org/ 10.1103/physrevlett.89.137005. 151, 152 [193] Cirillo, C., Pagliarulo, V., Myoren, H., Bonavolonta, C., Parlato, L., Pepe, G. P., et al. Quasiparticle energy relaxation times in NbN/CuNi nanostripes from critical velocity measurements. Physical Review B, 84 (5), 054536, 2011. URL https://doi.org/10.1103/physrevb.84.054536. 155, 164 [194] Shklovskij, V. A., Nazipova, A. P., Dobrovolskiy, O. V. Pinning effects on selfheating and flux-flow instability in superconducting films near tc. Physical Review B, 95 (18), 184517, 2017. URL https://doi.org/10.1103/physrevb.95. 184517. 156 [195] Vodolazov, D. Y. Flux-flow instability in a strongly disordered superconducting strip with an edge barrier for vortex entry. Superconductor Science and Technology, 32 (11), 115013, 2019. URL https://doi.org/10.1088/1361-6668/ ab4168. 158 [196] Mukhtarova, A., Redaelli, L., Hazra, D., Machhadani, H., Lequien, S., Hofheinz, M., et al. Polarization-insensitive fiber-coupled superconducting-nanowire single photon detector using a high-index dielectric capping layer. Optics Express, 26 (13), 17697–17704, 2018. URL https://doi.org/10.1364/oe.26.017697. 164 [197] Hofer, J., Haberkorn, N. Flux flow velocity instability and quasiparticle relaxation time in nanocrystalline β-W thin films. Thin Solid Films, 730, 138690, 2021. URL https://doi.org/10.1016/j.tsf.2021.138690. 165, 169 [198] Fazio, R., Van Der Zant, H. Quantum phase transitions and vortex dynamics in superconducting networks. Physics Reports, 355 (4), 235–334, 2001. URL https://doi.org/10.1016/s0370-1573(01)00022-9. 167 [199] Golosovsky, M., Tsindlekht, M., Davidov, D. High-frequency vortex dynamics in YBa2Cu3O7. Superconductor Science and Technology, 9 (1), 1, 1996. URL https://doi.org/10.1088/0953-2048/9/1/001. 167 [200] Gallop, J. C. SQUIDs, the Josephson effects and superconducting electronics. CRC Press, 1991. URL https://doi.org/10.1201/9780203738887. 168 [201] Benz, S., Hamilton, C. Application of the Josephson effect to voltage metrology. Proceedings of the IEEE, 92 (10), 1617–1629, 2004. URL https://doi.org/10. 1109/jproc.2004.833671. 168 [202] Kockum, A. F., Nori, F. Quantum bits with Josephson junctions. Fundamentals and Frontiers of the Josephson Effect, pgs. 703–741, 2019. URL https://doi. org/10.1007/978-3-030-20726-7_17. 168 [203] Zhang, G., Ma, J., Alsaedi, A., Ahmad, B., Alzahrani, F. Dynamical behavior and application in Josephson junction coupled by memristor. Applied Mathematics and Computation, 321, 290–299, 2018. URL https://doi.org/10.1016/j.amc. 2017.10.054. 168 [204] Ruan, D., Lin, R., Jiang, K., Yu, X., Zhu, Y., Fu, Y., et al. High-performance porous molybdenum oxynitride based fiber supercapacitors. ACS applied materials & interfaces, 9 (35), 29699–29706, 2017. URL https://doi.org/10.1021/ acsami.7b07522. 168 [205] Bell, C., Loloee, R., Burnell, G., Blamire, M. Characteristics of strong ferromagnetic Josephson junctions with epitaxial barriers. Physical Review B, 71 (18), 180501, 2005. URL https://doi.org/10.1103/physrevb.71.180501. 168 [206] Katase, T., Ishimaru, Y., Tsukamoto, A., Hiramatsu, H., Kamiya, T., Tanabe, K., et al. Josephson junction in cobalt-doped BaFe2As2 epitaxial thin films on (La, Sr)(Al, Ta)O3 bicrystal substrates. Applied Physics Letters, 96 (14), 2010. URL https://doi.org/10.1063/1.3371814. 168 [207] Suominen, H., Danon, J., Kjaergaard, M., Flensberg, K., Shabani, J., Palmstrm, C., et al. Anomalous Fraunhofer interference in epitaxial superconductorsemiconductor Josephson junctions. Physical Review B, 95 (3), 035307, 2017. URL https://doi.org/10.1103/physrevb.95.035307. 168 [208] Schwidtal, K. Type-i and Type-ii superconductivity in wide Josephson junctions. Physical Review B, 2 (7), 2526, 1970. URL https://doi.org/10.1103/ physrevb.2.2526. 168 [209] Chin, D., Van Duzer, T. Novel all-high tc epitaxial josephson junction. Applied physics letters, 58 (7), 753–755, 1991. URL https://doi.org/10.1063/ 1.104537. 168 [210] Marychev, P. M., Vodolazov, D. Y. A Josephson junction based on a highly disordered superconductor/low-resistivity normal metal bilayer. Beilstein Journal of Nanotechnology, 11 (1), 858–865, 2020. URL https://doi.org/10.3762/ bjnano.11.71. 168, 186 [211] Carrington, A., Manzano, F. Magnetic penetration depth of MgB2. Physica C: Superconductivity, 385 (1-2), 205–214, 2003. URL https://doi.org/10.1016/ s0921-4534(02)02319-5. 179 [212] Simmendinger, J., Pracht, U. S., Daschke, L., Proslier, T., Klug, J. A., Dressel, M., et al. Superconducting energy scales and anomalous dissipative conductivity in thin films of molybdenum nitride. Physical Review B, 94 (6), 064506, 2016. URL https://doi.org/10.1103/physrevb.94.064506. 185 [213] Dresselhaus, P. D., Chong, Y., Benz, S. P. Stacked Nb-MoSi/sub 2/-Nb Josephson junctions for ac voltage standards. IEEE transactions on applied superconductivity, 15 (2), 449–452, 2005. URL https://doi.org/10.1109/tasc.2005. 849871. 186 [214] Chong, Y., Dresselhaus, P. D., Benz, S. P., Bonevich, J. E. Effects of interlayer electrode thickness in Nb/(MoSi2/Nb)n stacked Josephson junctions. Applied physics letters, 82 (15), 2467–2469, 2003. URL https://doi.org/10.1063/1. 1566797. 186
Materias:Fsica > Materia condensada
Fsica
Divisiones:Gcia. de rea de Investigacin y aplicaciones no nucleares > Gcia. de Fsica > Materia condensada > Bajas temperaturas
Cdigo ID:1227
Depositado Por:Marisa G. Velazco Aldao
Depositado En:14 Mar 2024 15:07
ltima Modificacin:14 Mar 2024 15:07

Personal del repositorio solamente: pgina de control del documento