Diseño de un fantoma para auditorías dosimétricas remotas en braquiterapia de alta tasa de dosis / Design of a phantom for remote dosimetric audits in high dose rate brachyterapy

Gilli, Rocío L. (2023) Diseño de un fantoma para auditorías dosimétricas remotas en braquiterapia de alta tasa de dosis / Design of a phantom for remote dosimetric audits in high dose rate brachyterapy. Maestría en Física Médica, Universidad Nacional de Cuyo, Instituto Balseiro.

[img]
Vista previa
PDF (Tesis)
Español
12Mb

Resumen en español

Una de las herramientas esenciales de un programa de QA en radioterapia, que contribuye a garantizar exactitud en la dosimetría de sus tratamientos, es el uso de auditorias dosimétricas. El objetivo de este trabajo fue evaluar la factibilidad de implementar un programa de auditoría dosimétrica postal de nivel II en braquiterapia de alta tasa de dosis (BT HDR) con fuente de 192"Ir por primera vez en Argentina, basando la dosimetría en el uso de luminiscencia ópticamente estimulada (OSL). Para esto, se diseñó y construyó un fantoma solido en PMMA de 80x140x80 mm"3 con dos canales para introducir la fuente y una ranura para colocar un dosímetro OSL nanoDot. El diseño mostró ser resistente a envíos por correo postal, práctico, portátil y económico. Para medir la dosis, se caracterizó y calibró un lote de dosímetros con el equipo Gammamed Plus iX, el cual aloja una fuente de 192"Ir. Se determinaron factores de influencia en el cálculo de dosis propios de los OSLDs, y se analizaron posibles situaciones fuera del protocolo propuesto. Posteriormente, se implementó un estudio piloto de auditoría dosimétrica en colaboración con 3 centros de RT de Argentina, para lo cual se desarrolló un protocolo con instrucciones de planificación e irradiación, una hoja de trabajo y una encuesta para evaluar la calidad del programa propuesto, que se enviaron junto con el fantoma y los dosímetros. Como instancia final, se confeccionó un informe con los resultados obtenidos, el cual fue presentado al físico médico responsable de realizar la medición. Los resultados de la caracterización de los OSLD fueron muy satisfactorios, estando todos los factores de influencia dentro de límites publicados internacionalmente. La incertidumbre para el cálculo de dosis con el sistema dosimétrico propuesto fue del ±4% con un nivel de confianza del 95 %. A partir de este valor se estableció como nivel de aceptación ´optimo aquellas desviaciones porcentuales entre la dosis reportada por el TPS del centro y la dosis medida con OSLD, menores al ±4 %; y aceptables, aquellas desviaciones entre el ±4% y ±5 %. En este contexto, los resultados obtenidos en los 3 centros se encontraron dentro del limite ´optimo, independientemente del equipo HDR auditado. Asimismo, a través de la encuesta, los centros indicaron sensaciones positivas hacia el proyecto, destacando la facilidad de uso del fantoma y la claridad de la instrucciones tanto para planificación como para irradiación. Como conclusión, en esta primera experiencia se obtuvieron resultados muy alentadores, tanto en el uso de los OSLDs como dosímetros para 192"Ir, como del estudio piloto en sí, que serviría de base para un futuro programa oficial de auditorías dosimétricas en BT HDR por primera vez en nuestro país.

Resumen en inglés

One of the essential tools in a QA program in radiotherapy, contributing to ensuring accuracy in the dosimetry of treatments, is the use of dosimetric audits. The objective of this work was to evaluate the feasibility of implementing a level II postal dosimetric audit program in high-dose-rate brachytherapy (HDR BT) with a 192"Ir source for the first time in Argentina, basing dosimetry on the use of optically stimulated luminescence (OSL). For this purpose, a solid PMMA phantom of dimensions 80x140x80 mm"3 was designed and constructed with two channels to insert the source and a slot to place an OSL nanoDot dosimeter. The design proved to be resistant to postal shipments, practical, portable, and cost-effective. To measure the dose, a batch of dosimeters was characterized and calibrated with the Gammamed Plus iX equipment, which houses a 192"Ir source. Influence factors in the dose calculation specific to OSLDs were determined, and potential deviations from the proposed protocol were analyzed. Subsequently, a pilot dosimetric audit study was implemented in collaboration with three radiotherapy centers in Argentina. For this, a protocol with planning and irradiation instructions, a worksheet, and a survey to assess the quality of the proposed program were developed and sent along with the phantom and dosimeters. As a final step, a report with the obtained results was prepared and presented to the medical physicist responsible for carrying out the measurement. The results of the OSLD characterization were very satisfactory, with all influencing factors falling within internationally published limits. The uncertainty for dose calculation with the proposed dosimetric system was ±4% with a 95% confidence level. Based on this value, deviations between the dose reported by the center’s TPS and the dose measured with OSLDs were established as optimal if they were less than ±4%, and acceptable if they fell between ±4% and ±5%. In this context, the results obtained in all three centers were within the optimal limit, regardless of the audited HDR equipment. Additionally, through the survey, the centers expressed positive feedback about the project, highlighting the ease of use of the phantom and the clarity of instructions for both planning and irradiation. In conclusion, in this first experience, very encouraging results were obtained, both in the use of OSLDs as dosimeters for 192"Ir, and in the pilot study itself, which would serve as the basis for a future official program of dosimetric audits in BT HDR for the first time in our country.

Tipo de objeto:Tesis (Maestría en Física Médica)
Palabras Clave:Audits; Auditoría; Brachytherapy; Braquiterapia; [Phantom; Fantoma]
Referencias:[1] OMS. C´ancer. Https://www.who.int/es/news-room/fact-sheets/detail/cancer (2022). 1 [2] Organization, W. H. Global Cancer Observatory. Https://gco.iarc.fr/. 1, 2 [3] IAEA. Radiotherapy in cancer care: Facing the global challenge. Vienna, Austria: International Atomic Energy Agency, 2017. 1 [4] Lim, Y. K., Kim, D. Brachytherapy: A Comprehensive Review. Med. Phys., 32(2), 25–39, 2021. URL https://doi.org/10.14316/pmp.2021.32.2.25. 2, 23 [5] Otter, S. J., Stewart, A. J., Devlin, P. M. Modern Brachytherapy. Hematology/ Oncology Clinics of North America, 33, 1011–1025, 2019. URL https: //doi.org/10.1016/j.hoc.2019.08.011. 2 [6] Organization, W. H. Radiotherapy risk profile. Hematology/Oncology Clinics of North America, 2008. 2 [7] Clark, C., Aird, E., Bolton, S., Miles, E., Nisbet, A., Snaith, J., et al. Radiotherapy dosimetry audit: three decades of improving standards and accuracy in UK clinical practice and trials. Br J Radiol, p´ags. 1–13, 2015. 2 [8] OIEA. Aspectos f´ısicos de la garant´ıa de calidad en radioterapia: Protocolo de control de calidad, Vienna, 2000. 2, 48 [9] Organization, W. H. Quality assurance in radiotherapy, Geneva, 1998. URL https://apps.who.int/iris/handle/10665/40423. 3 [10] Pujades-Claumarchirant, M. C., Candela-Juan, C., Oliver-Ca˜nam´as, L., ´Angela Soriano-Cruz, Rovira-Escutia, J. J., Ballester-Pallar´es, F. Estudio piloto de una auditor´ıa postal dosim´etrica para radioterapia en condiciones de referencia. Rev Fis Med, 23(1), 27–34, 2022. URL https://doi.org/10.37004/sefm/2022.23. 1.002. 3, 12 [11] Dunn, L., Lye, J., Kenny, J., Lehmann, J., Williams, I., Kron, T. Commissioning of optically stimulated luminescence dosimeters for use in radiotherapy. Radiation Measurements, 51-52, 31–39, 2013. URL http://dx.doi.org/10.1016/j. radmeas.2013.01.012. 3, 35, 40, 53, 56 [12] Oliver-Ca˜nam´as, L., Vijande, J., Candela-Juan, C., Gimeno-Olmos, J., Pujades- Claumarchirant, C., Rovira-Escutia, J. J., et al. A User-Friendly System for Mailed Dosimetric Audits of 192Ir or 60Co HDR Brachytherapy Sources. Cancers, 15, 1–14, 2023. URL https://doi.org/10.3390/cancers15092484. 3, 63 [13] IAEA. DAN (Dosimetry Audit Networks), 2023. URL https:// dosimetry-audit-networks.iaea.org/Home/AuditAvailability. 3 [14] L´opez, M. A. Tratamientos con braquiterapia. Ar´an Ediciones, 2014. 7, 8 [15] Podgorsak, E. Radiation Oncology Physics: A Handbook for Teachers and Students. International Atomic Energy Agency, Vienna, 2005. 7, 9, 11, 21, 22 [16] Chargari, C., Deutsch, E., Blanchard, P., Gouy, S., Martelli, H., Gu´erin, F., et al. Brachytherapy: An Overview for Clinicians. Cancer Journal for Clinicians, 0(0), 1–16, 2019. URL https://doi.org/10.3322/caac.21578. 8 [17] Academy, B. Braquiterapia: radioterapia espec´ıfica de alta precisi´on, 2014. 8 [18] Venselaar, J. L. M., Baltas, D., Meigooni, A. S., Hoskin, P. J. Comprehensive Brachytherapy: Physical and Clinical Aspects. Taylor & Francis Group, LLC, 2013. 9, 26 [19] P´erez-Calatayud, J., Andr´assy, M., Niatsetsky, Y. Co-60 frente a Ir-192 en braquiterapia de alta tasa de dosis: comparaci´on cient´ıfica y t´ecnica. Revista De F´ısica M´edica, 13(2), 125–130, 2012. URL https://revistadefisicamedica. es/index.php/rfm/article/view/8. 9 [20] IAEA. Live Chart of Nuclides. URL https://www-nds.iaea.org/relnsd/ vcharthtml/VChartHTML.html. 9 [21] Kubo, H. D., Glasgow, G. P., Pethel, T. D., Thomadsen, B. R., Williamson, J. F. High dose-rate brachytherapy treatment delivery: Report of the AAPM Radiation Therapy Committee Task Group No. 59. Medical Physics, 25(4), 375–403, 1998. 9, 10 [22] Nag, S. High Dose Rate Brachytherapy: Its Clinical Applications and Treatment Guidelines. Technology in Cancer Research and Treatment, 3(3), 269–287, 2004. 10 [23] Rivard, M. J., Coursey, B. M., DeWerd, L. A., Hanson, W. F., Huq, M. S., Ibbott, G. S., et al. Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations. Medical Physics, 31(3), 633–674, 2004. 11 [24] Clark, C. H., Jornet, N., Muren, L. P. The role of dosimetry audit in achieving high quality radiotherapy. Physics and Imaging in Radiation Oncology 5, p´ags. 85–87, 2018. URL https://doi.org/10.1016/j.phro.2018.03.009. 11 [25] Izewska, J., Lechner, W.,Wesolowska, P. Global availability of dosimetry audits in radiotherapy: The IAEA dosimetry audit networks database. Physics and Imaging in Radiation Oncology 5, p´ags. 1–4, 2018. URL https://doi.org/10.1016/j. phro.2017.12.002. 11 [26] Lye, J., Kenny, J., Lehmann, J., Dunn, L., Kron, T., Alves, A., et al. A 2D ion chamber array audit of wedged and asymmetric fields in an inhomogeneous lung phantom. Med. Phys., 41(10), 1–11, 2014. URL http://dx.doi.org/10.1118/ 1.4896097. 11, 13 [27] IAEA. Standards and codes of practice in medical radiation dosimetry, Volume 2. Vienna, Austria: International Atomic Energy Agency, 2003. 12, 13 [28] OIEA. Aspectos f´ısicos de la garant´ıa de calidad en radioterapia: Protocolo de control de calidad. Vienna, Austria: Organismo Internacional de Energ´ıa At´omia, 2000. 12 [29] Yukihara, E. G., McKeever, S. W. S. Optically stimulated luminescence (OSL) dosimetry in medicine. Phys. Med. Biol., 53, 351–379, 2008. URL http://dx. doi.org/10.1088/0031-9155/53/20/R01. 12, 16, 18 [30] Palmer, A., Bradley, D. A., Nisbet, A. Review article: Dosimetric audit in brachytherapy. Br J Radiol, p´ags. 1–10, 2014. URL http://dx.doi.org/10. 1259/bjr.20140105. 14 [31] P, G., J., I. An IAEA survey of dosimetry audit networks for radiotherapy. SSDL Newsletter No. 61, p´ags. 23–27, 2013. URL http://www-pub.iaea.org/MTCD/ Publications/PDF/Newsletters/SSDL-61.pdf. 14 [32] Casey, K. E., Alvarez, P., Kry, S. F., Howell, R. M., Lawyer, A., Followil, D. Development and implementation of a remote audit tool for high dose rate (HDR) Ir-192 brachytherapy using optically stimulated luminescence dosimetry. Med. Phys., 40(11), 1–8, 2013. URL http://dx.doi.org/10.1118/1.4824915. 14, 48, 63 [33] Kry, S. F., Alvarez, P., Cygler, J. E., DeWerd, L. A., Howell, R. M., Meeks, S., et al. AAPM TG 191: Clinical use of luminescent dosimeters: TLDs and OSLDs. Med. Phys. 47 (2), 2020. 15, 16, 18, 19, 20, 21, 39, 56, 58, 63 [34] Casey, K. Development and Implementation of a remote audit tool for high dose rate (HDR) 192Ir brachytherapy using optically stimulated luminescence dosimetry. Tesis de grado en Maestr´ıa en Ciencias, University of Texas; supervisada por Ph.D. David Followill, 2012. 15, 17 [35] Bhatt, B. C. Thermoluminescence, optically stimulated luminescence and radiophotoluminescence dosimetry: An overall perspective. Radiat Prot Environ, 34, 6–16, 2011. 15 [36] Arnez, E. M. Dosimetr´ıa in vivo con el uso de detectores OSLD nanoDot en tomograf ´ıa computada multidetector card´ıaca. Maestr´ıa en F´ısica M´edica. Instituto Balseiro, 2021. 15, 19 [37] Yukihara, E. G., Yoshimura, E. M., Lindstrom, T. D., Ahmad, S., Taylor, K. K., Mardirossian, G. High-precision dosimetry for radiotherapy using the optically stimulated luminescence technique and thin Al2O3:C dosimeters. Phys. Med. Biol., 50, 5619–5628, 2005. URL http://dx.doi.org/10.1088/0031-9155/50/ 23/014. 17, 59 [38] Yukihara, E. G., Yoshimura, E. M., Lindstrom, T. D., Ahmad, S., Taylor, K. K., Mardirossian, G. Characterization of optically stimulated luminescent dosimeters, OSLDs, for clinical dosimetric measurements, journal = Medical Physics. 34, 4594–4604, 2007. URL http://dx.doi.org/10.1118/1.2804555. 17, 20, 40, 46, 56, 58, 59 [39] L´opez, J. A. R. Dosimetr´ıa in vivo con el uso de OSL nanoDot en radioterapia con intensidad modulada. Maestr´ıa en F´ısica M´edica. Instituto Balseiro, 2019. 17, 35, 40, 46, 57 [40] IAEA. Development of Procedures for In Vivo Dosimetry in Radiotherapy. Human Health Reports No. 8. Vienna, Austria: International Atomic Energy Agency, 2013. 18 [41] JCGM. Evaluation of measurement data—Guide to the expression of uncertainty in measurement, 2008. 22 [42] Taylor, B. N., Kuyatt, C. E. Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results. . National Institute of Standards and Technology, Technical Note 1297, 1994 Edition. 22, 23 [43] Granero, D., Perez-Calatayud, J., Pujades-Claumarchirant, M., Ballester, F., Melhus, C. S., Rivard, M. J. Equivalent phantom sizes and shapes for brachytherapy dosimetric studies of Ir 192 and Cs 137. Medical Physics, 35(11), 4872–4877, 2008. URL http://dx.doi.org/10.1118/1.2982140. 26 [44] NIST. NIST Standard Reference Database 126, 2004. URL https://dx.doi. org/10.18434/T4D01F. 27, 44 [45] 38, I. R. Dose and Volume Specification for Reporting Intracavitary Therapy in Gynecology, 1985. 29 [46] Landauer. Manual de usuario microStar versi´on 4.3, 2012. URL https://www. landauer.com/. 37 [47] Venselaar, J., P´erez-Calatayud, J. A PRACTICAL GUIDE TO QUALITY CONTROL OF BRACHYTHERAPY EQUIPMENT. ESTRO Booklet No. 8, 2004. URL http://dx.doi.org/10.1118/1.2982140. 38 [48] Gonzales, V. E. Dosimetr´ıa in vivo con el uso de OSL nanoDot. Maestr´ıa en F´ısica M´edica. Instituto Balseiro, 2016. 40, 57 [49] Bondel, S., Ravikumar, M., Supe, S. S., Reddy, B. R. Calibration of 192Ir high dose rate brachytherapy source using different calibration procedures. Reports of practical oncology and radiotherapy, 19(3), 151–156, 2014. URL http://dx.doi. org/10.1016/j.rpor.2013.07.014. 44 [50] BALTAS, D., KONSTANTINA GERAMANI, D. I., GEORGIOS T. IOANNIDIS, D. I., KIRSTEN HIERHOLZ, I., BERND ROGGE, I., CHRISTOS KOLOTAS, M., et al. COMPARISON OF CALIBRATION PROCEDURES FOR 192IR HIGH-DOS RATE BRACHYTHERAPY SOURCES. Int. J. Radiation Oncology Biol. Phys., 43(3), 653–661, 1999. 44 [51] Haworth, A., Wilfert, L., Butler, D., Ebert, M. A., Todd, S., Bucci, J., et al. Australasian brachytherapy audit: Results of the ‘end-to-end’ dosimetry pilot study. Journal of Medical Imaging and Radiation Oncology, 57, 490–498, 2013. URL doi:10.1111/1754-9485.12042. 48 [52] Bassi, S., Berrigan, L., Zuchora, A., Fahy, L., Moore, M. End-to-end dosimetric audit: A novel procedure developed for Irish HDR brachytherapy centres. Physica Medica, 80, 221–229, 2020. URL https://doi.org/10.1016/j.ejmp.2020.10. 005. 48 [53] Rou´e, A., Venselaar, J. L., Ferreira, I. H., Bridier, A., Dam, J. V. Development of a TLD mailed system for remote dosimetry audit for 192Ir HDR and PDR sources Radiotherapy and Oncology, 83, 86–93, 2007. URL doi:10.1016/j.radonc.2007. 02.011. 48 [54] Ochoa, R., G´omez, F., Ferreira, I. H., Gutt, F., de Almeida, C. E. Design of a phantom for the quality control of high dose rate 192Ir source used in brachytherapy. Radiotherapy and Oncology, 82, 222–228, 2007. URL doi: 10.1016/j.radonc.2007.01.005. 48 [55] Landauer. nanoDot™ Dosimeter, 2019. URL landauer.com. 55 [56] Ruiz, A. V. Caracterizaci´on y puesta en servicio de un sistema dosim´etrico basado en OSLD para auditor´ıas en radioterapia. Maestr´ıa en F´ısica M´edica. Instituto Balseiro, 2021. 58 [57] Nath, R., Anderson, L. L., Meli, J. A., Olch, A. J., Stitt, J. A., Williamson, J. F. Code of practice for brachytherapy physics: Report of the AAPM Radiation Therapy Committee Task Group No. 56. Medical Physics, 24 (10), 1557–1598, 1997. 62
Materias:Medicina > Física médica
Medicina > Dosimetría
Divisiones:FUESMEN
Código ID:1229
Depositado Por:Marisa G. Velazco Aldao
Depositado En:18 Mar 2024 12:25
Última Modificación:18 Mar 2024 12:25

Personal del repositorio solamente: página de control del documento